Process.cpp 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Singleton.h>
  7. #include <AK/StdLibExtras.h>
  8. #include <AK/Time.h>
  9. #include <AK/Types.h>
  10. #include <Kernel/API/Syscall.h>
  11. #include <Kernel/Arch/x86/InterruptDisabler.h>
  12. #include <Kernel/Coredump.h>
  13. #include <Kernel/Debug.h>
  14. #include <Kernel/Devices/DeviceManagement.h>
  15. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  16. # include <Kernel/Devices/KCOVDevice.h>
  17. #endif
  18. #include <Kernel/API/POSIX/errno.h>
  19. #include <Kernel/Devices/NullDevice.h>
  20. #include <Kernel/FileSystem/Custody.h>
  21. #include <Kernel/FileSystem/OpenFileDescription.h>
  22. #include <Kernel/FileSystem/VirtualFileSystem.h>
  23. #include <Kernel/KBufferBuilder.h>
  24. #include <Kernel/KSyms.h>
  25. #include <Kernel/Memory/AnonymousVMObject.h>
  26. #include <Kernel/Memory/PageDirectory.h>
  27. #include <Kernel/Memory/SharedInodeVMObject.h>
  28. #include <Kernel/PerformanceEventBuffer.h>
  29. #include <Kernel/PerformanceManager.h>
  30. #include <Kernel/Process.h>
  31. #include <Kernel/Scheduler.h>
  32. #include <Kernel/Sections.h>
  33. #include <Kernel/StdLib.h>
  34. #include <Kernel/TTY/TTY.h>
  35. #include <Kernel/Thread.h>
  36. #include <Kernel/ThreadTracer.h>
  37. #include <Kernel/TimerQueue.h>
  38. #include <LibC/limits.h>
  39. namespace Kernel {
  40. static void create_signal_trampoline();
  41. RecursiveSpinlock g_profiling_lock;
  42. static Atomic<pid_t> next_pid;
  43. static Singleton<SpinlockProtected<Process::List>> s_all_instances;
  44. READONLY_AFTER_INIT Memory::Region* g_signal_trampoline_region;
  45. static Singleton<MutexProtected<OwnPtr<KString>>> s_hostname;
  46. MutexProtected<OwnPtr<KString>>& hostname()
  47. {
  48. return *s_hostname;
  49. }
  50. SpinlockProtected<Process::List>& Process::all_instances()
  51. {
  52. return *s_all_instances;
  53. }
  54. ProcessID Process::allocate_pid()
  55. {
  56. // Overflow is UB, and negative PIDs wreck havoc.
  57. // TODO: Handle PID overflow
  58. // For example: Use an Atomic<u32>, mask the most significant bit,
  59. // retry if PID is already taken as a PID, taken as a TID,
  60. // takes as a PGID, taken as a SID, or zero.
  61. return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
  62. }
  63. UNMAP_AFTER_INIT void Process::initialize()
  64. {
  65. next_pid.store(0, AK::MemoryOrder::memory_order_release);
  66. // Note: This is called before scheduling is initialized, and before APs are booted.
  67. // So we can "safely" bypass the lock here.
  68. reinterpret_cast<OwnPtr<KString>&>(hostname()) = KString::must_create("courage"sv);
  69. create_signal_trampoline();
  70. }
  71. bool Process::in_group(GroupID gid) const
  72. {
  73. return this->gid() == gid || extra_gids().contains_slow(gid);
  74. }
  75. void Process::kill_threads_except_self()
  76. {
  77. InterruptDisabler disabler;
  78. if (thread_count() <= 1)
  79. return;
  80. auto* current_thread = Thread::current();
  81. for_each_thread([&](Thread& thread) {
  82. if (&thread == current_thread)
  83. return;
  84. if (auto state = thread.state(); state == Thread::State::Dead
  85. || state == Thread::State::Dying)
  86. return;
  87. // We need to detach this thread in case it hasn't been joined
  88. thread.detach();
  89. thread.set_should_die();
  90. });
  91. u32 dropped_lock_count = 0;
  92. if (big_lock().force_unlock_exclusive_if_locked(dropped_lock_count) != LockMode::Unlocked)
  93. dbgln("Process {} big lock had {} locks", *this, dropped_lock_count);
  94. }
  95. void Process::kill_all_threads()
  96. {
  97. for_each_thread([&](Thread& thread) {
  98. // We need to detach this thread in case it hasn't been joined
  99. thread.detach();
  100. thread.set_should_die();
  101. });
  102. }
  103. void Process::register_new(Process& process)
  104. {
  105. // Note: this is essentially the same like process->ref()
  106. RefPtr<Process> new_process = process;
  107. all_instances().with([&](auto& list) {
  108. list.prepend(process);
  109. });
  110. }
  111. ErrorOr<NonnullRefPtr<Process>> Process::try_create_user_process(RefPtr<Thread>& first_thread, StringView path, UserID uid, GroupID gid, NonnullOwnPtrVector<KString> arguments, NonnullOwnPtrVector<KString> environment, TTY* tty)
  112. {
  113. auto parts = path.split_view('/');
  114. if (arguments.is_empty()) {
  115. auto last_part = TRY(KString::try_create(parts.last()));
  116. TRY(arguments.try_append(move(last_part)));
  117. }
  118. auto path_string = TRY(KString::try_create(path));
  119. auto name = TRY(KString::try_create(parts.last()));
  120. auto process = TRY(Process::try_create(first_thread, move(name), uid, gid, ProcessID(0), false, VirtualFileSystem::the().root_custody(), nullptr, tty));
  121. TRY(process->m_fds.with_exclusive([&](auto& fds) -> ErrorOr<void> {
  122. TRY(fds.try_resize(Process::OpenFileDescriptions::max_open()));
  123. auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : DeviceManagement::the().null_device();
  124. auto description = TRY(device_to_use_as_tty.open(O_RDWR));
  125. auto setup_description = [&](int fd) {
  126. fds.m_fds_metadatas[fd].allocate();
  127. fds[fd].set(*description);
  128. };
  129. setup_description(0);
  130. setup_description(1);
  131. setup_description(2);
  132. return {};
  133. }));
  134. Thread* new_main_thread = nullptr;
  135. u32 prev_flags = 0;
  136. if (auto result = process->exec(move(path_string), move(arguments), move(environment), new_main_thread, prev_flags); result.is_error()) {
  137. dbgln("Failed to exec {}: {}", path, result.error());
  138. first_thread = nullptr;
  139. return result.release_error();
  140. }
  141. register_new(*process);
  142. // NOTE: All user processes have a leaked ref on them. It's balanced by Thread::WaitBlockerSet::finalize().
  143. process->ref();
  144. {
  145. SpinlockLocker lock(g_scheduler_lock);
  146. new_main_thread->set_state(Thread::State::Runnable);
  147. }
  148. return process;
  149. }
  150. RefPtr<Process> Process::create_kernel_process(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, void (*entry)(void*), void* entry_data, u32 affinity, RegisterProcess do_register)
  151. {
  152. auto process_or_error = Process::try_create(first_thread, move(name), UserID(0), GroupID(0), ProcessID(0), true);
  153. if (process_or_error.is_error())
  154. return {};
  155. auto process = process_or_error.release_value();
  156. first_thread->regs().set_ip((FlatPtr)entry);
  157. #if ARCH(I386)
  158. first_thread->regs().esp = FlatPtr(entry_data); // entry function argument is expected to be in regs.esp
  159. #else
  160. first_thread->regs().rdi = FlatPtr(entry_data); // entry function argument is expected to be in regs.rdi
  161. #endif
  162. if (do_register == RegisterProcess::Yes)
  163. register_new(*process);
  164. SpinlockLocker lock(g_scheduler_lock);
  165. first_thread->set_affinity(affinity);
  166. first_thread->set_state(Thread::State::Runnable);
  167. return process;
  168. }
  169. void Process::protect_data()
  170. {
  171. m_protected_data_refs.unref([&]() {
  172. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, false);
  173. });
  174. }
  175. void Process::unprotect_data()
  176. {
  177. m_protected_data_refs.ref([&]() {
  178. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, true);
  179. });
  180. }
  181. ErrorOr<NonnullRefPtr<Process>> Process::try_create(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty, Process* fork_parent)
  182. {
  183. auto space = TRY(Memory::AddressSpace::try_create(fork_parent ? &fork_parent->address_space() : nullptr));
  184. auto unveil_tree = UnveilNode { TRY(KString::try_create("/"sv)), UnveilMetadata(TRY(KString::try_create("/"sv))) };
  185. auto process = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) Process(move(name), uid, gid, ppid, is_kernel_process, move(cwd), move(executable), tty, move(unveil_tree))));
  186. TRY(process->attach_resources(move(space), first_thread, fork_parent));
  187. return process;
  188. }
  189. Process::Process(NonnullOwnPtr<KString> name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty, UnveilNode unveil_tree)
  190. : m_name(move(name))
  191. , m_is_kernel_process(is_kernel_process)
  192. , m_executable(move(executable))
  193. , m_cwd(move(cwd))
  194. , m_tty(tty)
  195. , m_unveiled_paths(move(unveil_tree))
  196. , m_wait_blocker_set(*this)
  197. {
  198. // Ensure that we protect the process data when exiting the constructor.
  199. ProtectedDataMutationScope scope { *this };
  200. m_protected_values.pid = allocate_pid();
  201. m_protected_values.ppid = ppid;
  202. m_protected_values.uid = uid;
  203. m_protected_values.gid = gid;
  204. m_protected_values.euid = uid;
  205. m_protected_values.egid = gid;
  206. m_protected_values.suid = uid;
  207. m_protected_values.sgid = gid;
  208. dbgln_if(PROCESS_DEBUG, "Created new process {}({})", m_name, this->pid().value());
  209. }
  210. ErrorOr<void> Process::attach_resources(NonnullOwnPtr<Memory::AddressSpace>&& preallocated_space, RefPtr<Thread>& first_thread, Process* fork_parent)
  211. {
  212. m_space = move(preallocated_space);
  213. auto create_first_thread = [&] {
  214. if (fork_parent) {
  215. // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process.
  216. return Thread::current()->try_clone(*this);
  217. }
  218. // NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.)
  219. return Thread::try_create(*this);
  220. };
  221. first_thread = TRY(create_first_thread());
  222. if (!fork_parent) {
  223. // FIXME: Figure out if this is really necessary.
  224. first_thread->detach();
  225. }
  226. auto weak_ptr = TRY(this->try_make_weak_ptr());
  227. m_procfs_traits = TRY(ProcessProcFSTraits::try_create({}, move(weak_ptr)));
  228. return {};
  229. }
  230. Process::~Process()
  231. {
  232. unprotect_data();
  233. VERIFY(thread_count() == 0); // all threads should have been finalized
  234. VERIFY(!m_alarm_timer);
  235. PerformanceManager::add_process_exit_event(*this);
  236. }
  237. // Make sure the compiler doesn't "optimize away" this function:
  238. extern void signal_trampoline_dummy() __attribute__((used));
  239. void signal_trampoline_dummy()
  240. {
  241. #if ARCH(I386)
  242. // The trampoline preserves the current eax, pushes the signal code and
  243. // then calls the signal handler. We do this because, when interrupting a
  244. // blocking syscall, that syscall may return some special error code in eax;
  245. // This error code would likely be overwritten by the signal handler, so it's
  246. // necessary to preserve it here.
  247. asm(
  248. ".intel_syntax noprefix\n"
  249. ".globl asm_signal_trampoline\n"
  250. "asm_signal_trampoline:\n"
  251. "push ebp\n"
  252. "mov ebp, esp\n"
  253. "push eax\n" // we have to store eax 'cause it might be the return value from a syscall
  254. "sub esp, 4\n" // align the stack to 16 bytes
  255. "mov eax, [ebp+12]\n" // push the signal code
  256. "push eax\n"
  257. "call [ebp+8]\n" // call the signal handler
  258. "add esp, 8\n"
  259. "mov eax, %P0\n"
  260. "int 0x82\n" // sigreturn syscall
  261. ".globl asm_signal_trampoline_end\n"
  262. "asm_signal_trampoline_end:\n"
  263. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  264. #elif ARCH(X86_64)
  265. // The trampoline preserves the current rax, pushes the signal code and
  266. // then calls the signal handler. We do this because, when interrupting a
  267. // blocking syscall, that syscall may return some special error code in eax;
  268. // This error code would likely be overwritten by the signal handler, so it's
  269. // necessary to preserve it here.
  270. asm(
  271. ".intel_syntax noprefix\n"
  272. ".globl asm_signal_trampoline\n"
  273. "asm_signal_trampoline:\n"
  274. "push rbp\n"
  275. "mov rbp, rsp\n"
  276. "push rax\n" // we have to store rax 'cause it might be the return value from a syscall
  277. "sub rsp, 8\n" // align the stack to 16 bytes
  278. "mov rdi, [rbp+24]\n" // push the signal code
  279. "call [rbp+16]\n" // call the signal handler
  280. "add rsp, 8\n"
  281. "mov rax, %P0\n"
  282. "int 0x82\n" // sigreturn syscall
  283. ".globl asm_signal_trampoline_end\n"
  284. "asm_signal_trampoline_end:\n"
  285. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  286. #endif
  287. }
  288. extern "C" char const asm_signal_trampoline[];
  289. extern "C" char const asm_signal_trampoline_end[];
  290. void create_signal_trampoline()
  291. {
  292. // NOTE: We leak this region.
  293. g_signal_trampoline_region = MM.allocate_kernel_region(PAGE_SIZE, "Signal trampolines", Memory::Region::Access::ReadWrite).release_value().leak_ptr();
  294. g_signal_trampoline_region->set_syscall_region(true);
  295. size_t trampoline_size = asm_signal_trampoline_end - asm_signal_trampoline;
  296. u8* code_ptr = (u8*)g_signal_trampoline_region->vaddr().as_ptr();
  297. memcpy(code_ptr, asm_signal_trampoline, trampoline_size);
  298. g_signal_trampoline_region->set_writable(false);
  299. g_signal_trampoline_region->remap();
  300. }
  301. void Process::crash(int signal, FlatPtr ip, bool out_of_memory)
  302. {
  303. VERIFY(!is_dead());
  304. VERIFY(&Process::current() == this);
  305. if (out_of_memory) {
  306. dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this);
  307. } else {
  308. if (ip >= kernel_load_base && g_kernel_symbols_available) {
  309. auto const* symbol = symbolicate_kernel_address(ip);
  310. dbgln("\033[31;1m{:p} {} +{}\033[0m\n", ip, (symbol ? symbol->name : "(k?)"), (symbol ? ip - symbol->address : 0));
  311. } else {
  312. dbgln("\033[31;1m{:p} (?)\033[0m\n", ip);
  313. }
  314. dump_backtrace();
  315. }
  316. {
  317. ProtectedDataMutationScope scope { *this };
  318. m_protected_values.termination_signal = signal;
  319. }
  320. set_should_generate_coredump(!out_of_memory);
  321. address_space().dump_regions();
  322. VERIFY(is_user_process());
  323. die();
  324. // We can not return from here, as there is nowhere
  325. // to unwind to, so die right away.
  326. Thread::current()->die_if_needed();
  327. VERIFY_NOT_REACHED();
  328. }
  329. RefPtr<Process> Process::from_pid(ProcessID pid)
  330. {
  331. return all_instances().with([&](const auto& list) -> RefPtr<Process> {
  332. for (auto const& process : list) {
  333. if (process.pid() == pid)
  334. return &process;
  335. }
  336. return {};
  337. });
  338. }
  339. const Process::OpenFileDescriptionAndFlags* Process::OpenFileDescriptions::get_if_valid(size_t i) const
  340. {
  341. if (m_fds_metadatas.size() <= i)
  342. return nullptr;
  343. if (auto const& metadata = m_fds_metadatas[i]; metadata.is_valid())
  344. return &metadata;
  345. return nullptr;
  346. }
  347. Process::OpenFileDescriptionAndFlags* Process::OpenFileDescriptions::get_if_valid(size_t i)
  348. {
  349. if (m_fds_metadatas.size() <= i)
  350. return nullptr;
  351. if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
  352. return &metadata;
  353. return nullptr;
  354. }
  355. const Process::OpenFileDescriptionAndFlags& Process::OpenFileDescriptions::at(size_t i) const
  356. {
  357. VERIFY(m_fds_metadatas[i].is_allocated());
  358. return m_fds_metadatas[i];
  359. }
  360. Process::OpenFileDescriptionAndFlags& Process::OpenFileDescriptions::at(size_t i)
  361. {
  362. VERIFY(m_fds_metadatas[i].is_allocated());
  363. return m_fds_metadatas[i];
  364. }
  365. ErrorOr<NonnullRefPtr<OpenFileDescription>> Process::OpenFileDescriptions::open_file_description(int fd) const
  366. {
  367. if (fd < 0)
  368. return EBADF;
  369. if (static_cast<size_t>(fd) >= m_fds_metadatas.size())
  370. return EBADF;
  371. RefPtr description = m_fds_metadatas[fd].description();
  372. if (!description)
  373. return EBADF;
  374. return description.release_nonnull();
  375. }
  376. void Process::OpenFileDescriptions::enumerate(Function<void(const OpenFileDescriptionAndFlags&)> callback) const
  377. {
  378. for (auto const& file_description_metadata : m_fds_metadatas) {
  379. callback(file_description_metadata);
  380. }
  381. }
  382. ErrorOr<void> Process::OpenFileDescriptions::try_enumerate(Function<ErrorOr<void>(const OpenFileDescriptionAndFlags&)> callback) const
  383. {
  384. for (auto const& file_description_metadata : m_fds_metadatas) {
  385. TRY(callback(file_description_metadata));
  386. }
  387. return {};
  388. }
  389. void Process::OpenFileDescriptions::change_each(Function<void(OpenFileDescriptionAndFlags&)> callback)
  390. {
  391. for (auto& file_description_metadata : m_fds_metadatas) {
  392. callback(file_description_metadata);
  393. }
  394. }
  395. size_t Process::OpenFileDescriptions::open_count() const
  396. {
  397. size_t count = 0;
  398. enumerate([&](auto& file_description_metadata) {
  399. if (file_description_metadata.is_valid())
  400. ++count;
  401. });
  402. return count;
  403. }
  404. ErrorOr<Process::ScopedDescriptionAllocation> Process::OpenFileDescriptions::allocate(int first_candidate_fd)
  405. {
  406. for (size_t i = first_candidate_fd; i < max_open(); ++i) {
  407. if (!m_fds_metadatas[i].is_allocated()) {
  408. m_fds_metadatas[i].allocate();
  409. return Process::ScopedDescriptionAllocation { static_cast<int>(i), &m_fds_metadatas[i] };
  410. }
  411. }
  412. return EMFILE;
  413. }
  414. Time kgettimeofday()
  415. {
  416. return TimeManagement::now();
  417. }
  418. siginfo_t Process::wait_info() const
  419. {
  420. siginfo_t siginfo {};
  421. siginfo.si_signo = SIGCHLD;
  422. siginfo.si_pid = pid().value();
  423. siginfo.si_uid = uid().value();
  424. if (m_protected_values.termination_signal != 0) {
  425. siginfo.si_status = m_protected_values.termination_signal;
  426. siginfo.si_code = CLD_KILLED;
  427. } else {
  428. siginfo.si_status = m_protected_values.termination_status;
  429. siginfo.si_code = CLD_EXITED;
  430. }
  431. return siginfo;
  432. }
  433. Custody& Process::current_directory()
  434. {
  435. if (!m_cwd)
  436. m_cwd = VirtualFileSystem::the().root_custody();
  437. return *m_cwd;
  438. }
  439. ErrorOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Userspace<char const*> user_path, size_t path_length)
  440. {
  441. if (path_length == 0)
  442. return EINVAL;
  443. if (path_length > PATH_MAX)
  444. return ENAMETOOLONG;
  445. return try_copy_kstring_from_user(user_path, path_length);
  446. }
  447. ErrorOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Syscall::StringArgument const& path)
  448. {
  449. Userspace<char const*> path_characters((FlatPtr)path.characters);
  450. return get_syscall_path_argument(path_characters, path.length);
  451. }
  452. ErrorOr<void> Process::dump_core()
  453. {
  454. VERIFY(is_dumpable());
  455. VERIFY(should_generate_coredump());
  456. dbgln("Generating coredump for pid: {}", pid().value());
  457. auto coredump_path = TRY(KString::formatted("/tmp/coredump/{}_{}_{}", name(), pid().value(), kgettimeofday().to_truncated_seconds()));
  458. auto coredump = TRY(Coredump::try_create(*this, coredump_path->view()));
  459. return coredump->write();
  460. }
  461. ErrorOr<void> Process::dump_perfcore()
  462. {
  463. VERIFY(is_dumpable());
  464. VERIFY(m_perf_event_buffer);
  465. dbgln("Generating perfcore for pid: {}", pid().value());
  466. // Try to generate a filename which isn't already used.
  467. auto base_filename = TRY(KString::formatted("{}_{}", name(), pid().value()));
  468. auto perfcore_filename = TRY(KString::formatted("{}.profile", base_filename));
  469. RefPtr<OpenFileDescription> description;
  470. for (size_t attempt = 1; attempt <= 10; ++attempt) {
  471. auto description_or_error = VirtualFileSystem::the().open(perfcore_filename->view(), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { 0, 0 });
  472. if (!description_or_error.is_error()) {
  473. description = description_or_error.release_value();
  474. break;
  475. }
  476. perfcore_filename = TRY(KString::formatted("{}.{}.profile", base_filename, attempt));
  477. }
  478. if (!description) {
  479. dbgln("Failed to generate perfcore for pid {}: Could not generate filename for the perfcore file.", pid().value());
  480. return EEXIST;
  481. }
  482. auto builder = TRY(KBufferBuilder::try_create());
  483. TRY(m_perf_event_buffer->to_json(builder));
  484. auto json = builder.build();
  485. if (!json) {
  486. dbgln("Failed to generate perfcore for pid {}: Could not allocate buffer.", pid().value());
  487. return ENOMEM;
  488. }
  489. auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data());
  490. TRY(description->write(json_buffer, json->size()));
  491. dbgln("Wrote perfcore for pid {} to {}", pid().value(), perfcore_filename);
  492. return {};
  493. }
  494. void Process::finalize()
  495. {
  496. VERIFY(Thread::current() == g_finalizer);
  497. dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this);
  498. if (veil_state() == VeilState::Dropped)
  499. dbgln("\x1b[01;31mProcess '{}' exited with the veil left open\x1b[0m", name());
  500. if (is_dumpable()) {
  501. if (m_should_generate_coredump) {
  502. auto result = dump_core();
  503. if (result.is_error()) {
  504. critical_dmesgln("Failed to write coredump: {}", result.error());
  505. }
  506. }
  507. if (m_perf_event_buffer) {
  508. auto result = dump_perfcore();
  509. if (result.is_error())
  510. critical_dmesgln("Failed to write perfcore: {}", result.error());
  511. TimeManagement::the().disable_profile_timer();
  512. }
  513. }
  514. m_threads_for_coredump.clear();
  515. if (m_alarm_timer)
  516. TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull());
  517. m_fds.with_exclusive([](auto& fds) { fds.clear(); });
  518. m_tty = nullptr;
  519. m_executable = nullptr;
  520. m_cwd = nullptr;
  521. m_arguments.clear();
  522. m_environment.clear();
  523. m_state.store(State::Dead, AK::MemoryOrder::memory_order_release);
  524. {
  525. if (auto parent_process = Process::from_pid(ppid())) {
  526. if (parent_process->is_user_process() && (parent_process->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT) != SA_NOCLDWAIT)
  527. (void)parent_process->send_signal(SIGCHLD, this);
  528. }
  529. }
  530. if (!!ppid()) {
  531. if (auto parent = Process::from_pid(ppid())) {
  532. parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children;
  533. parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children;
  534. }
  535. }
  536. unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated);
  537. m_space->remove_all_regions({});
  538. VERIFY(ref_count() > 0);
  539. // WaitBlockerSet::finalize will be in charge of dropping the last
  540. // reference if there are still waiters around, or whenever the last
  541. // waitable states are consumed. Unless there is no parent around
  542. // anymore, in which case we'll just drop it right away.
  543. m_wait_blocker_set.finalize();
  544. }
  545. void Process::disowned_by_waiter(Process& process)
  546. {
  547. m_wait_blocker_set.disowned_by_waiter(process);
  548. }
  549. void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal)
  550. {
  551. RefPtr<Process> waiter_process;
  552. if (auto* my_tracer = tracer())
  553. waiter_process = Process::from_pid(my_tracer->tracer_pid());
  554. else
  555. waiter_process = Process::from_pid(ppid());
  556. if (waiter_process)
  557. waiter_process->m_wait_blocker_set.unblock(*this, flags, signal);
  558. }
  559. void Process::die()
  560. {
  561. auto expected = State::Running;
  562. if (!m_state.compare_exchange_strong(expected, State::Dying, AK::memory_order_acquire)) {
  563. // It's possible that another thread calls this at almost the same time
  564. // as we can't always instantly kill other threads (they may be blocked)
  565. // So if we already were called then other threads should stop running
  566. // momentarily and we only really need to service the first thread
  567. return;
  568. }
  569. // Let go of the TTY, otherwise a slave PTY may keep the master PTY from
  570. // getting an EOF when the last process using the slave PTY dies.
  571. // If the master PTY owner relies on an EOF to know when to wait() on a
  572. // slave owner, we have to allow the PTY pair to be torn down.
  573. m_tty = nullptr;
  574. VERIFY(m_threads_for_coredump.is_empty());
  575. for_each_thread([&](auto& thread) {
  576. auto result = m_threads_for_coredump.try_append(thread);
  577. if (result.is_error())
  578. dbgln("Failed to add thread {} to coredump due to OOM", thread.tid());
  579. });
  580. all_instances().with([&](const auto& list) {
  581. for (auto it = list.begin(); it != list.end();) {
  582. auto& process = *it;
  583. ++it;
  584. if (process.has_tracee_thread(pid())) {
  585. dbgln_if(PROCESS_DEBUG, "Process {} ({}) is attached by {} ({}) which will exit", process.name(), process.pid(), name(), pid());
  586. process.stop_tracing();
  587. auto err = process.send_signal(SIGSTOP, this);
  588. if (err.is_error())
  589. dbgln("Failed to send the SIGSTOP signal to {} ({})", process.name(), process.pid());
  590. }
  591. }
  592. });
  593. kill_all_threads();
  594. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  595. KCOVDevice::free_process();
  596. #endif
  597. }
  598. void Process::terminate_due_to_signal(u8 signal)
  599. {
  600. VERIFY_INTERRUPTS_DISABLED();
  601. VERIFY(signal < 32);
  602. VERIFY(&Process::current() == this);
  603. dbgln("Terminating {} due to signal {}", *this, signal);
  604. {
  605. ProtectedDataMutationScope scope { *this };
  606. m_protected_values.termination_status = 0;
  607. m_protected_values.termination_signal = signal;
  608. }
  609. die();
  610. }
  611. ErrorOr<void> Process::send_signal(u8 signal, Process* sender)
  612. {
  613. VERIFY(is_user_process());
  614. // Try to send it to the "obvious" main thread:
  615. auto receiver_thread = Thread::from_tid(pid().value());
  616. // If the main thread has died, there may still be other threads:
  617. if (!receiver_thread) {
  618. // The first one should be good enough.
  619. // Neither kill(2) nor kill(3) specify any selection procedure.
  620. for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision {
  621. receiver_thread = &thread;
  622. return IterationDecision::Break;
  623. });
  624. }
  625. if (receiver_thread) {
  626. receiver_thread->send_signal(signal, sender);
  627. return {};
  628. }
  629. return ESRCH;
  630. }
  631. RefPtr<Thread> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, NonnullOwnPtr<KString> name, u32 affinity, bool joinable)
  632. {
  633. VERIFY((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX));
  634. // FIXME: Do something with guard pages?
  635. auto thread_or_error = Thread::try_create(*this);
  636. if (thread_or_error.is_error())
  637. return {};
  638. auto thread = thread_or_error.release_value();
  639. thread->set_name(move(name));
  640. thread->set_affinity(affinity);
  641. thread->set_priority(priority);
  642. if (!joinable)
  643. thread->detach();
  644. auto& regs = thread->regs();
  645. regs.set_ip((FlatPtr)entry);
  646. regs.set_sp((FlatPtr)entry_data); // entry function argument is expected to be in the SP register
  647. SpinlockLocker lock(g_scheduler_lock);
  648. thread->set_state(Thread::State::Runnable);
  649. return thread;
  650. }
  651. void Process::OpenFileDescriptionAndFlags::clear()
  652. {
  653. // FIXME: Verify Process::m_fds_lock is locked!
  654. m_description = nullptr;
  655. m_flags = 0;
  656. }
  657. void Process::OpenFileDescriptionAndFlags::set(NonnullRefPtr<OpenFileDescription>&& description, u32 flags)
  658. {
  659. // FIXME: Verify Process::m_fds_lock is locked!
  660. m_description = move(description);
  661. m_flags = flags;
  662. }
  663. void Process::set_tty(TTY* tty)
  664. {
  665. m_tty = tty;
  666. }
  667. ErrorOr<void> Process::start_tracing_from(ProcessID tracer)
  668. {
  669. m_tracer = TRY(ThreadTracer::try_create(tracer));
  670. return {};
  671. }
  672. void Process::stop_tracing()
  673. {
  674. m_tracer = nullptr;
  675. }
  676. void Process::tracer_trap(Thread& thread, const RegisterState& regs)
  677. {
  678. VERIFY(m_tracer.ptr());
  679. m_tracer->set_regs(regs);
  680. thread.send_urgent_signal_to_self(SIGTRAP);
  681. }
  682. bool Process::create_perf_events_buffer_if_needed()
  683. {
  684. if (m_perf_event_buffer)
  685. return true;
  686. m_perf_event_buffer = PerformanceEventBuffer::try_create_with_size(4 * MiB);
  687. if (!m_perf_event_buffer)
  688. return false;
  689. return !m_perf_event_buffer->add_process(*this, ProcessEventType::Create).is_error();
  690. }
  691. void Process::delete_perf_events_buffer()
  692. {
  693. if (m_perf_event_buffer)
  694. m_perf_event_buffer = nullptr;
  695. }
  696. bool Process::remove_thread(Thread& thread)
  697. {
  698. ProtectedDataMutationScope scope { *this };
  699. auto thread_cnt_before = m_protected_values.thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
  700. VERIFY(thread_cnt_before != 0);
  701. thread_list().with([&](auto& thread_list) {
  702. thread_list.remove(thread);
  703. });
  704. return thread_cnt_before == 1;
  705. }
  706. bool Process::add_thread(Thread& thread)
  707. {
  708. ProtectedDataMutationScope scope { *this };
  709. bool is_first = m_protected_values.thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0;
  710. thread_list().with([&](auto& thread_list) {
  711. thread_list.append(thread);
  712. });
  713. return is_first;
  714. }
  715. void Process::set_dumpable(bool dumpable)
  716. {
  717. if (dumpable == m_protected_values.dumpable)
  718. return;
  719. ProtectedDataMutationScope scope { *this };
  720. m_protected_values.dumpable = dumpable;
  721. }
  722. ErrorOr<void> Process::set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value)
  723. {
  724. // Write it into the first available property slot.
  725. for (auto& slot : m_coredump_properties) {
  726. if (slot.key)
  727. continue;
  728. slot.key = move(key);
  729. slot.value = move(value);
  730. return {};
  731. }
  732. return ENOBUFS;
  733. }
  734. ErrorOr<void> Process::try_set_coredump_property(StringView key, StringView value)
  735. {
  736. auto key_kstring = TRY(KString::try_create(key));
  737. auto value_kstring = TRY(KString::try_create(value));
  738. return set_coredump_property(move(key_kstring), move(value_kstring));
  739. };
  740. static constexpr StringView to_string(Pledge promise)
  741. {
  742. #define __ENUMERATE_PLEDGE_PROMISE(x) \
  743. case Pledge::x: \
  744. return #x;
  745. switch (promise) {
  746. ENUMERATE_PLEDGE_PROMISES
  747. }
  748. #undef __ENUMERATE_PLEDGE_PROMISE
  749. VERIFY_NOT_REACHED();
  750. }
  751. ErrorOr<void> Process::require_no_promises() const
  752. {
  753. if (!has_promises())
  754. return {};
  755. dbgln("Has made a promise");
  756. Thread::current()->set_promise_violation_pending(true);
  757. return EPROMISEVIOLATION;
  758. }
  759. ErrorOr<void> Process::require_promise(Pledge promise)
  760. {
  761. if (!has_promises())
  762. return {};
  763. if (has_promised(promise))
  764. return {};
  765. dbgln("Has not pledged {}", to_string(promise));
  766. Thread::current()->set_promise_violation_pending(true);
  767. (void)try_set_coredump_property("pledge_violation"sv, to_string(promise));
  768. return EPROMISEVIOLATION;
  769. }
  770. }