MemoryManager.cpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604
  1. #include "CMOS.h"
  2. #include "Process.h"
  3. #include "StdLib.h"
  4. #include <AK/Assertions.h>
  5. #include <AK/kstdio.h>
  6. #include <Kernel/Arch/i386/CPU.h>
  7. #include <Kernel/FileSystem/Inode.h>
  8. #include <Kernel/Multiboot.h>
  9. #include <Kernel/VM/AnonymousVMObject.h>
  10. #include <Kernel/VM/InodeVMObject.h>
  11. #include <Kernel/VM/MemoryManager.h>
  12. //#define MM_DEBUG
  13. //#define PAGE_FAULT_DEBUG
  14. static MemoryManager* s_the;
  15. MemoryManager& MM
  16. {
  17. return *s_the;
  18. }
  19. MemoryManager::MemoryManager(u32 physical_address_for_kernel_page_tables)
  20. {
  21. m_kernel_page_directory = PageDirectory::create_at_fixed_address(PhysicalAddress(physical_address_for_kernel_page_tables));
  22. for (size_t i = 0; i < 4; ++i) {
  23. m_low_page_tables[i] = (PageTableEntry*)(physical_address_for_kernel_page_tables + PAGE_SIZE * (5 + i));
  24. memset(m_low_page_tables[i], 0, PAGE_SIZE);
  25. }
  26. initialize_paging();
  27. kprintf("MM initialized.\n");
  28. }
  29. MemoryManager::~MemoryManager()
  30. {
  31. }
  32. void MemoryManager::initialize_paging()
  33. {
  34. #ifdef MM_DEBUG
  35. dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
  36. #endif
  37. #ifdef MM_DEBUG
  38. dbgprintf("MM: Protect against null dereferences\n");
  39. #endif
  40. // Make null dereferences crash.
  41. map_protected(VirtualAddress(0), PAGE_SIZE);
  42. #ifdef MM_DEBUG
  43. dbgprintf("MM: Identity map bottom 8MB\n");
  44. #endif
  45. // The bottom 8 MB (except for the null page) are identity mapped & supervisor only.
  46. // Every process shares these mappings.
  47. create_identity_mapping(kernel_page_directory(), VirtualAddress(PAGE_SIZE), (8 * MB) - PAGE_SIZE);
  48. // FIXME: We should move everything kernel-related above the 0xc0000000 virtual mark.
  49. // Basic physical memory map:
  50. // 0 -> 1 MB We're just leaving this alone for now.
  51. // 1 -> 3 MB Kernel image.
  52. // (last page before 2MB) Used by quickmap_page().
  53. // 2 MB -> 4 MB kmalloc_eternal() space.
  54. // 4 MB -> 7 MB kmalloc() space.
  55. // 7 MB -> 8 MB Supervisor physical pages (available for allocation!)
  56. // 8 MB -> MAX Userspace physical pages (available for allocation!)
  57. // Basic virtual memory map:
  58. // 0 -> 4 KB Null page (so nullptr dereferences crash!)
  59. // 4 KB -> 8 MB Identity mapped.
  60. // 8 MB -> 3 GB Available to userspace.
  61. // 3GB -> 4 GB Kernel-only virtual address space (>0xc0000000)
  62. #ifdef MM_DEBUG
  63. dbgprintf("MM: Quickmap will use %p\n", m_quickmap_addr.get());
  64. #endif
  65. m_quickmap_addr = VirtualAddress((2 * MB) - PAGE_SIZE);
  66. RefPtr<PhysicalRegion> region;
  67. bool region_is_super = false;
  68. for (auto* mmap = (multiboot_memory_map_t*)multiboot_info_ptr->mmap_addr; (unsigned long)mmap < multiboot_info_ptr->mmap_addr + multiboot_info_ptr->mmap_length; mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  69. kprintf("MM: Multiboot mmap: base_addr = 0x%x%08x, length = 0x%x%08x, type = 0x%x\n",
  70. (u32)(mmap->addr >> 32),
  71. (u32)(mmap->addr & 0xffffffff),
  72. (u32)(mmap->len >> 32),
  73. (u32)(mmap->len & 0xffffffff),
  74. (u32)mmap->type);
  75. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  76. continue;
  77. // FIXME: Maybe make use of stuff below the 1MB mark?
  78. if (mmap->addr < (1 * MB))
  79. continue;
  80. if ((mmap->addr + mmap->len) > 0xffffffff)
  81. continue;
  82. auto diff = (u32)mmap->addr % PAGE_SIZE;
  83. if (diff != 0) {
  84. kprintf("MM: got an unaligned region base from the bootloader; correcting %p by %d bytes\n", mmap->addr, diff);
  85. diff = PAGE_SIZE - diff;
  86. mmap->addr += diff;
  87. mmap->len -= diff;
  88. }
  89. if ((mmap->len % PAGE_SIZE) != 0) {
  90. kprintf("MM: got an unaligned region length from the bootloader; correcting %d by %d bytes\n", mmap->len, mmap->len % PAGE_SIZE);
  91. mmap->len -= mmap->len % PAGE_SIZE;
  92. }
  93. if (mmap->len < PAGE_SIZE) {
  94. kprintf("MM: memory region from bootloader is too small; we want >= %d bytes, but got %d bytes\n", PAGE_SIZE, mmap->len);
  95. continue;
  96. }
  97. #ifdef MM_DEBUG
  98. kprintf("MM: considering memory at %p - %p\n",
  99. (u32)mmap->addr, (u32)(mmap->addr + mmap->len));
  100. #endif
  101. for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  102. auto addr = PhysicalAddress(page_base);
  103. if (page_base < 7 * MB) {
  104. // nothing
  105. } else if (page_base >= 7 * MB && page_base < 8 * MB) {
  106. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  107. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  108. region = m_super_physical_regions.last();
  109. region_is_super = true;
  110. } else {
  111. region->expand(region->lower(), addr);
  112. }
  113. } else {
  114. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  115. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  116. region = m_user_physical_regions.last();
  117. region_is_super = false;
  118. } else {
  119. region->expand(region->lower(), addr);
  120. }
  121. }
  122. }
  123. }
  124. for (auto& region : m_super_physical_regions)
  125. m_super_physical_pages += region.finalize_capacity();
  126. for (auto& region : m_user_physical_regions)
  127. m_user_physical_pages += region.finalize_capacity();
  128. #ifdef MM_DEBUG
  129. dbgprintf("MM: Installing page directory\n");
  130. #endif
  131. // Turn on CR4.PGE so the CPU will respect the G bit in page tables.
  132. asm volatile(
  133. "mov %cr4, %eax\n"
  134. "orl $0x80, %eax\n"
  135. "mov %eax, %cr4\n");
  136. // Turn on CR4.PAE
  137. asm volatile(
  138. "mov %cr4, %eax\n"
  139. "orl $0x20, %eax\n"
  140. "mov %eax, %cr4\n");
  141. // Turn on IA32_EFER.NXE
  142. asm volatile(
  143. "movl $0xc0000080, %ecx\n"
  144. "rdmsr\n"
  145. "orl $0x800, %eax\n"
  146. "wrmsr\n");
  147. asm volatile("movl %%eax, %%cr3" ::"a"(kernel_page_directory().cr3()));
  148. asm volatile(
  149. "movl %%cr0, %%eax\n"
  150. "orl $0x80010001, %%eax\n"
  151. "movl %%eax, %%cr0\n" ::
  152. : "%eax", "memory");
  153. #ifdef MM_DEBUG
  154. dbgprintf("MM: Paging initialized.\n");
  155. #endif
  156. }
  157. PageTableEntry& MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  158. {
  159. ASSERT_INTERRUPTS_DISABLED();
  160. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  161. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  162. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  163. PageDirectoryEntry& pde = page_directory.table().directory(page_directory_table_index)[page_directory_index];
  164. if (!pde.is_present()) {
  165. #ifdef MM_DEBUG
  166. dbgprintf("MM: PDE %u not present (requested for V%p), allocating\n", page_directory_index, vaddr.get());
  167. #endif
  168. if (page_directory_table_index == 0 && page_directory_index < 4) {
  169. ASSERT(&page_directory == m_kernel_page_directory);
  170. pde.set_page_table_base((u32)m_low_page_tables[page_directory_index]);
  171. pde.set_user_allowed(false);
  172. pde.set_present(true);
  173. pde.set_writable(true);
  174. pde.set_global(true);
  175. } else {
  176. auto page_table = allocate_supervisor_physical_page();
  177. #ifdef MM_DEBUG
  178. dbgprintf("MM: PD K%p (%s) at P%p allocated page table #%u (for V%p) at P%p\n",
  179. &page_directory,
  180. &page_directory == m_kernel_page_directory ? "Kernel" : "User",
  181. page_directory.cr3(),
  182. page_directory_index,
  183. vaddr.get(),
  184. page_table->paddr().get());
  185. #endif
  186. pde.set_page_table_base(page_table->paddr().get());
  187. pde.set_user_allowed(true);
  188. pde.set_present(true);
  189. pde.set_writable(true);
  190. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  191. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  192. }
  193. }
  194. return pde.page_table_base()[page_table_index];
  195. }
  196. void MemoryManager::map_protected(VirtualAddress vaddr, size_t length)
  197. {
  198. InterruptDisabler disabler;
  199. ASSERT(vaddr.is_page_aligned());
  200. for (u32 offset = 0; offset < length; offset += PAGE_SIZE) {
  201. auto pte_address = vaddr.offset(offset);
  202. auto& pte = ensure_pte(kernel_page_directory(), pte_address);
  203. pte.set_physical_page_base(pte_address.get());
  204. pte.set_user_allowed(false);
  205. pte.set_present(false);
  206. pte.set_writable(false);
  207. flush_tlb(pte_address);
  208. }
  209. }
  210. void MemoryManager::create_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
  211. {
  212. InterruptDisabler disabler;
  213. ASSERT((vaddr.get() & ~PAGE_MASK) == 0);
  214. for (u32 offset = 0; offset < size; offset += PAGE_SIZE) {
  215. auto pte_address = vaddr.offset(offset);
  216. auto& pte = ensure_pte(page_directory, pte_address);
  217. pte.set_physical_page_base(pte_address.get());
  218. pte.set_user_allowed(false);
  219. pte.set_present(true);
  220. pte.set_writable(true);
  221. page_directory.flush(pte_address);
  222. }
  223. }
  224. void MemoryManager::initialize(u32 physical_address_for_kernel_page_tables)
  225. {
  226. s_the = new MemoryManager(physical_address_for_kernel_page_tables);
  227. }
  228. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  229. {
  230. if (vaddr.get() < 0xc0000000)
  231. return nullptr;
  232. for (auto& region : MM.m_kernel_regions) {
  233. if (region.contains(vaddr))
  234. return &region;
  235. }
  236. return nullptr;
  237. }
  238. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  239. {
  240. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  241. for (auto& region : process.m_regions) {
  242. if (region.contains(vaddr))
  243. return &region;
  244. }
  245. dbg() << process << " Couldn't find user region for " << vaddr;
  246. return nullptr;
  247. }
  248. Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
  249. {
  250. if (auto* region = kernel_region_from_vaddr(vaddr))
  251. return region;
  252. return user_region_from_vaddr(process, vaddr);
  253. }
  254. const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
  255. {
  256. if (auto* region = kernel_region_from_vaddr(vaddr))
  257. return region;
  258. return user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  259. }
  260. Region* MemoryManager::region_from_vaddr(VirtualAddress vaddr)
  261. {
  262. if (auto* region = kernel_region_from_vaddr(vaddr))
  263. return region;
  264. auto page_directory = PageDirectory::find_by_cr3(cpu_cr3());
  265. if (!page_directory)
  266. return nullptr;
  267. ASSERT(page_directory->process());
  268. return user_region_from_vaddr(*page_directory->process(), vaddr);
  269. }
  270. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  271. {
  272. ASSERT_INTERRUPTS_DISABLED();
  273. ASSERT(current);
  274. #ifdef PAGE_FAULT_DEBUG
  275. dbgprintf("MM: handle_page_fault(%w) at V%p\n", fault.code(), fault.vaddr().get());
  276. #endif
  277. ASSERT(fault.vaddr() != m_quickmap_addr);
  278. auto* region = region_from_vaddr(fault.vaddr());
  279. if (!region) {
  280. kprintf("NP(error) fault at invalid address V%p\n", fault.vaddr().get());
  281. return PageFaultResponse::ShouldCrash;
  282. }
  283. return region->handle_fault(fault);
  284. }
  285. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, bool user_accessible, bool should_commit)
  286. {
  287. InterruptDisabler disabler;
  288. ASSERT(!(size % PAGE_SIZE));
  289. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  290. ASSERT(range.is_valid());
  291. OwnPtr<Region> region;
  292. if (user_accessible)
  293. region = Region::create_user_accessible(range, name, PROT_READ | PROT_WRITE | PROT_EXEC);
  294. else
  295. region = Region::create_kernel_only(range, name, PROT_READ | PROT_WRITE | PROT_EXEC);
  296. region->map(kernel_page_directory());
  297. // FIXME: It would be cool if these could zero-fill on demand instead.
  298. if (should_commit)
  299. region->commit();
  300. return region;
  301. }
  302. OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name)
  303. {
  304. return allocate_kernel_region(size, name, true);
  305. }
  306. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, const StringView& name)
  307. {
  308. InterruptDisabler disabler;
  309. ASSERT(!(size % PAGE_SIZE));
  310. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  311. ASSERT(range.is_valid());
  312. auto region = make<Region>(range, vmobject, 0, name, PROT_READ | PROT_WRITE | PROT_EXEC);
  313. region->map(kernel_page_directory());
  314. return region;
  315. }
  316. void MemoryManager::deallocate_user_physical_page(PhysicalPage&& page)
  317. {
  318. for (auto& region : m_user_physical_regions) {
  319. if (!region.contains(page)) {
  320. kprintf(
  321. "MM: deallocate_user_physical_page: %p not in %p -> %p\n",
  322. page.paddr().get(), region.lower().get(), region.upper().get());
  323. continue;
  324. }
  325. region.return_page(move(page));
  326. --m_user_physical_pages_used;
  327. return;
  328. }
  329. kprintf("MM: deallocate_user_physical_page couldn't figure out region for user page @ %p\n", page.paddr().get());
  330. ASSERT_NOT_REACHED();
  331. }
  332. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page()
  333. {
  334. RefPtr<PhysicalPage> page;
  335. for (auto& region : m_user_physical_regions) {
  336. page = region.take_free_page(false);
  337. if (!page.is_null())
  338. break;
  339. }
  340. return page;
  341. }
  342. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
  343. {
  344. InterruptDisabler disabler;
  345. RefPtr<PhysicalPage> page = find_free_user_physical_page();
  346. if (!page) {
  347. if (m_user_physical_regions.is_empty()) {
  348. kprintf("MM: no user physical regions available (?)\n");
  349. }
  350. kprintf("MM: no user physical pages available\n");
  351. ASSERT_NOT_REACHED();
  352. return {};
  353. }
  354. #ifdef MM_DEBUG
  355. dbgprintf("MM: allocate_user_physical_page vending P%p\n", page->paddr().get());
  356. #endif
  357. if (should_zero_fill == ShouldZeroFill::Yes) {
  358. auto* ptr = (u32*)quickmap_page(*page);
  359. fast_u32_fill(ptr, 0, PAGE_SIZE / sizeof(u32));
  360. unquickmap_page();
  361. }
  362. ++m_user_physical_pages_used;
  363. return page;
  364. }
  365. void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage&& page)
  366. {
  367. for (auto& region : m_super_physical_regions) {
  368. if (!region.contains(page)) {
  369. kprintf(
  370. "MM: deallocate_supervisor_physical_page: %p not in %p -> %p\n",
  371. page.paddr().get(), region.lower().get(), region.upper().get());
  372. continue;
  373. }
  374. region.return_page(move(page));
  375. --m_super_physical_pages_used;
  376. return;
  377. }
  378. kprintf("MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ %p\n", page.paddr().get());
  379. ASSERT_NOT_REACHED();
  380. }
  381. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  382. {
  383. InterruptDisabler disabler;
  384. RefPtr<PhysicalPage> page;
  385. for (auto& region : m_super_physical_regions) {
  386. page = region.take_free_page(true);
  387. if (page.is_null())
  388. continue;
  389. }
  390. if (!page) {
  391. if (m_super_physical_regions.is_empty()) {
  392. kprintf("MM: no super physical regions available (?)\n");
  393. }
  394. kprintf("MM: no super physical pages available\n");
  395. ASSERT_NOT_REACHED();
  396. return {};
  397. }
  398. #ifdef MM_DEBUG
  399. dbgprintf("MM: allocate_supervisor_physical_page vending P%p\n", page->paddr().get());
  400. #endif
  401. fast_u32_fill((u32*)page->paddr().as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  402. ++m_super_physical_pages_used;
  403. return page;
  404. }
  405. void MemoryManager::enter_process_paging_scope(Process& process)
  406. {
  407. ASSERT(current);
  408. InterruptDisabler disabler;
  409. current->tss().cr3 = process.page_directory().cr3();
  410. asm volatile("movl %%eax, %%cr3" ::"a"(process.page_directory().cr3())
  411. : "memory");
  412. }
  413. void MemoryManager::flush_entire_tlb()
  414. {
  415. asm volatile(
  416. "mov %%cr3, %%eax\n"
  417. "mov %%eax, %%cr3\n" ::
  418. : "%eax", "memory");
  419. }
  420. void MemoryManager::flush_tlb(VirtualAddress vaddr)
  421. {
  422. asm volatile("invlpg %0"
  423. :
  424. : "m"(*(char*)vaddr.get())
  425. : "memory");
  426. }
  427. void MemoryManager::map_for_kernel(VirtualAddress vaddr, PhysicalAddress paddr, bool cache_disabled)
  428. {
  429. auto& pte = ensure_pte(kernel_page_directory(), vaddr);
  430. pte.set_physical_page_base(paddr.get());
  431. pte.set_present(true);
  432. pte.set_writable(true);
  433. pte.set_user_allowed(false);
  434. pte.set_cache_disabled(cache_disabled);
  435. flush_tlb(vaddr);
  436. }
  437. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  438. {
  439. ASSERT_INTERRUPTS_DISABLED();
  440. ASSERT(!m_quickmap_in_use);
  441. m_quickmap_in_use = true;
  442. auto page_vaddr = m_quickmap_addr;
  443. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  444. pte.set_physical_page_base(physical_page.paddr().get());
  445. pte.set_present(true);
  446. pte.set_writable(true);
  447. pte.set_user_allowed(false);
  448. flush_tlb(page_vaddr);
  449. ASSERT((u32)pte.physical_page_base() == physical_page.paddr().get());
  450. #ifdef MM_DEBUG
  451. dbg() << "MM: >> quickmap_page " << page_vaddr << " => " << physical_page.paddr() << " @ PTE=" << (void*)pte.raw() << " {" << &pte << "}";
  452. #endif
  453. return page_vaddr.as_ptr();
  454. }
  455. void MemoryManager::unquickmap_page()
  456. {
  457. ASSERT_INTERRUPTS_DISABLED();
  458. ASSERT(m_quickmap_in_use);
  459. auto page_vaddr = m_quickmap_addr;
  460. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  461. #ifdef MM_DEBUG
  462. auto old_physical_address = pte.physical_page_base();
  463. #endif
  464. pte.set_physical_page_base(0);
  465. pte.set_present(false);
  466. pte.set_writable(false);
  467. flush_tlb(page_vaddr);
  468. #ifdef MM_DEBUG
  469. dbg() << "MM: >> unquickmap_page " << page_vaddr << " =/> " << old_physical_address;
  470. #endif
  471. m_quickmap_in_use = false;
  472. }
  473. bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
  474. {
  475. auto* region = region_from_vaddr(process, vaddr);
  476. return region && region->is_stack();
  477. }
  478. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr) const
  479. {
  480. auto* region = region_from_vaddr(process, vaddr);
  481. return region && region->is_readable();
  482. }
  483. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr) const
  484. {
  485. auto* region = region_from_vaddr(process, vaddr);
  486. return region && region->is_writable();
  487. }
  488. void MemoryManager::register_vmobject(VMObject& vmobject)
  489. {
  490. InterruptDisabler disabler;
  491. m_vmobjects.append(&vmobject);
  492. }
  493. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  494. {
  495. InterruptDisabler disabler;
  496. m_vmobjects.remove(&vmobject);
  497. }
  498. void MemoryManager::register_region(Region& region)
  499. {
  500. InterruptDisabler disabler;
  501. if (region.vaddr().get() >= 0xc0000000)
  502. m_kernel_regions.append(&region);
  503. else
  504. m_user_regions.append(&region);
  505. }
  506. void MemoryManager::unregister_region(Region& region)
  507. {
  508. InterruptDisabler disabler;
  509. if (region.vaddr().get() >= 0xc0000000)
  510. m_kernel_regions.remove(&region);
  511. else
  512. m_user_regions.remove(&region);
  513. }
  514. ProcessPagingScope::ProcessPagingScope(Process& process)
  515. {
  516. ASSERT(current);
  517. MM.enter_process_paging_scope(process);
  518. }
  519. ProcessPagingScope::~ProcessPagingScope()
  520. {
  521. MM.enter_process_paging_scope(current->process());
  522. }