UserOrKernelBuffer.h 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164
  1. /*
  2. * Copyright (c) 2020, the SerenityOS developers.
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #pragma once
  7. #include <AK/String.h>
  8. #include <AK/Types.h>
  9. #include <AK/Userspace.h>
  10. #include <Kernel/StdLib.h>
  11. #include <Kernel/UnixTypes.h>
  12. #include <Kernel/VM/MemoryManager.h>
  13. #include <LibC/errno_numbers.h>
  14. namespace Kernel {
  15. class [[nodiscard]] UserOrKernelBuffer {
  16. public:
  17. UserOrKernelBuffer() = delete;
  18. static UserOrKernelBuffer for_kernel_buffer(u8* kernel_buffer)
  19. {
  20. VERIFY(!kernel_buffer || !is_user_address(VirtualAddress(kernel_buffer)));
  21. return UserOrKernelBuffer(kernel_buffer);
  22. }
  23. static Optional<UserOrKernelBuffer> for_user_buffer(u8* user_buffer, size_t size)
  24. {
  25. if (user_buffer && !is_user_range(VirtualAddress(user_buffer), size))
  26. return {};
  27. return UserOrKernelBuffer(user_buffer);
  28. }
  29. template<typename UserspaceType>
  30. static Optional<UserOrKernelBuffer> for_user_buffer(UserspaceType userspace, size_t size)
  31. {
  32. if (!is_user_range(VirtualAddress(userspace.unsafe_userspace_ptr()), size))
  33. return {};
  34. return UserOrKernelBuffer(const_cast<u8*>((const u8*)userspace.unsafe_userspace_ptr()));
  35. }
  36. [[nodiscard]] bool is_kernel_buffer() const;
  37. [[nodiscard]] const void* user_or_kernel_ptr() const { return m_buffer; }
  38. [[nodiscard]] UserOrKernelBuffer offset(size_t offset) const
  39. {
  40. if (!m_buffer)
  41. return *this;
  42. UserOrKernelBuffer offset_buffer = *this;
  43. offset_buffer.m_buffer += offset;
  44. VERIFY(offset_buffer.is_kernel_buffer() == is_kernel_buffer());
  45. return offset_buffer;
  46. }
  47. [[nodiscard]] String copy_into_string(size_t size) const;
  48. [[nodiscard]] KResultOr<NonnullOwnPtr<KString>> try_copy_into_kstring(size_t) const;
  49. [[nodiscard]] bool write(const void* src, size_t offset, size_t len);
  50. [[nodiscard]] bool write(const void* src, size_t len)
  51. {
  52. return write(src, 0, len);
  53. }
  54. [[nodiscard]] bool write(ReadonlyBytes bytes)
  55. {
  56. return write(bytes.data(), bytes.size());
  57. }
  58. [[nodiscard]] bool read(void* dest, size_t offset, size_t len) const;
  59. [[nodiscard]] bool read(void* dest, size_t len) const
  60. {
  61. return read(dest, 0, len);
  62. }
  63. [[nodiscard]] bool read(Bytes bytes) const
  64. {
  65. return read(bytes.data(), bytes.size());
  66. }
  67. [[nodiscard]] bool memset(int value, size_t offset, size_t len);
  68. [[nodiscard]] bool memset(int value, size_t len)
  69. {
  70. return memset(value, 0, len);
  71. }
  72. template<size_t BUFFER_BYTES, typename F>
  73. [[nodiscard]] KResultOr<size_t> write_buffered(size_t offset, size_t len, F f)
  74. {
  75. if (!m_buffer)
  76. return EFAULT;
  77. if (is_kernel_buffer()) {
  78. // We're transferring directly to a kernel buffer, bypass
  79. return f(m_buffer + offset, len);
  80. }
  81. // The purpose of using a buffer on the stack is that we can
  82. // avoid a bunch of small (e.g. 1-byte) copy_to_user calls
  83. u8 buffer[BUFFER_BYTES];
  84. size_t nwritten = 0;
  85. while (nwritten < len) {
  86. auto to_copy = min(sizeof(buffer), len - nwritten);
  87. KResultOr<size_t> copied_or_error = f(buffer, to_copy);
  88. if (copied_or_error.is_error())
  89. return copied_or_error.error();
  90. auto copied = copied_or_error.value();
  91. VERIFY(copied <= to_copy);
  92. if (!write(buffer, nwritten, copied))
  93. return EFAULT;
  94. nwritten += copied;
  95. if (copied < to_copy)
  96. break;
  97. }
  98. return nwritten;
  99. }
  100. template<size_t BUFFER_BYTES, typename F>
  101. [[nodiscard]] KResultOr<size_t> write_buffered(size_t len, F f)
  102. {
  103. return write_buffered<BUFFER_BYTES, F>(0, len, f);
  104. }
  105. template<size_t BUFFER_BYTES, typename F>
  106. [[nodiscard]] KResultOr<size_t> read_buffered(size_t offset, size_t len, F f) const
  107. {
  108. if (!m_buffer)
  109. return EFAULT;
  110. if (is_kernel_buffer()) {
  111. // We're transferring directly from a kernel buffer, bypass
  112. return f(m_buffer + offset, len);
  113. }
  114. // The purpose of using a buffer on the stack is that we can
  115. // avoid a bunch of small (e.g. 1-byte) copy_from_user calls
  116. u8 buffer[BUFFER_BYTES];
  117. size_t nread = 0;
  118. while (nread < len) {
  119. auto to_copy = min(sizeof(buffer), len - nread);
  120. if (!read(buffer, nread, to_copy))
  121. return EFAULT;
  122. KResultOr<size_t> copied_or_error = f(buffer, to_copy);
  123. if (copied_or_error.is_error())
  124. return copied_or_error.error();
  125. auto copied = copied_or_error.value();
  126. VERIFY(copied <= to_copy);
  127. nread += copied;
  128. if (copied < to_copy)
  129. break;
  130. }
  131. return nread;
  132. }
  133. template<size_t BUFFER_BYTES, typename F>
  134. [[nodiscard]] KResultOr<size_t> read_buffered(size_t len, F f) const
  135. {
  136. return read_buffered<BUFFER_BYTES, F>(0, len, f);
  137. }
  138. private:
  139. explicit UserOrKernelBuffer(u8* buffer)
  140. : m_buffer(buffer)
  141. {
  142. }
  143. u8* m_buffer;
  144. };
  145. }