MemoryManager.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616
  1. #include "CMOS.h"
  2. #include "Process.h"
  3. #include "StdLib.h"
  4. #include <AK/Assertions.h>
  5. #include <AK/kstdio.h>
  6. #include <Kernel/Arch/i386/CPU.h>
  7. #include <Kernel/FileSystem/Inode.h>
  8. #include <Kernel/Multiboot.h>
  9. #include <Kernel/VM/AnonymousVMObject.h>
  10. #include <Kernel/VM/InodeVMObject.h>
  11. #include <Kernel/VM/MemoryManager.h>
  12. //#define MM_DEBUG
  13. //#define PAGE_FAULT_DEBUG
  14. static MemoryManager* s_the;
  15. MemoryManager& MM
  16. {
  17. return *s_the;
  18. }
  19. MemoryManager::MemoryManager(u32 physical_address_for_kernel_page_tables)
  20. {
  21. m_kernel_page_directory = PageDirectory::create_at_fixed_address(PhysicalAddress(physical_address_for_kernel_page_tables));
  22. m_page_table_zero = (PageTableEntry*)(physical_address_for_kernel_page_tables + PAGE_SIZE);
  23. m_page_table_one = (PageTableEntry*)(physical_address_for_kernel_page_tables + PAGE_SIZE * 2);
  24. initialize_paging();
  25. kprintf("MM initialized.\n");
  26. }
  27. MemoryManager::~MemoryManager()
  28. {
  29. }
  30. void MemoryManager::populate_page_directory(PageDirectory& page_directory)
  31. {
  32. page_directory.m_directory_page = allocate_supervisor_physical_page();
  33. page_directory.entries()[0].copy_from({}, kernel_page_directory().entries()[0]);
  34. page_directory.entries()[1].copy_from({}, kernel_page_directory().entries()[1]);
  35. // Defer to the kernel page tables for 0xC0000000-0xFFFFFFFF
  36. for (int i = 768; i < 1024; ++i)
  37. page_directory.entries()[i].copy_from({}, kernel_page_directory().entries()[i]);
  38. }
  39. void MemoryManager::initialize_paging()
  40. {
  41. memset(m_page_table_zero, 0, PAGE_SIZE);
  42. memset(m_page_table_one, 0, PAGE_SIZE);
  43. #ifdef MM_DEBUG
  44. dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
  45. #endif
  46. #ifdef MM_DEBUG
  47. dbgprintf("MM: Protect against null dereferences\n");
  48. #endif
  49. // Make null dereferences crash.
  50. map_protected(VirtualAddress(0), PAGE_SIZE);
  51. #ifdef MM_DEBUG
  52. dbgprintf("MM: Identity map bottom 8MB\n");
  53. #endif
  54. // The bottom 8 MB (except for the null page) are identity mapped & supervisor only.
  55. // Every process shares these mappings.
  56. create_identity_mapping(kernel_page_directory(), VirtualAddress(PAGE_SIZE), (8 * MB) - PAGE_SIZE);
  57. // FIXME: We should move everything kernel-related above the 0xc0000000 virtual mark.
  58. // Basic physical memory map:
  59. // 0 -> 1 MB We're just leaving this alone for now.
  60. // 1 -> 3 MB Kernel image.
  61. // (last page before 2MB) Used by quickmap_page().
  62. // 2 MB -> 4 MB kmalloc_eternal() space.
  63. // 4 MB -> 7 MB kmalloc() space.
  64. // 7 MB -> 8 MB Supervisor physical pages (available for allocation!)
  65. // 8 MB -> MAX Userspace physical pages (available for allocation!)
  66. // Basic virtual memory map:
  67. // 0 MB -> 8MB Identity mapped.
  68. // 0xc0000000-0xffffffff Kernel-only virtual address space.
  69. #ifdef MM_DEBUG
  70. dbgprintf("MM: Quickmap will use %p\n", m_quickmap_addr.get());
  71. #endif
  72. m_quickmap_addr = VirtualAddress((2 * MB) - PAGE_SIZE);
  73. RefPtr<PhysicalRegion> region;
  74. bool region_is_super = false;
  75. for (auto* mmap = (multiboot_memory_map_t*)multiboot_info_ptr->mmap_addr; (unsigned long)mmap < multiboot_info_ptr->mmap_addr + multiboot_info_ptr->mmap_length; mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  76. kprintf("MM: Multiboot mmap: base_addr = 0x%x%08x, length = 0x%x%08x, type = 0x%x\n",
  77. (u32)(mmap->addr >> 32),
  78. (u32)(mmap->addr & 0xffffffff),
  79. (u32)(mmap->len >> 32),
  80. (u32)(mmap->len & 0xffffffff),
  81. (u32)mmap->type);
  82. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  83. continue;
  84. // FIXME: Maybe make use of stuff below the 1MB mark?
  85. if (mmap->addr < (1 * MB))
  86. continue;
  87. if ((mmap->addr + mmap->len) > 0xffffffff)
  88. continue;
  89. auto diff = (u32)mmap->addr % PAGE_SIZE;
  90. if (diff != 0) {
  91. kprintf("MM: got an unaligned region base from the bootloader; correcting %p by %d bytes\n", mmap->addr, diff);
  92. diff = PAGE_SIZE - diff;
  93. mmap->addr += diff;
  94. mmap->len -= diff;
  95. }
  96. if ((mmap->len % PAGE_SIZE) != 0) {
  97. kprintf("MM: got an unaligned region length from the bootloader; correcting %d by %d bytes\n", mmap->len, mmap->len % PAGE_SIZE);
  98. mmap->len -= mmap->len % PAGE_SIZE;
  99. }
  100. if (mmap->len < PAGE_SIZE) {
  101. kprintf("MM: memory region from bootloader is too small; we want >= %d bytes, but got %d bytes\n", PAGE_SIZE, mmap->len);
  102. continue;
  103. }
  104. #ifdef MM_DEBUG
  105. kprintf("MM: considering memory at %p - %p\n",
  106. (u32)mmap->addr, (u32)(mmap->addr + mmap->len));
  107. #endif
  108. for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  109. auto addr = PhysicalAddress(page_base);
  110. if (page_base < 7 * MB) {
  111. // nothing
  112. } else if (page_base >= 7 * MB && page_base < 8 * MB) {
  113. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  114. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  115. region = m_super_physical_regions.last();
  116. region_is_super = true;
  117. } else {
  118. region->expand(region->lower(), addr);
  119. }
  120. } else {
  121. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  122. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  123. region = m_user_physical_regions.last();
  124. region_is_super = false;
  125. } else {
  126. region->expand(region->lower(), addr);
  127. }
  128. }
  129. }
  130. }
  131. for (auto& region : m_super_physical_regions)
  132. m_super_physical_pages += region.finalize_capacity();
  133. for (auto& region : m_user_physical_regions)
  134. m_user_physical_pages += region.finalize_capacity();
  135. #ifdef MM_DEBUG
  136. dbgprintf("MM: Installing page directory\n");
  137. #endif
  138. // Turn on CR4.PGE so the CPU will respect the G bit in page tables.
  139. asm volatile(
  140. "mov %cr4, %eax\n"
  141. "orl $0x10, %eax\n"
  142. "mov %eax, %cr4\n");
  143. asm volatile("movl %%eax, %%cr3" ::"a"(kernel_page_directory().cr3()));
  144. asm volatile(
  145. "movl %%cr0, %%eax\n"
  146. "orl $0x80000001, %%eax\n"
  147. "movl %%eax, %%cr0\n" ::
  148. : "%eax", "memory");
  149. #ifdef MM_DEBUG
  150. dbgprintf("MM: Paging initialized.\n");
  151. #endif
  152. }
  153. PageTableEntry& MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  154. {
  155. ASSERT_INTERRUPTS_DISABLED();
  156. u32 page_directory_index = (vaddr.get() >> 22) & 0x3ff;
  157. u32 page_table_index = (vaddr.get() >> 12) & 0x3ff;
  158. PageDirectoryEntry& pde = page_directory.entries()[page_directory_index];
  159. if (!pde.is_present()) {
  160. #ifdef MM_DEBUG
  161. dbgprintf("MM: PDE %u not present (requested for V%p), allocating\n", page_directory_index, vaddr.get());
  162. #endif
  163. if (page_directory_index == 0) {
  164. ASSERT(&page_directory == m_kernel_page_directory);
  165. pde.set_page_table_base((u32)m_page_table_zero);
  166. pde.set_user_allowed(false);
  167. pde.set_present(true);
  168. pde.set_writable(true);
  169. pde.set_global(true);
  170. } else if (page_directory_index == 1) {
  171. ASSERT(&page_directory == m_kernel_page_directory);
  172. pde.set_page_table_base((u32)m_page_table_one);
  173. pde.set_user_allowed(false);
  174. pde.set_present(true);
  175. pde.set_writable(true);
  176. pde.set_global(true);
  177. } else {
  178. //ASSERT(&page_directory != m_kernel_page_directory.ptr());
  179. auto page_table = allocate_supervisor_physical_page();
  180. #ifdef MM_DEBUG
  181. dbgprintf("MM: PD K%p (%s) at P%p allocated page table #%u (for V%p) at P%p\n",
  182. &page_directory,
  183. &page_directory == m_kernel_page_directory ? "Kernel" : "User",
  184. page_directory.cr3(),
  185. page_directory_index,
  186. vaddr.get(),
  187. page_table->paddr().get());
  188. #endif
  189. pde.set_page_table_base(page_table->paddr().get());
  190. pde.set_user_allowed(true);
  191. pde.set_present(true);
  192. pde.set_writable(true);
  193. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  194. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  195. }
  196. }
  197. return pde.page_table_base()[page_table_index];
  198. }
  199. void MemoryManager::map_protected(VirtualAddress vaddr, size_t length)
  200. {
  201. InterruptDisabler disabler;
  202. ASSERT(vaddr.is_page_aligned());
  203. for (u32 offset = 0; offset < length; offset += PAGE_SIZE) {
  204. auto pte_address = vaddr.offset(offset);
  205. auto& pte = ensure_pte(kernel_page_directory(), pte_address);
  206. pte.set_physical_page_base(pte_address.get());
  207. pte.set_user_allowed(false);
  208. pte.set_present(false);
  209. pte.set_writable(false);
  210. flush_tlb(pte_address);
  211. }
  212. }
  213. void MemoryManager::create_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
  214. {
  215. InterruptDisabler disabler;
  216. ASSERT((vaddr.get() & ~PAGE_MASK) == 0);
  217. for (u32 offset = 0; offset < size; offset += PAGE_SIZE) {
  218. auto pte_address = vaddr.offset(offset);
  219. auto& pte = ensure_pte(page_directory, pte_address);
  220. pte.set_physical_page_base(pte_address.get());
  221. pte.set_user_allowed(false);
  222. pte.set_present(true);
  223. pte.set_writable(true);
  224. page_directory.flush(pte_address);
  225. }
  226. }
  227. void MemoryManager::initialize(u32 physical_address_for_kernel_page_tables)
  228. {
  229. s_the = new MemoryManager(physical_address_for_kernel_page_tables);
  230. }
  231. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  232. {
  233. if (vaddr.get() < 0xc0000000)
  234. return nullptr;
  235. for (auto& region : MM.m_kernel_regions) {
  236. if (region.contains(vaddr))
  237. return &region;
  238. }
  239. return nullptr;
  240. }
  241. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  242. {
  243. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  244. for (auto& region : process.m_regions) {
  245. if (region.contains(vaddr))
  246. return &region;
  247. }
  248. dbg() << process << " Couldn't find user region for " << vaddr;
  249. return nullptr;
  250. }
  251. Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
  252. {
  253. if (auto* region = kernel_region_from_vaddr(vaddr))
  254. return region;
  255. return user_region_from_vaddr(process, vaddr);
  256. }
  257. const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
  258. {
  259. if (auto* region = kernel_region_from_vaddr(vaddr))
  260. return region;
  261. return user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  262. }
  263. Region* MemoryManager::region_from_vaddr(VirtualAddress vaddr)
  264. {
  265. if (auto* region = kernel_region_from_vaddr(vaddr))
  266. return region;
  267. auto page_directory = PageDirectory::find_by_pdb(cpu_cr3());
  268. if (!page_directory)
  269. return nullptr;
  270. ASSERT(page_directory->process());
  271. return user_region_from_vaddr(*page_directory->process(), vaddr);
  272. }
  273. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  274. {
  275. ASSERT_INTERRUPTS_DISABLED();
  276. ASSERT(current);
  277. #ifdef PAGE_FAULT_DEBUG
  278. dbgprintf("MM: handle_page_fault(%w) at V%p\n", fault.code(), fault.vaddr().get());
  279. #endif
  280. ASSERT(fault.vaddr() != m_quickmap_addr);
  281. if (fault.type() == PageFault::Type::PageNotPresent && fault.vaddr().get() >= 0xc0000000) {
  282. auto* current_page_directory = reinterpret_cast<PageDirectoryEntry*>(cpu_cr3());
  283. u32 page_directory_index = (fault.vaddr().get() >> 22) & 0x3ff;
  284. auto& kernel_pde = kernel_page_directory().entries()[page_directory_index];
  285. auto& current_pde = current_page_directory[page_directory_index];
  286. if (kernel_pde.is_present() && !current_pde.is_present()) {
  287. #ifdef PAGE_FAULT_DEBUG
  288. dbg() << "NP(kernel): Copying new kernel mapping for " << fault.vaddr() << " into current page directory";
  289. #endif
  290. current_pde.copy_from({}, kernel_pde);
  291. flush_tlb(fault.vaddr().page_base());
  292. return PageFaultResponse::Continue;
  293. }
  294. }
  295. auto* region = region_from_vaddr(fault.vaddr());
  296. if (!region) {
  297. kprintf("NP(error) fault at invalid address V%p\n", fault.vaddr().get());
  298. return PageFaultResponse::ShouldCrash;
  299. }
  300. return region->handle_fault(fault);
  301. }
  302. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, bool user_accessible, bool should_commit)
  303. {
  304. InterruptDisabler disabler;
  305. ASSERT(!(size % PAGE_SIZE));
  306. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  307. ASSERT(range.is_valid());
  308. OwnPtr<Region> region;
  309. if (user_accessible)
  310. region = Region::create_user_accessible(range, name, PROT_READ | PROT_WRITE | PROT_EXEC);
  311. else
  312. region = Region::create_kernel_only(range, name, PROT_READ | PROT_WRITE | PROT_EXEC);
  313. region->map(kernel_page_directory());
  314. // FIXME: It would be cool if these could zero-fill on demand instead.
  315. if (should_commit)
  316. region->commit();
  317. return region;
  318. }
  319. OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name)
  320. {
  321. return allocate_kernel_region(size, name, true);
  322. }
  323. void MemoryManager::deallocate_user_physical_page(PhysicalPage&& page)
  324. {
  325. for (auto& region : m_user_physical_regions) {
  326. if (!region.contains(page)) {
  327. kprintf(
  328. "MM: deallocate_user_physical_page: %p not in %p -> %p\n",
  329. page.paddr(), region.lower().get(), region.upper().get());
  330. continue;
  331. }
  332. region.return_page(move(page));
  333. --m_user_physical_pages_used;
  334. return;
  335. }
  336. kprintf("MM: deallocate_user_physical_page couldn't figure out region for user page @ %p\n", page.paddr());
  337. ASSERT_NOT_REACHED();
  338. }
  339. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page()
  340. {
  341. RefPtr<PhysicalPage> page;
  342. for (auto& region : m_user_physical_regions) {
  343. page = region.take_free_page(false);
  344. if (!page.is_null())
  345. break;
  346. }
  347. return page;
  348. }
  349. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
  350. {
  351. InterruptDisabler disabler;
  352. RefPtr<PhysicalPage> page = find_free_user_physical_page();
  353. if (!page) {
  354. if (m_user_physical_regions.is_empty()) {
  355. kprintf("MM: no user physical regions available (?)\n");
  356. }
  357. kprintf("MM: no user physical pages available\n");
  358. ASSERT_NOT_REACHED();
  359. return {};
  360. }
  361. #ifdef MM_DEBUG
  362. dbgprintf("MM: allocate_user_physical_page vending P%p\n", page->paddr().get());
  363. #endif
  364. if (should_zero_fill == ShouldZeroFill::Yes) {
  365. auto* ptr = (u32*)quickmap_page(*page);
  366. fast_u32_fill(ptr, 0, PAGE_SIZE / sizeof(u32));
  367. unquickmap_page();
  368. }
  369. ++m_user_physical_pages_used;
  370. return page;
  371. }
  372. void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage&& page)
  373. {
  374. for (auto& region : m_super_physical_regions) {
  375. if (!region.contains(page)) {
  376. kprintf(
  377. "MM: deallocate_supervisor_physical_page: %p not in %p -> %p\n",
  378. page.paddr(), region.lower().get(), region.upper().get());
  379. continue;
  380. }
  381. region.return_page(move(page));
  382. --m_super_physical_pages_used;
  383. return;
  384. }
  385. kprintf("MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ %p\n", page.paddr());
  386. ASSERT_NOT_REACHED();
  387. }
  388. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  389. {
  390. InterruptDisabler disabler;
  391. RefPtr<PhysicalPage> page;
  392. for (auto& region : m_super_physical_regions) {
  393. page = region.take_free_page(true);
  394. if (page.is_null())
  395. continue;
  396. }
  397. if (!page) {
  398. if (m_super_physical_regions.is_empty()) {
  399. kprintf("MM: no super physical regions available (?)\n");
  400. }
  401. kprintf("MM: no super physical pages available\n");
  402. ASSERT_NOT_REACHED();
  403. return {};
  404. }
  405. #ifdef MM_DEBUG
  406. dbgprintf("MM: allocate_supervisor_physical_page vending P%p\n", page->paddr().get());
  407. #endif
  408. fast_u32_fill((u32*)page->paddr().as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  409. ++m_super_physical_pages_used;
  410. return page;
  411. }
  412. void MemoryManager::enter_process_paging_scope(Process& process)
  413. {
  414. ASSERT(current);
  415. InterruptDisabler disabler;
  416. // NOTE: To prevent triple-faulting here, we have to ensure that the current stack
  417. // is accessible to the incoming page directory. We achieve this by forcing
  418. // an update of the kernel VM mappings in the entered scope's page directory.
  419. process.page_directory().update_kernel_mappings();
  420. current->tss().cr3 = process.page_directory().cr3();
  421. asm volatile("movl %%eax, %%cr3" ::"a"(process.page_directory().cr3())
  422. : "memory");
  423. }
  424. void MemoryManager::flush_entire_tlb()
  425. {
  426. asm volatile(
  427. "mov %%cr3, %%eax\n"
  428. "mov %%eax, %%cr3\n" ::
  429. : "%eax", "memory");
  430. }
  431. void MemoryManager::flush_tlb(VirtualAddress vaddr)
  432. {
  433. asm volatile("invlpg %0"
  434. :
  435. : "m"(*(char*)vaddr.get())
  436. : "memory");
  437. }
  438. void MemoryManager::map_for_kernel(VirtualAddress vaddr, PhysicalAddress paddr, bool cache_disabled)
  439. {
  440. auto& pte = ensure_pte(kernel_page_directory(), vaddr);
  441. pte.set_physical_page_base(paddr.get());
  442. pte.set_present(true);
  443. pte.set_writable(true);
  444. pte.set_user_allowed(false);
  445. pte.set_cache_disabled(cache_disabled);
  446. flush_tlb(vaddr);
  447. }
  448. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  449. {
  450. ASSERT_INTERRUPTS_DISABLED();
  451. ASSERT(!m_quickmap_in_use);
  452. m_quickmap_in_use = true;
  453. auto page_vaddr = m_quickmap_addr;
  454. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  455. pte.set_physical_page_base(physical_page.paddr().get());
  456. pte.set_present(true);
  457. pte.set_writable(true);
  458. pte.set_user_allowed(false);
  459. flush_tlb(page_vaddr);
  460. ASSERT((u32)pte.physical_page_base() == physical_page.paddr().get());
  461. #ifdef MM_DEBUG
  462. dbg() << "MM: >> quickmap_page " << page_vaddr << " => " << physical_page.paddr() << " @ PTE=" << (void*)pte.raw() << " {" << &pte << "}";
  463. #endif
  464. return page_vaddr.as_ptr();
  465. }
  466. void MemoryManager::unquickmap_page()
  467. {
  468. ASSERT_INTERRUPTS_DISABLED();
  469. ASSERT(m_quickmap_in_use);
  470. auto page_vaddr = m_quickmap_addr;
  471. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  472. #ifdef MM_DEBUG
  473. auto old_physical_address = pte.physical_page_base();
  474. #endif
  475. pte.set_physical_page_base(0);
  476. pte.set_present(false);
  477. pte.set_writable(false);
  478. flush_tlb(page_vaddr);
  479. #ifdef MM_DEBUG
  480. dbg() << "MM: >> unquickmap_page " << page_vaddr << " =/> " << old_physical_address;
  481. #endif
  482. m_quickmap_in_use = false;
  483. }
  484. bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
  485. {
  486. auto* region = region_from_vaddr(process, vaddr);
  487. return region && region->is_stack();
  488. }
  489. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr) const
  490. {
  491. auto* region = region_from_vaddr(process, vaddr);
  492. return region && region->is_readable();
  493. }
  494. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr) const
  495. {
  496. auto* region = region_from_vaddr(process, vaddr);
  497. return region && region->is_writable();
  498. }
  499. void MemoryManager::register_vmo(VMObject& vmo)
  500. {
  501. InterruptDisabler disabler;
  502. m_vmobjects.append(&vmo);
  503. }
  504. void MemoryManager::unregister_vmo(VMObject& vmo)
  505. {
  506. InterruptDisabler disabler;
  507. m_vmobjects.remove(&vmo);
  508. }
  509. void MemoryManager::register_region(Region& region)
  510. {
  511. InterruptDisabler disabler;
  512. if (region.vaddr().get() >= 0xc0000000)
  513. m_kernel_regions.append(&region);
  514. else
  515. m_user_regions.append(&region);
  516. }
  517. void MemoryManager::unregister_region(Region& region)
  518. {
  519. InterruptDisabler disabler;
  520. if (region.vaddr().get() >= 0xc0000000)
  521. m_kernel_regions.remove(&region);
  522. else
  523. m_user_regions.remove(&region);
  524. }
  525. ProcessPagingScope::ProcessPagingScope(Process& process)
  526. {
  527. ASSERT(current);
  528. MM.enter_process_paging_scope(process);
  529. }
  530. ProcessPagingScope::~ProcessPagingScope()
  531. {
  532. MM.enter_process_paging_scope(current->process());
  533. }