Region.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443
  1. #include <Kernel/FileSystem/Inode.h>
  2. #include <Kernel/Process.h>
  3. #include <Kernel/Thread.h>
  4. #include <Kernel/VM/AnonymousVMObject.h>
  5. #include <Kernel/VM/InodeVMObject.h>
  6. #include <Kernel/VM/MemoryManager.h>
  7. #include <Kernel/VM/Region.h>
  8. //#define MM_DEBUG
  9. //#define PAGE_FAULT_DEBUG
  10. Region::Region(const Range& range, const String& name, u8 access)
  11. : m_range(range)
  12. , m_vmobject(AnonymousVMObject::create_with_size(size()))
  13. , m_name(name)
  14. , m_access(access)
  15. {
  16. MM.register_region(*this);
  17. }
  18. Region::Region(const Range& range, NonnullRefPtr<Inode> inode, const String& name, u8 access)
  19. : m_range(range)
  20. , m_vmobject(InodeVMObject::create_with_inode(*inode))
  21. , m_name(name)
  22. , m_access(access)
  23. {
  24. MM.register_region(*this);
  25. }
  26. Region::Region(const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, const String& name, u8 access)
  27. : m_range(range)
  28. , m_offset_in_vmobject(offset_in_vmobject)
  29. , m_vmobject(move(vmobject))
  30. , m_name(name)
  31. , m_access(access)
  32. {
  33. MM.register_region(*this);
  34. }
  35. Region::~Region()
  36. {
  37. // Make sure we disable interrupts so we don't get interrupted between unmapping and unregistering.
  38. // Unmapping the region will give the VM back to the RangeAllocator, so an interrupt handler would
  39. // find the address<->region mappings in an invalid state there.
  40. InterruptDisabler disabler;
  41. if (m_page_directory) {
  42. unmap(ShouldDeallocateVirtualMemoryRange::Yes);
  43. ASSERT(!m_page_directory);
  44. }
  45. MM.unregister_region(*this);
  46. }
  47. NonnullOwnPtr<Region> Region::clone()
  48. {
  49. ASSERT(current);
  50. // FIXME: What should we do for privately mapped InodeVMObjects?
  51. if (m_shared || vmobject().is_inode()) {
  52. ASSERT(!m_stack);
  53. #ifdef MM_DEBUG
  54. dbgprintf("%s<%u> Region::clone(): sharing %s (V%p)\n",
  55. current->process().name().characters(),
  56. current->pid(),
  57. m_name.characters(),
  58. vaddr().get());
  59. #endif
  60. // Create a new region backed by the same VMObject.
  61. return Region::create_user_accessible(m_range, m_vmobject, m_offset_in_vmobject, m_name, m_access);
  62. }
  63. #ifdef MM_DEBUG
  64. dbgprintf("%s<%u> Region::clone(): cowing %s (V%p)\n",
  65. current->process().name().characters(),
  66. current->pid(),
  67. m_name.characters(),
  68. vaddr().get());
  69. #endif
  70. // Set up a COW region. The parent (this) region becomes COW as well!
  71. ensure_cow_map().fill(true);
  72. remap();
  73. auto clone_region = Region::create_user_accessible(m_range, m_vmobject->clone(), m_offset_in_vmobject, m_name, m_access);
  74. clone_region->ensure_cow_map();
  75. if (m_stack) {
  76. ASSERT(is_readable());
  77. ASSERT(is_writable());
  78. ASSERT(!is_shared());
  79. ASSERT(vmobject().is_anonymous());
  80. clone_region->set_stack(true);
  81. }
  82. return clone_region;
  83. }
  84. bool Region::commit()
  85. {
  86. InterruptDisabler disabler;
  87. #ifdef MM_DEBUG
  88. dbgprintf("MM: commit %u pages in Region %p (VMO=%p) at V%p\n", vmobject().page_count(), this, &vmobject(), vaddr().get());
  89. #endif
  90. for (size_t i = 0; i < page_count(); ++i) {
  91. if (!commit(i))
  92. return false;
  93. }
  94. return true;
  95. }
  96. bool Region::commit(size_t page_index)
  97. {
  98. ASSERT(vmobject().is_anonymous() || vmobject().is_purgeable());
  99. InterruptDisabler disabler;
  100. #ifdef MM_DEBUG
  101. dbgprintf("MM: commit single page (%zu) in Region %p (VMO=%p) at V%p\n", page_index, vmobject().page_count(), this, &vmobject(), vaddr().get());
  102. #endif
  103. auto& vmobject_physical_page_entry = vmobject().physical_pages()[first_page_index() + page_index];
  104. if (!vmobject_physical_page_entry.is_null())
  105. return true;
  106. auto physical_page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
  107. if (!physical_page) {
  108. kprintf("MM: commit was unable to allocate a physical page\n");
  109. return false;
  110. }
  111. vmobject_physical_page_entry = move(physical_page);
  112. remap_page(page_index);
  113. return true;
  114. }
  115. u32 Region::cow_pages() const
  116. {
  117. if (!m_cow_map)
  118. return 0;
  119. u32 count = 0;
  120. for (int i = 0; i < m_cow_map->size(); ++i)
  121. count += m_cow_map->get(i);
  122. return count;
  123. }
  124. size_t Region::amount_resident() const
  125. {
  126. size_t bytes = 0;
  127. for (size_t i = 0; i < page_count(); ++i) {
  128. if (m_vmobject->physical_pages()[first_page_index() + i])
  129. bytes += PAGE_SIZE;
  130. }
  131. return bytes;
  132. }
  133. size_t Region::amount_shared() const
  134. {
  135. size_t bytes = 0;
  136. for (size_t i = 0; i < page_count(); ++i) {
  137. auto& physical_page = m_vmobject->physical_pages()[first_page_index() + i];
  138. if (physical_page && physical_page->ref_count() > 1)
  139. bytes += PAGE_SIZE;
  140. }
  141. return bytes;
  142. }
  143. NonnullOwnPtr<Region> Region::create_user_accessible(const Range& range, const StringView& name, u8 access)
  144. {
  145. auto region = make<Region>(range, name, access);
  146. region->m_user_accessible = true;
  147. return region;
  148. }
  149. NonnullOwnPtr<Region> Region::create_user_accessible(const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, const StringView& name, u8 access)
  150. {
  151. auto region = make<Region>(range, move(vmobject), offset_in_vmobject, name, access);
  152. region->m_user_accessible = true;
  153. return region;
  154. }
  155. NonnullOwnPtr<Region> Region::create_user_accessible(const Range& range, NonnullRefPtr<Inode> inode, const StringView& name, u8 access)
  156. {
  157. auto region = make<Region>(range, move(inode), name, access);
  158. region->m_user_accessible = true;
  159. return region;
  160. }
  161. NonnullOwnPtr<Region> Region::create_kernel_only(const Range& range, const StringView& name, u8 access)
  162. {
  163. auto region = make<Region>(range, name, access);
  164. region->m_user_accessible = false;
  165. return region;
  166. }
  167. bool Region::should_cow(size_t page_index) const
  168. {
  169. if (m_shared)
  170. return false;
  171. return m_cow_map && m_cow_map->get(page_index);
  172. }
  173. void Region::set_should_cow(size_t page_index, bool cow)
  174. {
  175. ASSERT(!m_shared);
  176. ensure_cow_map().set(page_index, cow);
  177. }
  178. Bitmap& Region::ensure_cow_map() const
  179. {
  180. if (!m_cow_map)
  181. m_cow_map = make<Bitmap>(page_count(), true);
  182. return *m_cow_map;
  183. }
  184. void Region::remap_page(size_t index)
  185. {
  186. ASSERT(m_page_directory);
  187. InterruptDisabler disabler;
  188. auto page_vaddr = vaddr().offset(index * PAGE_SIZE);
  189. auto& pte = MM.ensure_pte(*m_page_directory, page_vaddr);
  190. auto& physical_page = vmobject().physical_pages()[first_page_index() + index];
  191. ASSERT(physical_page);
  192. pte.set_physical_page_base(physical_page->paddr().get());
  193. pte.set_present(is_readable());
  194. if (should_cow(index))
  195. pte.set_writable(false);
  196. else
  197. pte.set_writable(is_writable());
  198. pte.set_execute_disabled(!is_executable());
  199. pte.set_user_allowed(is_user_accessible());
  200. m_page_directory->flush(page_vaddr);
  201. #ifdef MM_DEBUG
  202. dbg() << "MM: >> region.remap_page (PD=" << m_page_directory->cr3() << ", PTE=" << (void*)pte.raw() << "{" << &pte << "}) " << name() << " " << page_vaddr << " => " << physical_page->paddr() << " (@" << physical_page.ptr() << ")";
  203. #endif
  204. }
  205. void Region::unmap(ShouldDeallocateVirtualMemoryRange deallocate_range)
  206. {
  207. InterruptDisabler disabler;
  208. ASSERT(m_page_directory);
  209. for (size_t i = 0; i < page_count(); ++i) {
  210. auto vaddr = this->vaddr().offset(i * PAGE_SIZE);
  211. auto& pte = MM.ensure_pte(*m_page_directory, vaddr);
  212. pte.set_physical_page_base(0);
  213. pte.set_present(false);
  214. pte.set_writable(false);
  215. pte.set_user_allowed(false);
  216. m_page_directory->flush(vaddr);
  217. #ifdef MM_DEBUG
  218. auto& physical_page = vmobject().physical_pages()[first_page_index() + i];
  219. dbgprintf("MM: >> Unmapped V%p => P%p <<\n", vaddr.get(), physical_page ? physical_page->paddr().get() : 0);
  220. #endif
  221. }
  222. if (deallocate_range == ShouldDeallocateVirtualMemoryRange::Yes)
  223. m_page_directory->range_allocator().deallocate(range());
  224. m_page_directory = nullptr;
  225. }
  226. void Region::map(PageDirectory& page_directory)
  227. {
  228. ASSERT(!m_page_directory || m_page_directory == &page_directory);
  229. InterruptDisabler disabler;
  230. m_page_directory = page_directory;
  231. #ifdef MM_DEBUG
  232. dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", first_page_index(), last_page_index(), vmobject().page_count());
  233. #endif
  234. for (size_t i = 0; i < page_count(); ++i) {
  235. auto page_vaddr = vaddr().offset(i * PAGE_SIZE);
  236. auto& pte = MM.ensure_pte(page_directory, page_vaddr);
  237. auto& physical_page = vmobject().physical_pages()[first_page_index() + i];
  238. if (physical_page) {
  239. pte.set_physical_page_base(physical_page->paddr().get());
  240. pte.set_present(is_readable());
  241. if (should_cow(i))
  242. pte.set_writable(false);
  243. else
  244. pte.set_writable(is_writable());
  245. pte.set_execute_disabled(!is_executable());
  246. } else {
  247. pte.set_physical_page_base(0);
  248. pte.set_present(false);
  249. pte.set_writable(is_writable());
  250. }
  251. pte.set_user_allowed(is_user_accessible());
  252. page_directory.flush(page_vaddr);
  253. #ifdef MM_DEBUG
  254. dbgprintf("MM: >> map_region_at_address (PD=%p) '%s' V%p => P%p (@%p)\n", &page_directory, name().characters(), page_vaddr.get(), physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
  255. #endif
  256. }
  257. }
  258. void Region::remap()
  259. {
  260. ASSERT(m_page_directory);
  261. map(*m_page_directory);
  262. }
  263. PageFaultResponse Region::handle_fault(const PageFault& fault)
  264. {
  265. auto page_index_in_region = page_index_from_address(fault.vaddr());
  266. if (fault.type() == PageFault::Type::PageNotPresent) {
  267. if (!is_readable()) {
  268. dbgprintf("NP(non-readable) fault in Region{%p}[%u]\n", this, page_index_in_region);
  269. return PageFaultResponse::ShouldCrash;
  270. }
  271. if (vmobject().is_inode()) {
  272. #ifdef PAGE_FAULT_DEBUG
  273. dbgprintf("NP(inode) fault in Region{%p}[%u]\n", this, page_index_in_region);
  274. #endif
  275. return handle_inode_fault(page_index_in_region);
  276. }
  277. #ifdef PAGE_FAULT_DEBUG
  278. dbgprintf("NP(zero) fault in Region{%p}[%u]\n", this, page_index_in_region);
  279. #endif
  280. return handle_zero_fault(page_index_in_region);
  281. }
  282. ASSERT(fault.type() == PageFault::Type::ProtectionViolation);
  283. if (fault.access() == PageFault::Access::Write && is_writable() && should_cow(page_index_in_region)) {
  284. #ifdef PAGE_FAULT_DEBUG
  285. dbgprintf("PV(cow) fault in Region{%p}[%u]\n", this, page_index_in_region);
  286. #endif
  287. return handle_cow_fault(page_index_in_region);
  288. }
  289. kprintf("PV(error) fault in Region{%p}[%u] at V%p\n", this, page_index_in_region, fault.vaddr().get());
  290. return PageFaultResponse::ShouldCrash;
  291. }
  292. PageFaultResponse Region::handle_zero_fault(size_t page_index_in_region)
  293. {
  294. ASSERT_INTERRUPTS_DISABLED();
  295. ASSERT(vmobject().is_anonymous());
  296. sti();
  297. LOCKER(vmobject().m_paging_lock);
  298. cli();
  299. auto& vmobject_physical_page_entry = vmobject().physical_pages()[first_page_index() + page_index_in_region];
  300. if (!vmobject_physical_page_entry.is_null()) {
  301. #ifdef PAGE_FAULT_DEBUG
  302. dbgprintf("MM: zero_page() but page already present. Fine with me!\n");
  303. #endif
  304. remap_page(page_index_in_region);
  305. return PageFaultResponse::Continue;
  306. }
  307. if (current)
  308. current->did_zero_fault();
  309. auto physical_page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
  310. if (physical_page.is_null()) {
  311. kprintf("MM: handle_zero_fault was unable to allocate a physical page\n");
  312. return PageFaultResponse::ShouldCrash;
  313. }
  314. #ifdef PAGE_FAULT_DEBUG
  315. dbgprintf(" >> ZERO P%p\n", physical_page->paddr().get());
  316. #endif
  317. vmobject_physical_page_entry = move(physical_page);
  318. remap_page(page_index_in_region);
  319. return PageFaultResponse::Continue;
  320. }
  321. PageFaultResponse Region::handle_cow_fault(size_t page_index_in_region)
  322. {
  323. ASSERT_INTERRUPTS_DISABLED();
  324. auto& vmobject_physical_page_entry = vmobject().physical_pages()[first_page_index() + page_index_in_region];
  325. if (vmobject_physical_page_entry->ref_count() == 1) {
  326. #ifdef PAGE_FAULT_DEBUG
  327. dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
  328. #endif
  329. set_should_cow(page_index_in_region, false);
  330. remap_page(page_index_in_region);
  331. return PageFaultResponse::Continue;
  332. }
  333. if (current)
  334. current->did_cow_fault();
  335. #ifdef PAGE_FAULT_DEBUG
  336. dbgprintf(" >> It's a COW page and it's time to COW!\n");
  337. #endif
  338. auto physical_page_to_copy = move(vmobject_physical_page_entry);
  339. auto physical_page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
  340. if (physical_page.is_null()) {
  341. kprintf("MM: handle_cow_fault was unable to allocate a physical page\n");
  342. return PageFaultResponse::ShouldCrash;
  343. }
  344. u8* dest_ptr = MM.quickmap_page(*physical_page);
  345. const u8* src_ptr = vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  346. #ifdef PAGE_FAULT_DEBUG
  347. dbgprintf(" >> COW P%p <- P%p\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
  348. #endif
  349. memcpy(dest_ptr, src_ptr, PAGE_SIZE);
  350. vmobject_physical_page_entry = move(physical_page);
  351. MM.unquickmap_page();
  352. set_should_cow(page_index_in_region, false);
  353. remap_page(page_index_in_region);
  354. return PageFaultResponse::Continue;
  355. }
  356. PageFaultResponse Region::handle_inode_fault(size_t page_index_in_region)
  357. {
  358. ASSERT_INTERRUPTS_DISABLED();
  359. ASSERT(vmobject().is_inode());
  360. auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject());
  361. auto& vmobject_physical_page_entry = inode_vmobject.physical_pages()[first_page_index() + page_index_in_region];
  362. sti();
  363. LOCKER(vmobject().m_paging_lock);
  364. cli();
  365. if (!vmobject_physical_page_entry.is_null()) {
  366. #ifdef PAGE_FAULT_DEBUG
  367. dbgprintf("MM: page_in_from_inode() but page already present. Fine with me!\n");
  368. #endif
  369. remap_page(page_index_in_region);
  370. return PageFaultResponse::Continue;
  371. }
  372. if (current)
  373. current->did_inode_fault();
  374. #ifdef MM_DEBUG
  375. dbgprintf("MM: page_in_from_inode ready to read from inode\n");
  376. #endif
  377. sti();
  378. u8 page_buffer[PAGE_SIZE];
  379. auto& inode = inode_vmobject.inode();
  380. auto nread = inode.read_bytes((first_page_index() + page_index_in_region) * PAGE_SIZE, PAGE_SIZE, page_buffer, nullptr);
  381. if (nread < 0) {
  382. kprintf("MM: handle_inode_fault had error (%d) while reading!\n", nread);
  383. return PageFaultResponse::ShouldCrash;
  384. }
  385. if (nread < PAGE_SIZE) {
  386. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  387. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  388. }
  389. cli();
  390. vmobject_physical_page_entry = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
  391. if (vmobject_physical_page_entry.is_null()) {
  392. kprintf("MM: handle_inode_fault was unable to allocate a physical page\n");
  393. return PageFaultResponse::ShouldCrash;
  394. }
  395. u8* dest_ptr = MM.quickmap_page(*vmobject_physical_page_entry);
  396. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  397. MM.unquickmap_page();
  398. remap_page(page_index_in_region);
  399. return PageFaultResponse::Continue;
  400. }