Parser.cpp 62 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737
  1. /*
  2. * Copyright (c) 2021, Hunter Salyer <thefalsehonesty@gmail.com>
  3. * Copyright (c) 2022, Gregory Bertilson <zaggy1024@gmail.com>
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #include <AK/String.h>
  8. #include <LibGfx/Point.h>
  9. #include <LibGfx/Size.h>
  10. #include "Decoder.h"
  11. #include "Parser.h"
  12. #include "Utilities.h"
  13. namespace Video::VP9 {
  14. #define TRY_READ(expression) DECODER_TRY(DecoderErrorCategory::Corrupted, expression)
  15. Parser::Parser(Decoder& decoder)
  16. : m_probability_tables(make<ProbabilityTables>())
  17. , m_tree_parser(make<TreeParser>(*this))
  18. , m_decoder(decoder)
  19. {
  20. }
  21. Parser::~Parser()
  22. {
  23. }
  24. Vector<size_t> Parser::parse_superframe_sizes(Span<const u8> frame_data)
  25. {
  26. if (frame_data.size() < 1)
  27. return {};
  28. // The decoder determines the presence of a superframe by:
  29. // 1. parsing the final byte of the chunk and checking that the superframe_marker equals 0b110,
  30. // If the checks in steps 1 and 3 both pass, then the chunk is determined to contain a superframe and each
  31. // frame in the superframe is passed to the decoding process in turn.
  32. // Otherwise, the chunk is determined to not contain a superframe, and the whole chunk is passed to the
  33. // decoding process.
  34. // NOTE: Reading from span data will be quicker than spinning up a BitStream.
  35. u8 superframe_byte = frame_data[frame_data.size() - 1];
  36. // NOTE: We have to read out of the byte from the little end first, hence the padding bits in the masks below.
  37. u8 superframe_marker = superframe_byte & 0b1110'0000;
  38. if (superframe_marker == 0b1100'0000) {
  39. u8 bytes_per_framesize = ((superframe_byte >> 3) & 0b11) + 1;
  40. u8 frames_in_superframe = (superframe_byte & 0b111) + 1;
  41. // 2. setting the total size of the superframe_index SzIndex equal to 2 + NumFrames * SzBytes,
  42. size_t index_size = 2 + bytes_per_framesize * frames_in_superframe;
  43. if (index_size > frame_data.size())
  44. return {};
  45. auto superframe_header_data = frame_data.data() + frame_data.size() - index_size;
  46. u8 start_superframe_byte = *(superframe_header_data++);
  47. // 3. checking that the first byte of the superframe_index matches the final byte.
  48. if (superframe_byte != start_superframe_byte)
  49. return {};
  50. Vector<size_t> result;
  51. for (u8 i = 0; i < frames_in_superframe; i++) {
  52. size_t frame_size = 0;
  53. for (u8 j = 0; j < bytes_per_framesize; j++)
  54. frame_size |= (static_cast<size_t>(*(superframe_header_data++)) << (j * 8));
  55. result.append(frame_size);
  56. }
  57. return result;
  58. }
  59. return {};
  60. }
  61. /* (6.1) */
  62. DecoderErrorOr<void> Parser::parse_frame(Span<const u8> frame_data)
  63. {
  64. m_bit_stream = make<BitStream>(frame_data.data(), frame_data.size());
  65. m_syntax_element_counter = make<SyntaxElementCounter>();
  66. TRY(uncompressed_header());
  67. if (!trailing_bits())
  68. return DecoderError::corrupted("Trailing bits were non-zero"sv);
  69. if (m_header_size_in_bytes == 0)
  70. return DecoderError::corrupted("Frame header is zero-sized"sv);
  71. m_probability_tables->load_probs(m_frame_context_idx);
  72. m_probability_tables->load_probs2(m_frame_context_idx);
  73. m_syntax_element_counter->clear_counts();
  74. TRY_READ(m_bit_stream->init_bool(m_header_size_in_bytes));
  75. TRY(compressed_header());
  76. TRY_READ(m_bit_stream->exit_bool());
  77. TRY(m_decoder.allocate_buffers());
  78. TRY(decode_tiles());
  79. TRY(refresh_probs());
  80. return {};
  81. }
  82. bool Parser::trailing_bits()
  83. {
  84. while (m_bit_stream->bits_remaining() & 7u) {
  85. if (MUST(m_bit_stream->read_bit()))
  86. return false;
  87. }
  88. return true;
  89. }
  90. DecoderErrorOr<void> Parser::refresh_probs()
  91. {
  92. if (!m_error_resilient_mode && !m_frame_parallel_decoding_mode) {
  93. m_probability_tables->load_probs(m_frame_context_idx);
  94. TRY(m_decoder.adapt_coef_probs());
  95. if (!m_frame_is_intra) {
  96. m_probability_tables->load_probs2(m_frame_context_idx);
  97. TRY(m_decoder.adapt_non_coef_probs());
  98. }
  99. }
  100. if (m_refresh_frame_context)
  101. m_probability_tables->save_probs(m_frame_context_idx);
  102. return {};
  103. }
  104. DecoderErrorOr<FrameType> Parser::read_frame_type()
  105. {
  106. if (TRY_READ(m_bit_stream->read_bit()))
  107. return NonKeyFrame;
  108. return KeyFrame;
  109. }
  110. DecoderErrorOr<ColorRange> Parser::read_color_range()
  111. {
  112. if (TRY_READ(m_bit_stream->read_bit()))
  113. return ColorRange::Full;
  114. return ColorRange::Studio;
  115. }
  116. /* (6.2) */
  117. DecoderErrorOr<void> Parser::uncompressed_header()
  118. {
  119. auto frame_marker = TRY_READ(m_bit_stream->read_bits(2));
  120. if (frame_marker != 2)
  121. return DecoderError::corrupted("uncompressed_header: Frame marker must be 2"sv);
  122. auto profile_low_bit = TRY_READ(m_bit_stream->read_bit());
  123. auto profile_high_bit = TRY_READ(m_bit_stream->read_bit());
  124. m_profile = (profile_high_bit << 1u) + profile_low_bit;
  125. if (m_profile == 3 && TRY_READ(m_bit_stream->read_bit()))
  126. return DecoderError::corrupted("uncompressed_header: Profile 3 reserved bit was non-zero"sv);
  127. m_show_existing_frame = TRY_READ(m_bit_stream->read_bit());
  128. if (m_show_existing_frame) {
  129. m_frame_to_show_map_index = TRY_READ(m_bit_stream->read_bits(3));
  130. m_header_size_in_bytes = 0;
  131. m_refresh_frame_flags = 0;
  132. m_loop_filter_level = 0;
  133. return {};
  134. }
  135. m_last_frame_type = m_frame_type;
  136. m_frame_type = TRY(read_frame_type());
  137. m_show_frame = TRY_READ(m_bit_stream->read_bit());
  138. m_error_resilient_mode = TRY_READ(m_bit_stream->read_bit());
  139. if (m_frame_type == KeyFrame) {
  140. TRY(frame_sync_code());
  141. TRY(color_config());
  142. TRY(frame_size());
  143. TRY(render_size());
  144. m_refresh_frame_flags = 0xFF;
  145. m_frame_is_intra = true;
  146. } else {
  147. m_frame_is_intra = !m_show_frame && TRY_READ(m_bit_stream->read_bit());
  148. if (!m_error_resilient_mode) {
  149. m_reset_frame_context = TRY_READ(m_bit_stream->read_bits(2));
  150. } else {
  151. m_reset_frame_context = 0;
  152. }
  153. if (m_frame_is_intra) {
  154. TRY(frame_sync_code());
  155. if (m_profile > 0) {
  156. TRY(color_config());
  157. } else {
  158. m_color_space = Bt601;
  159. m_subsampling_x = true;
  160. m_subsampling_y = true;
  161. m_bit_depth = 8;
  162. }
  163. m_refresh_frame_flags = TRY_READ(m_bit_stream->read_f8());
  164. TRY(frame_size());
  165. TRY(render_size());
  166. } else {
  167. m_refresh_frame_flags = TRY_READ(m_bit_stream->read_f8());
  168. for (auto i = 0; i < 3; i++) {
  169. m_ref_frame_idx[i] = TRY_READ(m_bit_stream->read_bits(3));
  170. m_ref_frame_sign_bias[LastFrame + i] = TRY_READ(m_bit_stream->read_bit());
  171. }
  172. TRY(frame_size_with_refs());
  173. m_allow_high_precision_mv = TRY_READ(m_bit_stream->read_bit());
  174. TRY(read_interpolation_filter());
  175. }
  176. }
  177. if (!m_error_resilient_mode) {
  178. m_refresh_frame_context = TRY_READ(m_bit_stream->read_bit());
  179. m_frame_parallel_decoding_mode = TRY_READ(m_bit_stream->read_bit());
  180. } else {
  181. m_refresh_frame_context = false;
  182. m_frame_parallel_decoding_mode = true;
  183. }
  184. m_frame_context_idx = TRY_READ(m_bit_stream->read_bits(2));
  185. if (m_frame_is_intra || m_error_resilient_mode) {
  186. setup_past_independence();
  187. if (m_frame_type == KeyFrame || m_error_resilient_mode || m_reset_frame_context == 3) {
  188. for (auto i = 0; i < 4; i++) {
  189. m_probability_tables->save_probs(i);
  190. }
  191. } else if (m_reset_frame_context == 2) {
  192. m_probability_tables->save_probs(m_frame_context_idx);
  193. }
  194. m_frame_context_idx = 0;
  195. }
  196. TRY(loop_filter_params());
  197. TRY(quantization_params());
  198. TRY(segmentation_params());
  199. TRY(tile_info());
  200. m_header_size_in_bytes = TRY_READ(m_bit_stream->read_f16());
  201. return {};
  202. }
  203. DecoderErrorOr<void> Parser::frame_sync_code()
  204. {
  205. if (TRY_READ(m_bit_stream->read_f8()) != 0x49)
  206. return DecoderError::corrupted("frame_sync_code: Byte 0 was not 0x49."sv);
  207. if (TRY_READ(m_bit_stream->read_f8()) != 0x83)
  208. return DecoderError::corrupted("frame_sync_code: Byte 1 was not 0x83."sv);
  209. if (TRY_READ(m_bit_stream->read_f8()) != 0x42)
  210. return DecoderError::corrupted("frame_sync_code: Byte 2 was not 0x42."sv);
  211. return {};
  212. }
  213. DecoderErrorOr<void> Parser::color_config()
  214. {
  215. if (m_profile >= 2) {
  216. m_bit_depth = TRY_READ(m_bit_stream->read_bit()) ? 12 : 10;
  217. } else {
  218. m_bit_depth = 8;
  219. }
  220. auto color_space = TRY_READ(m_bit_stream->read_bits(3));
  221. VERIFY(color_space <= RGB);
  222. m_color_space = static_cast<ColorSpace>(color_space);
  223. if (color_space != RGB) {
  224. m_color_range = TRY(read_color_range());
  225. if (m_profile == 1 || m_profile == 3) {
  226. m_subsampling_x = TRY_READ(m_bit_stream->read_bit());
  227. m_subsampling_y = TRY_READ(m_bit_stream->read_bit());
  228. if (TRY_READ(m_bit_stream->read_bit()))
  229. return DecoderError::corrupted("color_config: Subsampling reserved zero was set"sv);
  230. } else {
  231. m_subsampling_x = true;
  232. m_subsampling_y = true;
  233. }
  234. } else {
  235. m_color_range = ColorRange::Full;
  236. if (m_profile == 1 || m_profile == 3) {
  237. m_subsampling_x = false;
  238. m_subsampling_y = false;
  239. if (TRY_READ(m_bit_stream->read_bit()))
  240. return DecoderError::corrupted("color_config: RGB reserved zero was set"sv);
  241. }
  242. }
  243. return {};
  244. }
  245. DecoderErrorOr<void> Parser::frame_size()
  246. {
  247. m_frame_width = TRY_READ(m_bit_stream->read_f16()) + 1;
  248. m_frame_height = TRY_READ(m_bit_stream->read_f16()) + 1;
  249. compute_image_size();
  250. return {};
  251. }
  252. DecoderErrorOr<void> Parser::render_size()
  253. {
  254. if (TRY_READ(m_bit_stream->read_bit())) {
  255. m_render_width = TRY_READ(m_bit_stream->read_f16()) + 1;
  256. m_render_height = TRY_READ(m_bit_stream->read_f16()) + 1;
  257. } else {
  258. m_render_width = m_frame_width;
  259. m_render_height = m_frame_height;
  260. }
  261. return {};
  262. }
  263. DecoderErrorOr<void> Parser::frame_size_with_refs()
  264. {
  265. bool found_ref;
  266. for (auto frame_index : m_ref_frame_idx) {
  267. found_ref = TRY_READ(m_bit_stream->read_bit());
  268. if (found_ref) {
  269. m_frame_width = m_ref_frame_width[frame_index];
  270. m_frame_height = m_ref_frame_height[frame_index];
  271. break;
  272. }
  273. }
  274. if (!found_ref) {
  275. TRY(frame_size());
  276. } else {
  277. compute_image_size();
  278. }
  279. return render_size();
  280. }
  281. void Parser::compute_image_size()
  282. {
  283. auto new_cols = (m_frame_width + 7u) >> 3u;
  284. auto new_rows = (m_frame_height + 7u) >> 3u;
  285. // 7.2.6 Compute image size semantics
  286. // When compute_image_size is invoked, the following ordered steps occur:
  287. // 1. If this is the first time compute_image_size is invoked, or if either FrameWidth or FrameHeight have
  288. // changed in value compared to the previous time this function was invoked, then the segmentation map is
  289. // cleared to all zeros by setting SegmentId[ row ][ col ] equal to 0 for row = 0..MiRows-1 and col =
  290. // 0..MiCols-1.
  291. bool first_invoke = !m_mi_cols && !m_mi_rows;
  292. bool same_size = m_mi_cols == new_cols && m_mi_rows == new_rows;
  293. if (first_invoke || !same_size) {
  294. // m_segment_ids will be resized from decode_tiles() later.
  295. m_segment_ids.clear_with_capacity();
  296. }
  297. // 2. The variable UsePrevFrameMvs is set equal to 1 if all of the following conditions are true:
  298. // a. This is not the first time compute_image_size is invoked.
  299. // b. Both FrameWidth and FrameHeight have the same value compared to the previous time this function
  300. // was invoked.
  301. // c. show_frame was equal to 1 the previous time this function was invoked.
  302. // d. error_resilient_mode is equal to 0.
  303. // e. FrameIsIntra is equal to 0.
  304. // Otherwise, UsePrevFrameMvs is set equal to 0.
  305. m_use_prev_frame_mvs = !first_invoke && same_size && m_prev_show_frame && !m_error_resilient_mode && !m_frame_is_intra;
  306. m_prev_show_frame = m_show_frame;
  307. m_mi_cols = new_cols;
  308. m_mi_rows = new_rows;
  309. m_sb64_cols = (m_mi_cols + 7u) >> 3u;
  310. m_sb64_rows = (m_mi_rows + 7u) >> 3u;
  311. }
  312. DecoderErrorOr<void> Parser::read_interpolation_filter()
  313. {
  314. if (TRY_READ(m_bit_stream->read_bit())) {
  315. m_interpolation_filter = Switchable;
  316. } else {
  317. m_interpolation_filter = literal_to_type[TRY_READ(m_bit_stream->read_bits(2))];
  318. }
  319. return {};
  320. }
  321. DecoderErrorOr<void> Parser::loop_filter_params()
  322. {
  323. m_loop_filter_level = TRY_READ(m_bit_stream->read_bits(6));
  324. m_loop_filter_sharpness = TRY_READ(m_bit_stream->read_bits(3));
  325. m_loop_filter_delta_enabled = TRY_READ(m_bit_stream->read_bit());
  326. if (m_loop_filter_delta_enabled) {
  327. if (TRY_READ(m_bit_stream->read_bit())) {
  328. for (auto& loop_filter_ref_delta : m_loop_filter_ref_deltas) {
  329. if (TRY_READ(m_bit_stream->read_bit()))
  330. loop_filter_ref_delta = TRY_READ(m_bit_stream->read_s(6));
  331. }
  332. for (auto& loop_filter_mode_delta : m_loop_filter_mode_deltas) {
  333. if (TRY_READ(m_bit_stream->read_bit()))
  334. loop_filter_mode_delta = TRY_READ(m_bit_stream->read_s(6));
  335. }
  336. }
  337. }
  338. return {};
  339. }
  340. DecoderErrorOr<void> Parser::quantization_params()
  341. {
  342. m_base_q_idx = TRY_READ(m_bit_stream->read_f8());
  343. m_delta_q_y_dc = TRY(read_delta_q());
  344. m_delta_q_uv_dc = TRY(read_delta_q());
  345. m_delta_q_uv_ac = TRY(read_delta_q());
  346. m_lossless = m_base_q_idx == 0 && m_delta_q_y_dc == 0 && m_delta_q_uv_dc == 0 && m_delta_q_uv_ac == 0;
  347. return {};
  348. }
  349. DecoderErrorOr<i8> Parser::read_delta_q()
  350. {
  351. if (TRY_READ(m_bit_stream->read_bit()))
  352. return TRY_READ(m_bit_stream->read_s(4));
  353. return 0;
  354. }
  355. DecoderErrorOr<void> Parser::segmentation_params()
  356. {
  357. m_segmentation_enabled = TRY_READ(m_bit_stream->read_bit());
  358. if (!m_segmentation_enabled)
  359. return {};
  360. m_segmentation_update_map = TRY_READ(m_bit_stream->read_bit());
  361. if (m_segmentation_update_map) {
  362. for (auto& segmentation_tree_prob : m_segmentation_tree_probs)
  363. segmentation_tree_prob = TRY(read_prob());
  364. m_segmentation_temporal_update = TRY_READ(m_bit_stream->read_bit());
  365. for (auto& segmentation_pred_prob : m_segmentation_pred_prob)
  366. segmentation_pred_prob = m_segmentation_temporal_update ? TRY(read_prob()) : 255;
  367. }
  368. auto segmentation_update_data = (TRY_READ(m_bit_stream->read_bit()));
  369. if (!segmentation_update_data)
  370. return {};
  371. m_segmentation_abs_or_delta_update = TRY_READ(m_bit_stream->read_bit());
  372. for (auto i = 0; i < MAX_SEGMENTS; i++) {
  373. for (auto j = 0; j < SEG_LVL_MAX; j++) {
  374. auto feature_value = 0;
  375. auto feature_enabled = TRY_READ(m_bit_stream->read_bit());
  376. m_feature_enabled[i][j] = feature_enabled;
  377. if (feature_enabled) {
  378. auto bits_to_read = segmentation_feature_bits[j];
  379. feature_value = TRY_READ(m_bit_stream->read_bits(bits_to_read));
  380. if (segmentation_feature_signed[j]) {
  381. if (TRY_READ(m_bit_stream->read_bit()))
  382. feature_value = -feature_value;
  383. }
  384. }
  385. m_feature_data[i][j] = feature_value;
  386. }
  387. }
  388. return {};
  389. }
  390. DecoderErrorOr<u8> Parser::read_prob()
  391. {
  392. if (TRY_READ(m_bit_stream->read_bit()))
  393. return TRY_READ(m_bit_stream->read_f8());
  394. return 255;
  395. }
  396. DecoderErrorOr<void> Parser::tile_info()
  397. {
  398. auto min_log2_tile_cols = calc_min_log2_tile_cols();
  399. auto max_log2_tile_cols = calc_max_log2_tile_cols();
  400. m_tile_cols_log2 = min_log2_tile_cols;
  401. while (m_tile_cols_log2 < max_log2_tile_cols) {
  402. if (TRY_READ(m_bit_stream->read_bit()))
  403. m_tile_cols_log2++;
  404. else
  405. break;
  406. }
  407. m_tile_rows_log2 = TRY_READ(m_bit_stream->read_bit());
  408. if (m_tile_rows_log2) {
  409. m_tile_rows_log2 += TRY_READ(m_bit_stream->read_bit());
  410. }
  411. return {};
  412. }
  413. u16 Parser::calc_min_log2_tile_cols()
  414. {
  415. auto min_log_2 = 0u;
  416. while ((u32)(MAX_TILE_WIDTH_B64 << min_log_2) < m_sb64_cols)
  417. min_log_2++;
  418. return min_log_2;
  419. }
  420. u16 Parser::calc_max_log2_tile_cols()
  421. {
  422. u16 max_log_2 = 1;
  423. while ((m_sb64_cols >> max_log_2) >= MIN_TILE_WIDTH_B64)
  424. max_log_2++;
  425. return max_log_2 - 1;
  426. }
  427. void Parser::setup_past_independence()
  428. {
  429. for (auto i = 0; i < 8; i++) {
  430. for (auto j = 0; j < 4; j++) {
  431. m_feature_data[i][j] = 0;
  432. m_feature_enabled[i][j] = false;
  433. }
  434. }
  435. m_segmentation_abs_or_delta_update = false;
  436. m_prev_segment_ids.clear_with_capacity();
  437. m_prev_segment_ids.resize_and_keep_capacity(m_mi_rows * m_mi_cols);
  438. m_loop_filter_delta_enabled = true;
  439. m_loop_filter_ref_deltas[IntraFrame] = 1;
  440. m_loop_filter_ref_deltas[LastFrame] = 0;
  441. m_loop_filter_ref_deltas[GoldenFrame] = -1;
  442. m_loop_filter_ref_deltas[AltRefFrame] = -1;
  443. for (auto& loop_filter_mode_delta : m_loop_filter_mode_deltas)
  444. loop_filter_mode_delta = 0;
  445. m_probability_tables->reset_probs();
  446. }
  447. DecoderErrorOr<void> Parser::compressed_header()
  448. {
  449. TRY(read_tx_mode());
  450. if (m_tx_mode == TXModeSelect)
  451. TRY(tx_mode_probs());
  452. TRY(read_coef_probs());
  453. TRY(read_skip_prob());
  454. if (!m_frame_is_intra) {
  455. TRY(read_inter_mode_probs());
  456. if (m_interpolation_filter == Switchable)
  457. TRY(read_interp_filter_probs());
  458. TRY(read_is_inter_probs());
  459. TRY(frame_reference_mode());
  460. TRY(frame_reference_mode_probs());
  461. TRY(read_y_mode_probs());
  462. TRY(read_partition_probs());
  463. TRY(mv_probs());
  464. }
  465. return {};
  466. }
  467. DecoderErrorOr<void> Parser::read_tx_mode()
  468. {
  469. if (m_lossless) {
  470. m_tx_mode = Only_4x4;
  471. } else {
  472. auto tx_mode = TRY_READ(m_bit_stream->read_literal(2));
  473. if (tx_mode == Allow_32x32)
  474. tx_mode += TRY_READ(m_bit_stream->read_literal(1));
  475. m_tx_mode = static_cast<TXMode>(tx_mode);
  476. }
  477. return {};
  478. }
  479. DecoderErrorOr<void> Parser::tx_mode_probs()
  480. {
  481. auto& tx_probs = m_probability_tables->tx_probs();
  482. for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) {
  483. for (auto j = 0; j < TX_SIZES - 3; j++)
  484. tx_probs[TX_8x8][i][j] = TRY(diff_update_prob(tx_probs[TX_8x8][i][j]));
  485. }
  486. for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) {
  487. for (auto j = 0; j < TX_SIZES - 2; j++)
  488. tx_probs[TX_16x16][i][j] = TRY(diff_update_prob(tx_probs[TX_16x16][i][j]));
  489. }
  490. for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) {
  491. for (auto j = 0; j < TX_SIZES - 1; j++)
  492. tx_probs[TX_32x32][i][j] = TRY(diff_update_prob(tx_probs[TX_32x32][i][j]));
  493. }
  494. return {};
  495. }
  496. DecoderErrorOr<u8> Parser::diff_update_prob(u8 prob)
  497. {
  498. auto update_prob = TRY_READ(m_bit_stream->read_bool(252));
  499. if (update_prob) {
  500. auto delta_prob = TRY(decode_term_subexp());
  501. prob = inv_remap_prob(delta_prob, prob);
  502. }
  503. return prob;
  504. }
  505. DecoderErrorOr<u8> Parser::decode_term_subexp()
  506. {
  507. if (TRY_READ(m_bit_stream->read_literal(1)) == 0)
  508. return TRY_READ(m_bit_stream->read_literal(4));
  509. if (TRY_READ(m_bit_stream->read_literal(1)) == 0)
  510. return TRY_READ(m_bit_stream->read_literal(4)) + 16;
  511. if (TRY_READ(m_bit_stream->read_literal(1)) == 0)
  512. return TRY_READ(m_bit_stream->read_literal(5)) + 32;
  513. auto v = TRY_READ(m_bit_stream->read_literal(7));
  514. if (v < 65)
  515. return v + 64;
  516. return (v << 1u) - 1 + TRY_READ(m_bit_stream->read_literal(1));
  517. }
  518. u8 Parser::inv_remap_prob(u8 delta_prob, u8 prob)
  519. {
  520. u8 m = prob - 1;
  521. auto v = inv_map_table[delta_prob];
  522. if ((m << 1u) <= 255)
  523. return 1 + inv_recenter_nonneg(v, m);
  524. return 255 - inv_recenter_nonneg(v, 254 - m);
  525. }
  526. u8 Parser::inv_recenter_nonneg(u8 v, u8 m)
  527. {
  528. if (v > 2 * m)
  529. return v;
  530. if (v & 1u)
  531. return m - ((v + 1u) >> 1u);
  532. return m + (v >> 1u);
  533. }
  534. DecoderErrorOr<void> Parser::read_coef_probs()
  535. {
  536. m_max_tx_size = tx_mode_to_biggest_tx_size[m_tx_mode];
  537. for (u8 tx_size = 0; tx_size <= m_max_tx_size; tx_size++) {
  538. auto update_probs = TRY_READ(m_bit_stream->read_literal(1));
  539. if (update_probs == 1) {
  540. for (auto i = 0; i < 2; i++) {
  541. for (auto j = 0; j < 2; j++) {
  542. for (auto k = 0; k < 6; k++) {
  543. auto max_l = (k == 0) ? 3 : 6;
  544. for (auto l = 0; l < max_l; l++) {
  545. for (auto m = 0; m < 3; m++) {
  546. auto& prob = m_probability_tables->coef_probs()[tx_size][i][j][k][l][m];
  547. prob = TRY(diff_update_prob(prob));
  548. }
  549. }
  550. }
  551. }
  552. }
  553. }
  554. }
  555. return {};
  556. }
  557. DecoderErrorOr<void> Parser::read_skip_prob()
  558. {
  559. for (auto i = 0; i < SKIP_CONTEXTS; i++)
  560. m_probability_tables->skip_prob()[i] = TRY(diff_update_prob(m_probability_tables->skip_prob()[i]));
  561. return {};
  562. }
  563. DecoderErrorOr<void> Parser::read_inter_mode_probs()
  564. {
  565. for (auto i = 0; i < INTER_MODE_CONTEXTS; i++) {
  566. for (auto j = 0; j < INTER_MODES - 1; j++)
  567. m_probability_tables->inter_mode_probs()[i][j] = TRY(diff_update_prob(m_probability_tables->inter_mode_probs()[i][j]));
  568. }
  569. return {};
  570. }
  571. DecoderErrorOr<void> Parser::read_interp_filter_probs()
  572. {
  573. for (auto i = 0; i < INTERP_FILTER_CONTEXTS; i++) {
  574. for (auto j = 0; j < SWITCHABLE_FILTERS - 1; j++)
  575. m_probability_tables->interp_filter_probs()[i][j] = TRY(diff_update_prob(m_probability_tables->interp_filter_probs()[i][j]));
  576. }
  577. return {};
  578. }
  579. DecoderErrorOr<void> Parser::read_is_inter_probs()
  580. {
  581. for (auto i = 0; i < IS_INTER_CONTEXTS; i++)
  582. m_probability_tables->is_inter_prob()[i] = TRY(diff_update_prob(m_probability_tables->is_inter_prob()[i]));
  583. return {};
  584. }
  585. DecoderErrorOr<void> Parser::frame_reference_mode()
  586. {
  587. auto compound_reference_allowed = false;
  588. for (size_t i = 2; i <= REFS_PER_FRAME; i++) {
  589. if (m_ref_frame_sign_bias[i] != m_ref_frame_sign_bias[1])
  590. compound_reference_allowed = true;
  591. }
  592. if (compound_reference_allowed) {
  593. auto non_single_reference = TRY_READ(m_bit_stream->read_literal(1));
  594. if (non_single_reference == 0) {
  595. m_reference_mode = SingleReference;
  596. } else {
  597. auto reference_select = TRY_READ(m_bit_stream->read_literal(1));
  598. if (reference_select == 0)
  599. m_reference_mode = CompoundReference;
  600. else
  601. m_reference_mode = ReferenceModeSelect;
  602. setup_compound_reference_mode();
  603. }
  604. } else {
  605. m_reference_mode = SingleReference;
  606. }
  607. return {};
  608. }
  609. DecoderErrorOr<void> Parser::frame_reference_mode_probs()
  610. {
  611. if (m_reference_mode == ReferenceModeSelect) {
  612. for (auto i = 0; i < COMP_MODE_CONTEXTS; i++) {
  613. auto& comp_mode_prob = m_probability_tables->comp_mode_prob();
  614. comp_mode_prob[i] = TRY(diff_update_prob(comp_mode_prob[i]));
  615. }
  616. }
  617. if (m_reference_mode != CompoundReference) {
  618. for (auto i = 0; i < REF_CONTEXTS; i++) {
  619. auto& single_ref_prob = m_probability_tables->single_ref_prob();
  620. single_ref_prob[i][0] = TRY(diff_update_prob(single_ref_prob[i][0]));
  621. single_ref_prob[i][1] = TRY(diff_update_prob(single_ref_prob[i][1]));
  622. }
  623. }
  624. if (m_reference_mode != SingleReference) {
  625. for (auto i = 0; i < REF_CONTEXTS; i++) {
  626. auto& comp_ref_prob = m_probability_tables->comp_ref_prob();
  627. comp_ref_prob[i] = TRY(diff_update_prob(comp_ref_prob[i]));
  628. }
  629. }
  630. return {};
  631. }
  632. DecoderErrorOr<void> Parser::read_y_mode_probs()
  633. {
  634. for (auto i = 0; i < BLOCK_SIZE_GROUPS; i++) {
  635. for (auto j = 0; j < INTRA_MODES - 1; j++) {
  636. auto& y_mode_probs = m_probability_tables->y_mode_probs();
  637. y_mode_probs[i][j] = TRY(diff_update_prob(y_mode_probs[i][j]));
  638. }
  639. }
  640. return {};
  641. }
  642. DecoderErrorOr<void> Parser::read_partition_probs()
  643. {
  644. for (auto i = 0; i < PARTITION_CONTEXTS; i++) {
  645. for (auto j = 0; j < PARTITION_TYPES - 1; j++) {
  646. auto& partition_probs = m_probability_tables->partition_probs();
  647. partition_probs[i][j] = TRY(diff_update_prob(partition_probs[i][j]));
  648. }
  649. }
  650. return {};
  651. }
  652. DecoderErrorOr<void> Parser::mv_probs()
  653. {
  654. for (auto j = 0; j < MV_JOINTS - 1; j++) {
  655. auto& mv_joint_probs = m_probability_tables->mv_joint_probs();
  656. mv_joint_probs[j] = TRY(update_mv_prob(mv_joint_probs[j]));
  657. }
  658. for (auto i = 0; i < 2; i++) {
  659. auto& mv_sign_prob = m_probability_tables->mv_sign_prob();
  660. mv_sign_prob[i] = TRY(update_mv_prob(mv_sign_prob[i]));
  661. for (auto j = 0; j < MV_CLASSES - 1; j++) {
  662. auto& mv_class_probs = m_probability_tables->mv_class_probs();
  663. mv_class_probs[i][j] = TRY(update_mv_prob(mv_class_probs[i][j]));
  664. }
  665. auto& mv_class0_bit_prob = m_probability_tables->mv_class0_bit_prob();
  666. mv_class0_bit_prob[i] = TRY(update_mv_prob(mv_class0_bit_prob[i]));
  667. for (auto j = 0; j < MV_OFFSET_BITS; j++) {
  668. auto& mv_bits_prob = m_probability_tables->mv_bits_prob();
  669. mv_bits_prob[i][j] = TRY(update_mv_prob(mv_bits_prob[i][j]));
  670. }
  671. }
  672. for (auto i = 0; i < 2; i++) {
  673. for (auto j = 0; j < CLASS0_SIZE; j++) {
  674. for (auto k = 0; k < MV_FR_SIZE - 1; k++) {
  675. auto& mv_class0_fr_probs = m_probability_tables->mv_class0_fr_probs();
  676. mv_class0_fr_probs[i][j][k] = TRY(update_mv_prob(mv_class0_fr_probs[i][j][k]));
  677. }
  678. }
  679. for (auto k = 0; k < MV_FR_SIZE - 1; k++) {
  680. auto& mv_fr_probs = m_probability_tables->mv_fr_probs();
  681. mv_fr_probs[i][k] = TRY(update_mv_prob(mv_fr_probs[i][k]));
  682. }
  683. }
  684. if (m_allow_high_precision_mv) {
  685. for (auto i = 0; i < 2; i++) {
  686. auto& mv_class0_hp_prob = m_probability_tables->mv_class0_hp_prob();
  687. auto& mv_hp_prob = m_probability_tables->mv_hp_prob();
  688. mv_class0_hp_prob[i] = TRY(update_mv_prob(mv_class0_hp_prob[i]));
  689. mv_hp_prob[i] = TRY(update_mv_prob(mv_hp_prob[i]));
  690. }
  691. }
  692. return {};
  693. }
  694. DecoderErrorOr<u8> Parser::update_mv_prob(u8 prob)
  695. {
  696. if (TRY_READ(m_bit_stream->read_bool(252))) {
  697. return (TRY_READ(m_bit_stream->read_literal(7)) << 1u) | 1u;
  698. }
  699. return prob;
  700. }
  701. void Parser::setup_compound_reference_mode()
  702. {
  703. if (m_ref_frame_sign_bias[LastFrame] == m_ref_frame_sign_bias[GoldenFrame]) {
  704. m_comp_fixed_ref = AltRefFrame;
  705. m_comp_var_ref[0] = LastFrame;
  706. m_comp_var_ref[1] = GoldenFrame;
  707. } else if (m_ref_frame_sign_bias[LastFrame] == m_ref_frame_sign_bias[AltRefFrame]) {
  708. m_comp_fixed_ref = GoldenFrame;
  709. m_comp_var_ref[0] = LastFrame;
  710. m_comp_var_ref[1] = AltRefFrame;
  711. } else {
  712. m_comp_fixed_ref = LastFrame;
  713. m_comp_var_ref[0] = GoldenFrame;
  714. m_comp_var_ref[1] = AltRefFrame;
  715. }
  716. }
  717. void Parser::cleanup_tile_allocations()
  718. {
  719. // FIXME: Is this necessary? Data should be truncated and
  720. // overwritten by the next tile.
  721. m_skips.clear_with_capacity();
  722. m_tx_sizes.clear_with_capacity();
  723. m_mi_sizes.clear_with_capacity();
  724. m_y_modes.clear_with_capacity();
  725. m_segment_ids.clear_with_capacity();
  726. m_ref_frames.clear_with_capacity();
  727. m_interp_filters.clear_with_capacity();
  728. m_mvs.clear_with_capacity();
  729. m_sub_mvs.clear_with_capacity();
  730. m_sub_modes.clear_with_capacity();
  731. }
  732. DecoderErrorOr<void> Parser::allocate_tile_data()
  733. {
  734. auto dimensions = m_mi_rows * m_mi_cols;
  735. cleanup_tile_allocations();
  736. DECODER_TRY_ALLOC(m_skips.try_resize_and_keep_capacity(dimensions));
  737. DECODER_TRY_ALLOC(m_tx_sizes.try_resize_and_keep_capacity(dimensions));
  738. DECODER_TRY_ALLOC(m_mi_sizes.try_resize_and_keep_capacity(dimensions));
  739. DECODER_TRY_ALLOC(m_y_modes.try_resize_and_keep_capacity(dimensions));
  740. DECODER_TRY_ALLOC(m_segment_ids.try_resize_and_keep_capacity(dimensions));
  741. DECODER_TRY_ALLOC(m_ref_frames.try_resize_and_keep_capacity(dimensions));
  742. DECODER_TRY_ALLOC(m_interp_filters.try_resize_and_keep_capacity(dimensions));
  743. DECODER_TRY_ALLOC(m_mvs.try_resize_and_keep_capacity(dimensions));
  744. DECODER_TRY_ALLOC(m_sub_mvs.try_resize_and_keep_capacity(dimensions));
  745. DECODER_TRY_ALLOC(m_sub_modes.try_resize_and_keep_capacity(dimensions));
  746. return {};
  747. }
  748. DecoderErrorOr<void> Parser::decode_tiles()
  749. {
  750. auto tile_cols = 1 << m_tile_cols_log2;
  751. auto tile_rows = 1 << m_tile_rows_log2;
  752. TRY(allocate_tile_data());
  753. clear_above_context();
  754. for (auto tile_row = 0; tile_row < tile_rows; tile_row++) {
  755. for (auto tile_col = 0; tile_col < tile_cols; tile_col++) {
  756. auto last_tile = (tile_row == tile_rows - 1) && (tile_col == tile_cols - 1);
  757. u64 tile_size;
  758. if (last_tile)
  759. tile_size = m_bit_stream->bytes_remaining();
  760. else
  761. tile_size = TRY_READ(m_bit_stream->read_bits(32));
  762. m_mi_row_start = get_tile_offset(tile_row, m_mi_rows, m_tile_rows_log2);
  763. m_mi_row_end = get_tile_offset(tile_row + 1, m_mi_rows, m_tile_rows_log2);
  764. m_mi_col_start = get_tile_offset(tile_col, m_mi_cols, m_tile_cols_log2);
  765. m_mi_col_end = get_tile_offset(tile_col + 1, m_mi_cols, m_tile_cols_log2);
  766. TRY_READ(m_bit_stream->init_bool(tile_size));
  767. TRY(decode_tile());
  768. TRY_READ(m_bit_stream->exit_bool());
  769. }
  770. }
  771. return {};
  772. }
  773. template<typename T>
  774. void Parser::clear_context(Vector<T>& context, size_t size)
  775. {
  776. context.resize_and_keep_capacity(size);
  777. __builtin_memset(context.data(), 0, sizeof(T) * size);
  778. }
  779. template<typename T>
  780. void Parser::clear_context(Vector<Vector<T>>& context, size_t outer_size, size_t inner_size)
  781. {
  782. if (context.size() < outer_size)
  783. context.resize(outer_size);
  784. for (auto& sub_vector : context)
  785. clear_context(sub_vector, inner_size);
  786. }
  787. void Parser::clear_above_context()
  788. {
  789. for (auto i = 0u; i < m_above_nonzero_context.size(); i++)
  790. clear_context(m_above_nonzero_context[i], 2 * m_mi_cols);
  791. clear_context(m_above_seg_pred_context, m_mi_cols);
  792. clear_context(m_above_partition_context, m_sb64_cols * 8);
  793. }
  794. u32 Parser::get_tile_offset(u32 tile_num, u32 mis, u32 tile_size_log2)
  795. {
  796. u32 super_blocks = (mis + 7) >> 3u;
  797. u32 offset = ((tile_num * super_blocks) >> tile_size_log2) << 3u;
  798. return min(offset, mis);
  799. }
  800. DecoderErrorOr<void> Parser::decode_tile()
  801. {
  802. for (auto row = m_mi_row_start; row < m_mi_row_end; row += 8) {
  803. clear_left_context();
  804. for (auto col = m_mi_col_start; col < m_mi_col_end; col += 8) {
  805. TRY(decode_partition(row, col, Block_64x64));
  806. }
  807. }
  808. return {};
  809. }
  810. void Parser::clear_left_context()
  811. {
  812. for (auto i = 0u; i < m_left_nonzero_context.size(); i++)
  813. clear_context(m_left_nonzero_context[i], 2 * m_mi_rows);
  814. clear_context(m_left_seg_pred_context, m_mi_rows);
  815. clear_context(m_left_partition_context, m_sb64_rows * 8);
  816. }
  817. DecoderErrorOr<void> Parser::decode_partition(u32 row, u32 col, u8 block_subsize)
  818. {
  819. if (row >= m_mi_rows || col >= m_mi_cols)
  820. return {};
  821. m_block_subsize = block_subsize;
  822. m_num_8x8 = num_8x8_blocks_wide_lookup[block_subsize];
  823. auto half_block_8x8 = m_num_8x8 >> 1;
  824. m_has_rows = (row + half_block_8x8) < m_mi_rows;
  825. m_has_cols = (col + half_block_8x8) < m_mi_cols;
  826. m_row = row;
  827. m_col = col;
  828. auto partition = TRY_READ(m_tree_parser->parse_tree(SyntaxElementType::Partition));
  829. auto subsize = subsize_lookup[partition][block_subsize];
  830. if (subsize < Block_8x8 || partition == PartitionNone) {
  831. TRY(decode_block(row, col, subsize));
  832. } else if (partition == PartitionHorizontal) {
  833. TRY(decode_block(row, col, subsize));
  834. if (m_has_rows)
  835. TRY(decode_block(row + half_block_8x8, col, subsize));
  836. } else if (partition == PartitionVertical) {
  837. TRY(decode_block(row, col, subsize));
  838. if (m_has_cols)
  839. TRY(decode_block(row, col + half_block_8x8, subsize));
  840. } else {
  841. TRY(decode_partition(row, col, subsize));
  842. TRY(decode_partition(row, col + half_block_8x8, subsize));
  843. TRY(decode_partition(row + half_block_8x8, col, subsize));
  844. TRY(decode_partition(row + half_block_8x8, col + half_block_8x8, subsize));
  845. }
  846. if (block_subsize == Block_8x8 || partition != PartitionSplit) {
  847. auto above_context = 15 >> b_width_log2_lookup[subsize];
  848. auto left_context = 15 >> b_height_log2_lookup[subsize];
  849. for (size_t i = 0; i < m_num_8x8; i++) {
  850. m_above_partition_context[col + i] = above_context;
  851. m_left_partition_context[row + i] = left_context;
  852. }
  853. }
  854. return {};
  855. }
  856. size_t Parser::get_image_index(u32 row, u32 column)
  857. {
  858. VERIFY(row < m_mi_rows && column < m_mi_cols);
  859. return row * m_mi_cols + column;
  860. }
  861. DecoderErrorOr<void> Parser::decode_block(u32 row, u32 col, BlockSubsize subsize)
  862. {
  863. m_mi_row = row;
  864. m_mi_col = col;
  865. m_mi_size = subsize;
  866. m_available_u = row > 0;
  867. m_available_l = col > m_mi_col_start;
  868. TRY(mode_info());
  869. m_eob_total = 0;
  870. TRY(residual());
  871. if (m_is_inter && subsize >= Block_8x8 && m_eob_total == 0)
  872. m_skip = true;
  873. // Spec doesn't specify whether it might index outside the frame here, but it seems that it can. Ensure that we don't
  874. // write out of bounds. This check seems consistent with libvpx.
  875. // See here:
  876. // https://github.com/webmproject/libvpx/blob/705bf9de8c96cfe5301451f1d7e5c90a41c64e5f/vp9/decoder/vp9_decodeframe.c#L917
  877. auto maximum_block_y = min<u32>(num_8x8_blocks_high_lookup[subsize], m_mi_rows - row);
  878. auto maximum_block_x = min<u32>(num_8x8_blocks_wide_lookup[subsize], m_mi_cols - col);
  879. for (size_t y = 0; y < maximum_block_y; y++) {
  880. for (size_t x = 0; x < maximum_block_x; x++) {
  881. auto pos = get_image_index(row + y, col + x);
  882. m_skips[pos] = m_skip;
  883. m_tx_sizes[pos] = m_tx_size;
  884. m_mi_sizes[pos] = m_mi_size;
  885. m_y_modes[pos] = m_y_mode;
  886. m_segment_ids[pos] = m_segment_id;
  887. for (size_t ref_list = 0; ref_list < 2; ref_list++)
  888. m_ref_frames[pos][ref_list] = m_ref_frame[ref_list];
  889. if (m_is_inter) {
  890. m_interp_filters[pos] = m_interp_filter;
  891. for (size_t ref_list = 0; ref_list < 2; ref_list++) {
  892. // FIXME: Can we just store all the sub_mvs and then look up
  893. // the main one by index 3?
  894. m_mvs[pos][ref_list] = m_block_mvs[ref_list][3];
  895. for (size_t b = 0; b < 4; b++)
  896. m_sub_mvs[pos][ref_list][b] = m_block_mvs[ref_list][b];
  897. }
  898. } else {
  899. for (size_t b = 0; b < 4; b++)
  900. m_sub_modes[pos][b] = static_cast<IntraMode>(m_block_sub_modes[b]);
  901. }
  902. }
  903. }
  904. return {};
  905. }
  906. DecoderErrorOr<void> Parser::mode_info()
  907. {
  908. if (m_frame_is_intra)
  909. TRY(intra_frame_mode_info());
  910. else
  911. TRY(inter_frame_mode_info());
  912. return {};
  913. }
  914. DecoderErrorOr<void> Parser::intra_frame_mode_info()
  915. {
  916. TRY(intra_segment_id());
  917. TRY(read_skip());
  918. TRY(read_tx_size(true));
  919. m_ref_frame[0] = IntraFrame;
  920. m_ref_frame[1] = None;
  921. m_is_inter = false;
  922. if (m_mi_size >= Block_8x8) {
  923. m_default_intra_mode = TRY_READ(m_tree_parser->parse_tree<IntraMode>(SyntaxElementType::DefaultIntraMode));
  924. m_y_mode = m_default_intra_mode;
  925. for (auto& block_sub_mode : m_block_sub_modes)
  926. block_sub_mode = m_y_mode;
  927. } else {
  928. m_num_4x4_w = num_4x4_blocks_wide_lookup[m_mi_size];
  929. m_num_4x4_h = num_4x4_blocks_high_lookup[m_mi_size];
  930. for (auto idy = 0; idy < 2; idy += m_num_4x4_h) {
  931. for (auto idx = 0; idx < 2; idx += m_num_4x4_w) {
  932. m_tree_parser->set_default_intra_mode_variables(idx, idy);
  933. m_default_intra_mode = TRY_READ(m_tree_parser->parse_tree<IntraMode>(SyntaxElementType::DefaultIntraMode));
  934. for (auto y = 0; y < m_num_4x4_h; y++) {
  935. for (auto x = 0; x < m_num_4x4_w; x++) {
  936. auto index = (idy + y) * 2 + idx + x;
  937. m_block_sub_modes[index] = m_default_intra_mode;
  938. }
  939. }
  940. }
  941. }
  942. m_y_mode = m_default_intra_mode;
  943. }
  944. m_uv_mode = TRY_READ(m_tree_parser->parse_tree<u8>(SyntaxElementType::DefaultUVMode));
  945. return {};
  946. }
  947. DecoderErrorOr<void> Parser::intra_segment_id()
  948. {
  949. if (m_segmentation_enabled && m_segmentation_update_map)
  950. m_segment_id = TRY_READ(m_tree_parser->parse_tree<u8>(SyntaxElementType::SegmentID));
  951. else
  952. m_segment_id = 0;
  953. return {};
  954. }
  955. DecoderErrorOr<void> Parser::read_skip()
  956. {
  957. if (seg_feature_active(SEG_LVL_SKIP))
  958. m_skip = true;
  959. else
  960. m_skip = TRY_READ(m_tree_parser->parse_tree<bool>(SyntaxElementType::Skip));
  961. return {};
  962. }
  963. bool Parser::seg_feature_active(u8 feature)
  964. {
  965. return m_segmentation_enabled && m_feature_enabled[m_segment_id][feature];
  966. }
  967. DecoderErrorOr<void> Parser::read_tx_size(bool allow_select)
  968. {
  969. m_max_tx_size = max_txsize_lookup[m_mi_size];
  970. if (allow_select && m_tx_mode == TXModeSelect && m_mi_size >= Block_8x8)
  971. m_tx_size = TRY_READ(m_tree_parser->parse_tree<TXSize>(SyntaxElementType::TXSize));
  972. else
  973. m_tx_size = min(m_max_tx_size, tx_mode_to_biggest_tx_size[m_tx_mode]);
  974. return {};
  975. }
  976. DecoderErrorOr<void> Parser::inter_frame_mode_info()
  977. {
  978. m_left_ref_frame[0] = m_available_l ? m_ref_frames[get_image_index(m_mi_row, m_mi_col - 1)][0] : IntraFrame;
  979. m_above_ref_frame[0] = m_available_u ? m_ref_frames[get_image_index(m_mi_row - 1, m_mi_col)][0] : IntraFrame;
  980. m_left_ref_frame[1] = m_available_l ? m_ref_frames[get_image_index(m_mi_row, m_mi_col - 1)][1] : None;
  981. m_above_ref_frame[1] = m_available_u ? m_ref_frames[get_image_index(m_mi_row - 1, m_mi_col)][1] : None;
  982. m_left_intra = m_left_ref_frame[0] <= IntraFrame;
  983. m_above_intra = m_above_ref_frame[0] <= IntraFrame;
  984. m_left_single = m_left_ref_frame[1] <= None;
  985. m_above_single = m_above_ref_frame[1] <= None;
  986. TRY(inter_segment_id());
  987. TRY(read_skip());
  988. TRY(read_is_inter());
  989. TRY(read_tx_size(!m_skip || !m_is_inter));
  990. if (m_is_inter) {
  991. TRY(inter_block_mode_info());
  992. } else {
  993. TRY(intra_block_mode_info());
  994. }
  995. return {};
  996. }
  997. DecoderErrorOr<void> Parser::inter_segment_id()
  998. {
  999. if (!m_segmentation_enabled) {
  1000. m_segment_id = 0;
  1001. return {};
  1002. }
  1003. auto predicted_segment_id = get_segment_id();
  1004. if (!m_segmentation_update_map) {
  1005. m_segment_id = predicted_segment_id;
  1006. return {};
  1007. }
  1008. if (!m_segmentation_temporal_update) {
  1009. m_segment_id = TRY_READ(m_tree_parser->parse_tree<u8>(SyntaxElementType::SegmentID));
  1010. return {};
  1011. }
  1012. auto seg_id_predicted = TRY_READ(m_tree_parser->parse_tree<bool>(SyntaxElementType::SegIDPredicted));
  1013. if (seg_id_predicted)
  1014. m_segment_id = predicted_segment_id;
  1015. else
  1016. m_segment_id = TRY_READ(m_tree_parser->parse_tree<u8>(SyntaxElementType::SegmentID));
  1017. for (size_t i = 0; i < num_8x8_blocks_wide_lookup[m_mi_size]; i++) {
  1018. auto index = m_mi_col + i;
  1019. // (7.4.1) AboveSegPredContext[ i ] only needs to be set to 0 for i = 0..MiCols-1.
  1020. if (index < m_above_seg_pred_context.size())
  1021. m_above_seg_pred_context[index] = seg_id_predicted;
  1022. }
  1023. for (size_t i = 0; i < num_8x8_blocks_high_lookup[m_mi_size]; i++) {
  1024. auto index = m_mi_row + i;
  1025. // (7.4.1) LeftSegPredContext[ i ] only needs to be set to 0 for i = 0..MiRows-1.
  1026. if (index < m_above_seg_pred_context.size())
  1027. m_left_seg_pred_context[m_mi_row + i] = seg_id_predicted;
  1028. }
  1029. return {};
  1030. }
  1031. u8 Parser::get_segment_id()
  1032. {
  1033. auto bw = num_8x8_blocks_wide_lookup[m_mi_size];
  1034. auto bh = num_8x8_blocks_high_lookup[m_mi_size];
  1035. auto xmis = min(m_mi_cols - m_mi_col, (u32)bw);
  1036. auto ymis = min(m_mi_rows - m_mi_row, (u32)bh);
  1037. u8 segment = 7;
  1038. for (size_t y = 0; y < ymis; y++) {
  1039. for (size_t x = 0; x < xmis; x++) {
  1040. segment = min(segment, m_prev_segment_ids[(m_mi_row + y) + (m_mi_col + x)]);
  1041. }
  1042. }
  1043. return segment;
  1044. }
  1045. DecoderErrorOr<void> Parser::read_is_inter()
  1046. {
  1047. if (seg_feature_active(SEG_LVL_REF_FRAME))
  1048. m_is_inter = m_feature_data[m_segment_id][SEG_LVL_REF_FRAME] != IntraFrame;
  1049. else
  1050. m_is_inter = TRY_READ(m_tree_parser->parse_tree<bool>(SyntaxElementType::IsInter));
  1051. return {};
  1052. }
  1053. DecoderErrorOr<void> Parser::intra_block_mode_info()
  1054. {
  1055. m_ref_frame[0] = IntraFrame;
  1056. m_ref_frame[1] = None;
  1057. if (m_mi_size >= Block_8x8) {
  1058. m_y_mode = TRY_READ(m_tree_parser->parse_tree<u8>(SyntaxElementType::IntraMode));
  1059. for (auto& block_sub_mode : m_block_sub_modes)
  1060. block_sub_mode = m_y_mode;
  1061. } else {
  1062. m_num_4x4_w = num_4x4_blocks_wide_lookup[m_mi_size];
  1063. m_num_4x4_h = num_4x4_blocks_high_lookup[m_mi_size];
  1064. u8 sub_intra_mode;
  1065. for (auto idy = 0; idy < 2; idy += m_num_4x4_h) {
  1066. for (auto idx = 0; idx < 2; idx += m_num_4x4_w) {
  1067. sub_intra_mode = TRY_READ(m_tree_parser->parse_tree<u8>(SyntaxElementType::SubIntraMode));
  1068. for (auto y = 0; y < m_num_4x4_h; y++) {
  1069. for (auto x = 0; x < m_num_4x4_w; x++)
  1070. m_block_sub_modes[(idy + y) * 2 + idx + x] = sub_intra_mode;
  1071. }
  1072. }
  1073. }
  1074. m_y_mode = sub_intra_mode;
  1075. }
  1076. m_uv_mode = TRY_READ(m_tree_parser->parse_tree<u8>(SyntaxElementType::UVMode));
  1077. return {};
  1078. }
  1079. DecoderErrorOr<void> Parser::inter_block_mode_info()
  1080. {
  1081. TRY(read_ref_frames());
  1082. for (auto j = 0; j < 2; j++) {
  1083. if (m_ref_frame[j] > IntraFrame) {
  1084. find_mv_refs(m_ref_frame[j], -1);
  1085. find_best_ref_mvs(j);
  1086. }
  1087. }
  1088. auto is_compound = m_ref_frame[1] > IntraFrame;
  1089. if (seg_feature_active(SEG_LVL_SKIP)) {
  1090. m_y_mode = ZeroMv;
  1091. } else if (m_mi_size >= Block_8x8) {
  1092. auto inter_mode = TRY_READ(m_tree_parser->parse_tree(SyntaxElementType::InterMode));
  1093. m_y_mode = NearestMv + inter_mode;
  1094. }
  1095. if (m_interpolation_filter == Switchable)
  1096. m_interp_filter = TRY_READ(m_tree_parser->parse_tree<InterpolationFilter>(SyntaxElementType::InterpFilter));
  1097. else
  1098. m_interp_filter = m_interpolation_filter;
  1099. if (m_mi_size < Block_8x8) {
  1100. m_num_4x4_w = num_4x4_blocks_wide_lookup[m_mi_size];
  1101. m_num_4x4_h = num_4x4_blocks_high_lookup[m_mi_size];
  1102. for (auto idy = 0; idy < 2; idy += m_num_4x4_h) {
  1103. for (auto idx = 0; idx < 2; idx += m_num_4x4_w) {
  1104. auto inter_mode = TRY_READ(m_tree_parser->parse_tree(SyntaxElementType::InterMode));
  1105. m_y_mode = NearestMv + inter_mode;
  1106. if (m_y_mode == NearestMv || m_y_mode == NearMv) {
  1107. for (auto j = 0; j < 1 + is_compound; j++)
  1108. append_sub8x8_mvs(idy * 2 + idx, j);
  1109. }
  1110. TRY(assign_mv(is_compound));
  1111. for (auto y = 0; y < m_num_4x4_h; y++) {
  1112. for (auto x = 0; x < m_num_4x4_w; x++) {
  1113. auto block = (idy + y) * 2 + idx + x;
  1114. for (auto ref_list = 0; ref_list < 1 + is_compound; ref_list++) {
  1115. m_block_mvs[ref_list][block] = m_mv[ref_list];
  1116. }
  1117. }
  1118. }
  1119. }
  1120. }
  1121. return {};
  1122. }
  1123. TRY(assign_mv(is_compound));
  1124. for (auto ref_list = 0; ref_list < 1 + is_compound; ref_list++) {
  1125. for (auto block = 0; block < 4; block++) {
  1126. m_block_mvs[ref_list][block] = m_mv[ref_list];
  1127. }
  1128. }
  1129. return {};
  1130. }
  1131. DecoderErrorOr<void> Parser::read_ref_frames()
  1132. {
  1133. if (seg_feature_active(SEG_LVL_REF_FRAME)) {
  1134. m_ref_frame[0] = static_cast<ReferenceFrame>(m_feature_data[m_segment_id][SEG_LVL_REF_FRAME]);
  1135. m_ref_frame[1] = None;
  1136. return {};
  1137. }
  1138. ReferenceMode comp_mode;
  1139. if (m_reference_mode == ReferenceModeSelect)
  1140. comp_mode = TRY_READ(m_tree_parser->parse_tree<ReferenceMode>(SyntaxElementType::CompMode));
  1141. else
  1142. comp_mode = m_reference_mode;
  1143. if (comp_mode == CompoundReference) {
  1144. auto idx = m_ref_frame_sign_bias[m_comp_fixed_ref];
  1145. auto comp_ref = TRY_READ(m_tree_parser->parse_tree(SyntaxElementType::CompRef));
  1146. m_ref_frame[idx] = m_comp_fixed_ref;
  1147. m_ref_frame[!idx] = m_comp_var_ref[comp_ref];
  1148. return {};
  1149. }
  1150. auto single_ref_p1 = TRY_READ(m_tree_parser->parse_tree<bool>(SyntaxElementType::SingleRefP1));
  1151. if (single_ref_p1) {
  1152. auto single_ref_p2 = TRY_READ(m_tree_parser->parse_tree<bool>(SyntaxElementType::SingleRefP2));
  1153. m_ref_frame[0] = single_ref_p2 ? AltRefFrame : GoldenFrame;
  1154. } else {
  1155. m_ref_frame[0] = LastFrame;
  1156. }
  1157. m_ref_frame[1] = None;
  1158. return {};
  1159. }
  1160. DecoderErrorOr<void> Parser::assign_mv(bool is_compound)
  1161. {
  1162. m_mv[1] = {};
  1163. for (auto i = 0; i < 1 + is_compound; i++) {
  1164. if (m_y_mode == NewMv) {
  1165. TRY(read_mv(i));
  1166. } else if (m_y_mode == NearestMv) {
  1167. m_mv[i] = m_nearest_mv[i];
  1168. } else if (m_y_mode == NearMv) {
  1169. m_mv[i] = m_near_mv[i];
  1170. } else {
  1171. m_mv[i] = {};
  1172. }
  1173. }
  1174. return {};
  1175. }
  1176. DecoderErrorOr<void> Parser::read_mv(u8 ref)
  1177. {
  1178. m_use_hp = m_allow_high_precision_mv && use_mv_hp(m_best_mv[ref]);
  1179. MotionVector diff_mv;
  1180. auto mv_joint = TRY_READ(m_tree_parser->parse_tree<MvJoint>(SyntaxElementType::MVJoint));
  1181. if (mv_joint == MvJointHzvnz || mv_joint == MvJointHnzvnz)
  1182. diff_mv.set_row(TRY(read_mv_component(0)));
  1183. if (mv_joint == MvJointHnzvz || mv_joint == MvJointHnzvnz)
  1184. diff_mv.set_column(TRY(read_mv_component(1)));
  1185. // FIXME: We probably don't need to assign MVs to a field, these can just
  1186. // be returned and assigned where they are requested.
  1187. m_mv[ref] = m_best_mv[ref] + diff_mv;
  1188. return {};
  1189. }
  1190. DecoderErrorOr<i32> Parser::read_mv_component(u8 component)
  1191. {
  1192. m_tree_parser->set_mv_component(component);
  1193. auto mv_sign = TRY_READ(m_tree_parser->parse_tree<bool>(SyntaxElementType::MVSign));
  1194. auto mv_class = TRY_READ(m_tree_parser->parse_tree<MvClass>(SyntaxElementType::MVClass));
  1195. u32 mag;
  1196. if (mv_class == MvClass0) {
  1197. u32 mv_class0_bit = TRY_READ(m_tree_parser->parse_tree<bool>(SyntaxElementType::MVClass0Bit));
  1198. u32 mv_class0_fr = TRY_READ(m_tree_parser->parse_mv_class0_fr(mv_class0_bit));
  1199. u32 mv_class0_hp = TRY_READ(m_tree_parser->parse_tree<bool>(SyntaxElementType::MVClass0HP));
  1200. mag = ((mv_class0_bit << 3) | (mv_class0_fr << 1) | mv_class0_hp) + 1;
  1201. } else {
  1202. u32 d = 0;
  1203. for (u8 i = 0; i < mv_class; i++) {
  1204. u32 mv_bit = TRY_READ(m_tree_parser->parse_mv_bit(i));
  1205. d |= mv_bit << i;
  1206. }
  1207. mag = CLASS0_SIZE << (mv_class + 2);
  1208. u32 mv_fr = TRY_READ(m_tree_parser->parse_tree<u8>(SyntaxElementType::MVFR));
  1209. u32 mv_hp = TRY_READ(m_tree_parser->parse_tree<bool>(SyntaxElementType::MVHP));
  1210. mag += ((d << 3) | (mv_fr << 1) | mv_hp) + 1;
  1211. }
  1212. return (mv_sign ? -1 : 1) * static_cast<i32>(mag);
  1213. }
  1214. Gfx::Point<size_t> Parser::get_decoded_point_for_plane(u32 column, u32 row, u8 plane)
  1215. {
  1216. if (plane == 0)
  1217. return { column * 8, row * 8 };
  1218. return { (column * 8) >> m_subsampling_x, (row * 8) >> m_subsampling_y };
  1219. }
  1220. Gfx::Size<size_t> Parser::get_decoded_size_for_plane(u8 plane)
  1221. {
  1222. auto point = get_decoded_point_for_plane(m_mi_cols, m_mi_rows, plane);
  1223. return { point.x(), point.y() };
  1224. }
  1225. DecoderErrorOr<void> Parser::residual()
  1226. {
  1227. auto block_size = m_mi_size < Block_8x8 ? Block_8x8 : static_cast<BlockSubsize>(m_mi_size);
  1228. for (u8 plane = 0; plane < 3; plane++) {
  1229. auto tx_size = (plane > 0) ? get_uv_tx_size() : m_tx_size;
  1230. auto step = 1 << tx_size;
  1231. auto plane_size = get_plane_block_size(block_size, plane);
  1232. auto num_4x4_w = num_4x4_blocks_wide_lookup[plane_size];
  1233. auto num_4x4_h = num_4x4_blocks_high_lookup[plane_size];
  1234. auto sub_x = (plane > 0) ? m_subsampling_x : 0;
  1235. auto sub_y = (plane > 0) ? m_subsampling_y : 0;
  1236. auto base_x = (m_mi_col * 8) >> sub_x;
  1237. auto base_y = (m_mi_row * 8) >> sub_y;
  1238. if (m_is_inter) {
  1239. if (m_mi_size < Block_8x8) {
  1240. for (auto y = 0; y < num_4x4_h; y++) {
  1241. for (auto x = 0; x < num_4x4_w; x++) {
  1242. TRY(m_decoder.predict_inter(plane, base_x + (4 * x), base_y + (4 * y), 4, 4, (y * num_4x4_w) + x));
  1243. }
  1244. }
  1245. } else {
  1246. TRY(m_decoder.predict_inter(plane, base_x, base_y, num_4x4_w * 4, num_4x4_h * 4, 0));
  1247. }
  1248. }
  1249. auto max_x = (m_mi_cols * 8) >> sub_x;
  1250. auto max_y = (m_mi_rows * 8) >> sub_y;
  1251. auto block_index = 0;
  1252. for (auto y = 0; y < num_4x4_h; y += step) {
  1253. for (auto x = 0; x < num_4x4_w; x += step) {
  1254. auto start_x = base_x + (4 * x);
  1255. auto start_y = base_y + (4 * y);
  1256. auto non_zero = false;
  1257. if (start_x < max_x && start_y < max_y) {
  1258. if (!m_is_inter)
  1259. TRY(m_decoder.predict_intra(plane, start_x, start_y, m_available_l || x > 0, m_available_u || y > 0, (x + step) < num_4x4_w, tx_size, block_index));
  1260. if (!m_skip) {
  1261. non_zero = TRY(tokens(plane, start_x, start_y, tx_size, block_index));
  1262. TRY(m_decoder.reconstruct(plane, start_x, start_y, tx_size));
  1263. }
  1264. }
  1265. auto& above_sub_context = m_above_nonzero_context[plane];
  1266. auto above_sub_context_index = start_x >> 2;
  1267. auto above_sub_context_end = min(above_sub_context_index + step, above_sub_context.size());
  1268. for (; above_sub_context_index < above_sub_context_end; above_sub_context_index++)
  1269. above_sub_context[above_sub_context_index] = non_zero;
  1270. auto& left_sub_context = m_left_nonzero_context[plane];
  1271. auto left_sub_context_index = start_y >> 2;
  1272. auto left_sub_context_end = min(left_sub_context_index + step, left_sub_context.size());
  1273. for (; left_sub_context_index < left_sub_context_end; left_sub_context_index++)
  1274. left_sub_context[left_sub_context_index] = non_zero;
  1275. block_index++;
  1276. }
  1277. }
  1278. }
  1279. return {};
  1280. }
  1281. TXSize Parser::get_uv_tx_size()
  1282. {
  1283. if (m_mi_size < Block_8x8)
  1284. return TX_4x4;
  1285. return min(m_tx_size, max_txsize_lookup[get_plane_block_size(m_mi_size, 1)]);
  1286. }
  1287. BlockSubsize Parser::get_plane_block_size(u32 subsize, u8 plane)
  1288. {
  1289. auto sub_x = (plane > 0) ? m_subsampling_x : 0;
  1290. auto sub_y = (plane > 0) ? m_subsampling_y : 0;
  1291. return ss_size_lookup[subsize][sub_x][sub_y];
  1292. }
  1293. DecoderErrorOr<bool> Parser::tokens(size_t plane, u32 start_x, u32 start_y, TXSize tx_size, u32 block_index)
  1294. {
  1295. m_tree_parser->set_start_x_and_y(start_x, start_y);
  1296. size_t segment_eob = 16 << (tx_size << 1);
  1297. auto scan = get_scan(plane, tx_size, block_index);
  1298. auto check_eob = true;
  1299. size_t c = 0;
  1300. for (; c < segment_eob; c++) {
  1301. auto pos = scan[c];
  1302. auto band = (tx_size == TX_4x4) ? coefband_4x4[c] : coefband_8x8plus[c];
  1303. m_tree_parser->set_tokens_variables(band, c, plane, tx_size, pos);
  1304. if (check_eob) {
  1305. auto more_coefs = TRY_READ(m_tree_parser->parse_tree<bool>(SyntaxElementType::MoreCoefs));
  1306. if (!more_coefs)
  1307. break;
  1308. }
  1309. auto token = TRY_READ(m_tree_parser->parse_tree<Token>(SyntaxElementType::Token));
  1310. m_token_cache[pos] = energy_class[token];
  1311. if (token == ZeroToken) {
  1312. m_tokens[pos] = 0;
  1313. check_eob = false;
  1314. } else {
  1315. i32 coef = TRY(read_coef(token));
  1316. auto sign_bit = TRY_READ(m_bit_stream->read_literal(1));
  1317. m_tokens[pos] = sign_bit ? -coef : coef;
  1318. check_eob = true;
  1319. }
  1320. }
  1321. auto non_zero = c > 0;
  1322. m_eob_total += non_zero;
  1323. for (size_t i = c; i < segment_eob; i++)
  1324. m_tokens[scan[i]] = 0;
  1325. return non_zero;
  1326. }
  1327. u32 const* Parser::get_scan(size_t plane, TXSize tx_size, u32 block_index)
  1328. {
  1329. if (plane > 0 || tx_size == TX_32x32) {
  1330. m_tx_type = DCT_DCT;
  1331. } else if (tx_size == TX_4x4) {
  1332. if (m_lossless || m_is_inter)
  1333. m_tx_type = DCT_DCT;
  1334. else
  1335. m_tx_type = mode_to_txfm_map[m_mi_size < Block_8x8 ? m_block_sub_modes[block_index] : m_y_mode];
  1336. } else {
  1337. m_tx_type = mode_to_txfm_map[m_y_mode];
  1338. }
  1339. if (tx_size == TX_4x4) {
  1340. if (m_tx_type == ADST_DCT)
  1341. return row_scan_4x4;
  1342. if (m_tx_type == DCT_ADST)
  1343. return col_scan_4x4;
  1344. return default_scan_4x4;
  1345. }
  1346. if (tx_size == TX_8x8) {
  1347. if (m_tx_type == ADST_DCT)
  1348. return row_scan_8x8;
  1349. if (m_tx_type == DCT_ADST)
  1350. return col_scan_8x8;
  1351. return default_scan_8x8;
  1352. }
  1353. if (tx_size == TX_16x16) {
  1354. if (m_tx_type == ADST_DCT)
  1355. return row_scan_16x16;
  1356. if (m_tx_type == DCT_ADST)
  1357. return col_scan_16x16;
  1358. return default_scan_16x16;
  1359. }
  1360. return default_scan_32x32;
  1361. }
  1362. DecoderErrorOr<i32> Parser::read_coef(Token token)
  1363. {
  1364. auto cat = extra_bits[token][0];
  1365. auto num_extra = extra_bits[token][1];
  1366. u32 coef = extra_bits[token][2];
  1367. if (token == DctValCat6) {
  1368. for (size_t e = 0; e < (u8)(m_bit_depth - 8); e++) {
  1369. auto high_bit = TRY_READ(m_bit_stream->read_bool(255));
  1370. coef += high_bit << (5 + m_bit_depth - e);
  1371. }
  1372. }
  1373. for (size_t e = 0; e < num_extra; e++) {
  1374. auto coef_bit = TRY_READ(m_bit_stream->read_bool(cat_probs[cat][e]));
  1375. coef += coef_bit << (num_extra - 1 - e);
  1376. }
  1377. return coef;
  1378. }
  1379. bool Parser::is_inside(i32 row, i32 column)
  1380. {
  1381. if (row < 0)
  1382. return false;
  1383. if (column < 0)
  1384. return false;
  1385. u32 row_positive = row;
  1386. u32 column_positive = column;
  1387. return row_positive < m_mi_rows && column_positive >= m_mi_col_start && column_positive < m_mi_col_end;
  1388. }
  1389. void Parser::add_mv_ref_list(u8 ref_list)
  1390. {
  1391. if (m_ref_mv_count >= 2)
  1392. return;
  1393. if (m_ref_mv_count > 0 && m_candidate_mv[ref_list] == m_ref_list_mv[0])
  1394. return;
  1395. m_ref_list_mv[m_ref_mv_count] = m_candidate_mv[ref_list];
  1396. m_ref_mv_count++;
  1397. }
  1398. void Parser::get_block_mv(u32 candidate_row, u32 candidate_column, u8 ref_list, bool use_prev)
  1399. {
  1400. auto index = get_image_index(candidate_row, candidate_column);
  1401. if (use_prev) {
  1402. m_candidate_mv[ref_list] = m_prev_mvs[index][ref_list];
  1403. m_candidate_frame[ref_list] = m_prev_ref_frames[index][ref_list];
  1404. } else {
  1405. m_candidate_mv[ref_list] = m_mvs[index][ref_list];
  1406. m_candidate_frame[ref_list] = m_ref_frames[index][ref_list];
  1407. }
  1408. }
  1409. void Parser::if_same_ref_frame_add_mv(u32 candidate_row, u32 candidate_column, ReferenceFrame ref_frame, bool use_prev)
  1410. {
  1411. for (auto ref_list = 0u; ref_list < 2; ref_list++) {
  1412. get_block_mv(candidate_row, candidate_column, ref_list, use_prev);
  1413. if (m_candidate_frame[ref_list] == ref_frame) {
  1414. add_mv_ref_list(ref_list);
  1415. return;
  1416. }
  1417. }
  1418. }
  1419. void Parser::scale_mv(u8 ref_list, ReferenceFrame ref_frame)
  1420. {
  1421. auto candidate_frame = m_candidate_frame[ref_list];
  1422. if (m_ref_frame_sign_bias[candidate_frame] != m_ref_frame_sign_bias[ref_frame])
  1423. m_candidate_mv[ref_list] *= -1;
  1424. }
  1425. void Parser::if_diff_ref_frame_add_mv(u32 candidate_row, u32 candidate_column, ReferenceFrame ref_frame, bool use_prev)
  1426. {
  1427. for (auto ref_list = 0u; ref_list < 2; ref_list++)
  1428. get_block_mv(candidate_row, candidate_column, ref_list, use_prev);
  1429. auto mvs_are_same = m_candidate_mv[0] == m_candidate_mv[1];
  1430. if (m_candidate_frame[0] > ReferenceFrame::IntraFrame && m_candidate_frame[0] != ref_frame) {
  1431. scale_mv(0, ref_frame);
  1432. add_mv_ref_list(0);
  1433. }
  1434. if (m_candidate_frame[1] > ReferenceFrame::IntraFrame && m_candidate_frame[1] != ref_frame && !mvs_are_same) {
  1435. scale_mv(1, ref_frame);
  1436. add_mv_ref_list(1);
  1437. }
  1438. }
  1439. MotionVector Parser::clamp_mv(MotionVector vector, i32 border)
  1440. {
  1441. i32 blocks_high = num_8x8_blocks_high_lookup[m_mi_size];
  1442. // Casts must be done here to prevent subtraction underflow from wrapping the values.
  1443. i32 mb_to_top_edge = -8 * (static_cast<i32>(m_mi_row) * MI_SIZE);
  1444. i32 mb_to_bottom_edge = 8 * ((static_cast<i32>(m_mi_rows) - blocks_high - static_cast<i32>(m_mi_row)) * MI_SIZE);
  1445. i32 blocks_wide = num_8x8_blocks_wide_lookup[m_mi_size];
  1446. i32 mb_to_left_edge = -8 * (static_cast<i32>(m_mi_col) * MI_SIZE);
  1447. i32 mb_to_right_edge = 8 * ((static_cast<i32>(m_mi_cols) - blocks_wide - static_cast<i32>(m_mi_col)) * MI_SIZE);
  1448. return {
  1449. clip_3(mb_to_top_edge - border, mb_to_bottom_edge + border, vector.row()),
  1450. clip_3(mb_to_left_edge - border, mb_to_right_edge + border, vector.column())
  1451. };
  1452. }
  1453. void Parser::clamp_mv_ref(u8 i)
  1454. {
  1455. MotionVector& vector = m_ref_list_mv[i];
  1456. vector = clamp_mv(vector, MV_BORDER);
  1457. }
  1458. // 6.5.1 Find MV refs syntax
  1459. void Parser::find_mv_refs(ReferenceFrame reference_frame, i32 block)
  1460. {
  1461. m_ref_mv_count = 0;
  1462. bool different_ref_found = false;
  1463. u8 context_counter = 0;
  1464. m_ref_list_mv[0] = {};
  1465. m_ref_list_mv[1] = {};
  1466. MotionVector base_coordinates = MotionVector(m_mi_row, m_mi_col);
  1467. for (auto i = 0u; i < 2; i++) {
  1468. auto offset_vector = mv_ref_blocks[m_mi_size][i];
  1469. auto candidate = base_coordinates + offset_vector;
  1470. if (is_inside(candidate.row(), candidate.column())) {
  1471. auto candidate_index = get_image_index(candidate.row(), candidate.column());
  1472. auto index = get_image_index(candidate.row(), candidate.column());
  1473. different_ref_found = true;
  1474. context_counter += mode_2_counter[m_y_modes[index]];
  1475. for (auto ref_list = 0u; ref_list < 2; ref_list++) {
  1476. if (m_ref_frames[candidate_index][ref_list] == reference_frame) {
  1477. // This section up until add_mv_ref_list() is defined in spec as get_sub_block_mv().
  1478. constexpr u8 idx_n_column_to_subblock[4][2] = {
  1479. { 1, 2 },
  1480. { 1, 3 },
  1481. { 3, 2 },
  1482. { 3, 3 }
  1483. };
  1484. auto index = block >= 0 ? idx_n_column_to_subblock[block][offset_vector.column() == 0] : 3;
  1485. m_candidate_mv[ref_list] = m_sub_mvs[candidate_index][ref_list][index];
  1486. add_mv_ref_list(ref_list);
  1487. break;
  1488. }
  1489. }
  1490. }
  1491. }
  1492. for (auto i = 2u; i < MVREF_NEIGHBOURS; i++) {
  1493. MotionVector candidate = base_coordinates + mv_ref_blocks[m_mi_size][i];
  1494. if (is_inside(candidate.row(), candidate.column())) {
  1495. different_ref_found = true;
  1496. if_same_ref_frame_add_mv(candidate.row(), candidate.column(), reference_frame, false);
  1497. }
  1498. }
  1499. if (m_use_prev_frame_mvs)
  1500. if_same_ref_frame_add_mv(m_mi_row, m_mi_col, reference_frame, true);
  1501. if (different_ref_found) {
  1502. for (auto i = 0u; i < MVREF_NEIGHBOURS; i++) {
  1503. MotionVector candidate = base_coordinates + mv_ref_blocks[m_mi_size][i];
  1504. if (is_inside(candidate.row(), candidate.column()))
  1505. if_diff_ref_frame_add_mv(candidate.row(), candidate.column(), reference_frame, false);
  1506. }
  1507. }
  1508. if (m_use_prev_frame_mvs)
  1509. if_diff_ref_frame_add_mv(m_mi_row, m_mi_col, reference_frame, true);
  1510. m_mode_context[reference_frame] = counter_to_context[context_counter];
  1511. for (auto i = 0u; i < MAX_MV_REF_CANDIDATES; i++)
  1512. clamp_mv_ref(i);
  1513. }
  1514. bool Parser::use_mv_hp(MotionVector const& vector)
  1515. {
  1516. return (abs(vector.row()) >> 3) < COMPANDED_MVREF_THRESH && (abs(vector.column()) >> 3) < COMPANDED_MVREF_THRESH;
  1517. }
  1518. void Parser::find_best_ref_mvs(u8 ref_list)
  1519. {
  1520. for (auto i = 0u; i < MAX_MV_REF_CANDIDATES; i++) {
  1521. auto delta = m_ref_list_mv[i];
  1522. auto delta_row = delta.row();
  1523. auto delta_column = delta.column();
  1524. if (!m_allow_high_precision_mv || !use_mv_hp(delta)) {
  1525. if (delta_row & 1)
  1526. delta_row += delta_row > 0 ? -1 : 1;
  1527. if (delta_column & 1)
  1528. delta_column += delta_column > 0 ? -1 : 1;
  1529. }
  1530. delta = { delta_row, delta_column };
  1531. m_ref_list_mv[i] = clamp_mv(delta, (BORDERINPIXELS - INTERP_EXTEND) << 3);
  1532. }
  1533. m_nearest_mv[ref_list] = m_ref_list_mv[0];
  1534. m_near_mv[ref_list] = m_ref_list_mv[1];
  1535. m_best_mv[ref_list] = m_ref_list_mv[0];
  1536. }
  1537. void Parser::append_sub8x8_mvs(i32 block, u8 ref_list)
  1538. {
  1539. MotionVector sub_8x8_mvs[2];
  1540. find_mv_refs(m_ref_frame[ref_list], block);
  1541. auto destination_index = 0;
  1542. if (block == 0) {
  1543. for (auto i = 0u; i < 2; i++)
  1544. sub_8x8_mvs[destination_index++] = m_ref_list_mv[i];
  1545. } else if (block <= 2) {
  1546. sub_8x8_mvs[destination_index++] = m_block_mvs[ref_list][0];
  1547. } else {
  1548. sub_8x8_mvs[destination_index++] = m_block_mvs[ref_list][2];
  1549. for (auto index = 1; index >= 0 && destination_index < 2; index--) {
  1550. auto block_vector = m_block_mvs[ref_list][index];
  1551. if (block_vector != sub_8x8_mvs[0])
  1552. sub_8x8_mvs[destination_index++] = block_vector;
  1553. }
  1554. }
  1555. for (auto n = 0u; n < 2 && destination_index < 2; n++) {
  1556. auto ref_list_vector = m_ref_list_mv[n];
  1557. if (ref_list_vector != sub_8x8_mvs[0])
  1558. sub_8x8_mvs[destination_index++] = ref_list_vector;
  1559. }
  1560. if (destination_index < 2)
  1561. sub_8x8_mvs[destination_index++] = {};
  1562. m_nearest_mv[ref_list] = sub_8x8_mvs[0];
  1563. m_near_mv[ref_list] = sub_8x8_mvs[1];
  1564. }
  1565. void Parser::dump_info()
  1566. {
  1567. outln("Frame dimensions: {}x{}", m_frame_width, m_frame_height);
  1568. outln("Render dimensions: {}x{}", m_render_width, m_render_height);
  1569. outln("Bit depth: {}", m_bit_depth);
  1570. outln("Show frame: {}", m_show_frame);
  1571. }
  1572. }