Interpreter.cpp 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright notice, this
  9. * list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright notice,
  12. * this list of conditions and the following disclaimer in the documentation
  13. * and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  18. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  21. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  22. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  23. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include <AK/Badge.h>
  27. #include <LibJS/AST.h>
  28. #include <LibJS/Interpreter.h>
  29. #include <LibJS/Runtime/ArrayPrototype.h>
  30. #include <LibJS/Runtime/BooleanPrototype.h>
  31. #include <LibJS/Runtime/DatePrototype.h>
  32. #include <LibJS/Runtime/Error.h>
  33. #include <LibJS/Runtime/ErrorPrototype.h>
  34. #include <LibJS/Runtime/FunctionPrototype.h>
  35. #include <LibJS/Runtime/GlobalObject.h>
  36. #include <LibJS/Runtime/NativeFunction.h>
  37. #include <LibJS/Runtime/NumberPrototype.h>
  38. #include <LibJS/Runtime/Object.h>
  39. #include <LibJS/Runtime/ObjectPrototype.h>
  40. #include <LibJS/Runtime/Shape.h>
  41. #include <LibJS/Runtime/StringPrototype.h>
  42. #include <LibJS/Runtime/Value.h>
  43. namespace JS {
  44. Interpreter::Interpreter()
  45. : m_heap(*this)
  46. {
  47. m_empty_object_shape = heap().allocate<Shape>();
  48. // These are done first since other prototypes depend on their presence.
  49. m_object_prototype = heap().allocate<ObjectPrototype>();
  50. m_function_prototype = heap().allocate<FunctionPrototype>();
  51. #define __JS_ENUMERATE(ClassName, snake_name, PrototypeName, ConstructorName) \
  52. if (!m_##snake_name##_prototype) \
  53. m_##snake_name##_prototype = heap().allocate<PrototypeName>();
  54. JS_ENUMERATE_BUILTIN_TYPES
  55. #undef __JS_ENUMERATE
  56. }
  57. Interpreter::~Interpreter()
  58. {
  59. }
  60. Value Interpreter::run(const Statement& statement, ArgumentVector arguments, ScopeType scope_type)
  61. {
  62. if (!statement.is_scope_node())
  63. return statement.execute(*this);
  64. auto& block = static_cast<const ScopeNode&>(statement);
  65. enter_scope(block, move(arguments), scope_type);
  66. m_last_value = js_undefined();
  67. for (auto& node : block.children()) {
  68. m_last_value = node.execute(*this);
  69. if (m_unwind_until != ScopeType::None)
  70. break;
  71. }
  72. bool did_return = m_unwind_until == ScopeType::Function;
  73. if (m_unwind_until == scope_type)
  74. m_unwind_until = ScopeType::None;
  75. exit_scope(block);
  76. return did_return ? m_last_value : js_undefined();
  77. }
  78. void Interpreter::enter_scope(const ScopeNode& scope_node, ArgumentVector arguments, ScopeType scope_type)
  79. {
  80. HashMap<FlyString, Variable> scope_variables_with_declaration_kind;
  81. for (auto& argument : arguments) {
  82. scope_variables_with_declaration_kind.set(argument.name, { argument.value, DeclarationKind::Var });
  83. }
  84. m_scope_stack.append({ scope_type, scope_node, move(scope_variables_with_declaration_kind) });
  85. }
  86. void Interpreter::exit_scope(const ScopeNode& scope_node)
  87. {
  88. while (!m_scope_stack.is_empty()) {
  89. auto popped_scope = m_scope_stack.take_last();
  90. if (popped_scope.scope_node.ptr() == &scope_node)
  91. break;
  92. }
  93. // If we unwind all the way, just reset m_unwind_until so that future "return" doesn't break.
  94. if (m_scope_stack.is_empty())
  95. m_unwind_until = ScopeType::None;
  96. }
  97. void Interpreter::declare_variable(const FlyString& name, DeclarationKind declaration_kind)
  98. {
  99. switch (declaration_kind) {
  100. case DeclarationKind::Var:
  101. for (ssize_t i = m_scope_stack.size() - 1; i >= 0; --i) {
  102. auto& scope = m_scope_stack.at(i);
  103. if (scope.type == ScopeType::Function) {
  104. if (scope.variables.get(name).has_value() && scope.variables.get(name).value().declaration_kind != DeclarationKind::Var)
  105. ASSERT_NOT_REACHED();
  106. scope.variables.set(move(name), { js_undefined(), declaration_kind });
  107. return;
  108. }
  109. }
  110. global_object().put(move(name), js_undefined());
  111. break;
  112. case DeclarationKind::Let:
  113. case DeclarationKind::Const:
  114. if (m_scope_stack.last().variables.get(name).has_value())
  115. ASSERT_NOT_REACHED();
  116. m_scope_stack.last().variables.set(move(name), { js_undefined(), declaration_kind });
  117. break;
  118. }
  119. }
  120. void Interpreter::set_variable(const FlyString& name, Value value, bool first_assignment)
  121. {
  122. for (ssize_t i = m_scope_stack.size() - 1; i >= 0; --i) {
  123. auto& scope = m_scope_stack.at(i);
  124. auto possible_match = scope.variables.get(name);
  125. if (possible_match.has_value()) {
  126. if (!first_assignment && possible_match.value().declaration_kind == DeclarationKind::Const)
  127. ASSERT_NOT_REACHED();
  128. scope.variables.set(move(name), { move(value), possible_match.value().declaration_kind });
  129. return;
  130. }
  131. }
  132. global_object().put(move(name), move(value));
  133. }
  134. Optional<Value> Interpreter::get_variable(const FlyString& name)
  135. {
  136. if (name == "this")
  137. return this_value();
  138. for (ssize_t i = m_scope_stack.size() - 1; i >= 0; --i) {
  139. auto& scope = m_scope_stack.at(i);
  140. auto value = scope.variables.get(name);
  141. if (value.has_value())
  142. return value.value().value;
  143. }
  144. return global_object().get(name);
  145. }
  146. void Interpreter::gather_roots(Badge<Heap>, HashTable<Cell*>& roots)
  147. {
  148. roots.set(m_empty_object_shape);
  149. roots.set(m_global_object);
  150. roots.set(m_exception);
  151. #define __JS_ENUMERATE(ClassName, snake_name, PrototypeName, ConstructorName) \
  152. roots.set(m_##snake_name##_prototype);
  153. JS_ENUMERATE_BUILTIN_TYPES
  154. #undef __JS_ENUMERATE
  155. if (m_last_value.is_cell())
  156. roots.set(m_last_value.as_cell());
  157. for (auto& scope : m_scope_stack) {
  158. for (auto& it : scope.variables) {
  159. if (it.value.value.is_cell())
  160. roots.set(it.value.value.as_cell());
  161. }
  162. }
  163. for (auto& call_frame : m_call_stack) {
  164. if (call_frame.this_value.is_cell())
  165. roots.set(call_frame.this_value.as_cell());
  166. for (auto& argument : call_frame.arguments) {
  167. if (argument.is_cell())
  168. roots.set(argument.as_cell());
  169. }
  170. }
  171. }
  172. Value Interpreter::call(Function* function, Value this_value, const Vector<Value>& arguments)
  173. {
  174. auto& call_frame = push_call_frame();
  175. call_frame.this_value = this_value;
  176. call_frame.arguments = arguments;
  177. auto result = function->call(*this);
  178. pop_call_frame();
  179. return result;
  180. }
  181. Value Interpreter::throw_exception(Exception* exception)
  182. {
  183. if (exception->value().is_object() && exception->value().as_object().is_error()) {
  184. auto& error = static_cast<Error&>(exception->value().as_object());
  185. dbg() << "Throwing JavaScript Error: " << error.name() << ", " << error.message();
  186. }
  187. m_exception = exception;
  188. unwind(ScopeType::Try);
  189. return {};
  190. }
  191. GlobalObject& Interpreter::global_object()
  192. {
  193. return static_cast<GlobalObject&>(*m_global_object);
  194. }
  195. const GlobalObject& Interpreter::global_object() const
  196. {
  197. return static_cast<const GlobalObject&>(*m_global_object);
  198. }
  199. }