MathObject.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2020, Linus Groh <linusg@serenityos.org>
  4. * Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
  5. *
  6. * SPDX-License-Identifier: BSD-2-Clause
  7. */
  8. #include <AK/Function.h>
  9. #include <AK/Random.h>
  10. #include <LibJS/Runtime/GlobalObject.h>
  11. #include <LibJS/Runtime/MathObject.h>
  12. #include <math.h>
  13. namespace JS {
  14. MathObject::MathObject(GlobalObject& global_object)
  15. : Object(*global_object.object_prototype())
  16. {
  17. }
  18. void MathObject::initialize(GlobalObject& global_object)
  19. {
  20. auto& vm = this->vm();
  21. Object::initialize(global_object);
  22. u8 attr = Attribute::Writable | Attribute::Configurable;
  23. define_old_native_function(vm.names.abs, abs, 1, attr);
  24. define_old_native_function(vm.names.random, random, 0, attr);
  25. define_old_native_function(vm.names.sqrt, sqrt, 1, attr);
  26. define_old_native_function(vm.names.floor, floor, 1, attr);
  27. define_old_native_function(vm.names.ceil, ceil, 1, attr);
  28. define_old_native_function(vm.names.round, round, 1, attr);
  29. define_old_native_function(vm.names.max, max, 2, attr);
  30. define_old_native_function(vm.names.min, min, 2, attr);
  31. define_old_native_function(vm.names.trunc, trunc, 1, attr);
  32. define_old_native_function(vm.names.sin, sin, 1, attr);
  33. define_old_native_function(vm.names.cos, cos, 1, attr);
  34. define_old_native_function(vm.names.tan, tan, 1, attr);
  35. define_old_native_function(vm.names.pow, pow, 2, attr);
  36. define_old_native_function(vm.names.exp, exp, 1, attr);
  37. define_old_native_function(vm.names.expm1, expm1, 1, attr);
  38. define_old_native_function(vm.names.sign, sign, 1, attr);
  39. define_old_native_function(vm.names.clz32, clz32, 1, attr);
  40. define_old_native_function(vm.names.acos, acos, 1, attr);
  41. define_old_native_function(vm.names.acosh, acosh, 1, attr);
  42. define_old_native_function(vm.names.asin, asin, 1, attr);
  43. define_old_native_function(vm.names.asinh, asinh, 1, attr);
  44. define_old_native_function(vm.names.atan, atan, 1, attr);
  45. define_old_native_function(vm.names.atanh, atanh, 1, attr);
  46. define_old_native_function(vm.names.log1p, log1p, 1, attr);
  47. define_old_native_function(vm.names.cbrt, cbrt, 1, attr);
  48. define_old_native_function(vm.names.atan2, atan2, 2, attr);
  49. define_old_native_function(vm.names.fround, fround, 1, attr);
  50. define_old_native_function(vm.names.hypot, hypot, 2, attr);
  51. define_old_native_function(vm.names.imul, imul, 2, attr);
  52. define_old_native_function(vm.names.log, log, 1, attr);
  53. define_old_native_function(vm.names.log2, log2, 1, attr);
  54. define_old_native_function(vm.names.log10, log10, 1, attr);
  55. define_old_native_function(vm.names.sinh, sinh, 1, attr);
  56. define_old_native_function(vm.names.cosh, cosh, 1, attr);
  57. define_old_native_function(vm.names.tanh, tanh, 1, attr);
  58. // 21.3.1 Value Properties of the Math Object, https://tc39.es/ecma262/#sec-value-properties-of-the-math-object
  59. define_direct_property(vm.names.E, Value(M_E), 0);
  60. define_direct_property(vm.names.LN2, Value(M_LN2), 0);
  61. define_direct_property(vm.names.LN10, Value(M_LN10), 0);
  62. define_direct_property(vm.names.LOG2E, Value(::log2(M_E)), 0);
  63. define_direct_property(vm.names.LOG10E, Value(::log10(M_E)), 0);
  64. define_direct_property(vm.names.PI, Value(M_PI), 0);
  65. define_direct_property(vm.names.SQRT1_2, Value(M_SQRT1_2), 0);
  66. define_direct_property(vm.names.SQRT2, Value(M_SQRT2), 0);
  67. // 21.3.1.9 Math [ @@toStringTag ], https://tc39.es/ecma262/#sec-math-@@tostringtag
  68. define_direct_property(*vm.well_known_symbol_to_string_tag(), js_string(vm, vm.names.Math.as_string()), Attribute::Configurable);
  69. }
  70. MathObject::~MathObject()
  71. {
  72. }
  73. // 21.3.2.1 Math.abs ( x ), https://tc39.es/ecma262/#sec-math.abs
  74. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::abs)
  75. {
  76. auto number = TRY_OR_DISCARD(vm.argument(0).to_number(global_object));
  77. if (number.is_nan())
  78. return js_nan();
  79. if (number.is_negative_zero())
  80. return Value(0);
  81. if (number.is_negative_infinity())
  82. return js_infinity();
  83. return Value(number.as_double() < 0 ? -number.as_double() : number.as_double());
  84. }
  85. // 21.3.2.27 Math.random ( ), https://tc39.es/ecma262/#sec-math.random
  86. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::random)
  87. {
  88. double r = (double)get_random<u32>() / (double)UINT32_MAX;
  89. return Value(r);
  90. }
  91. // 21.3.2.32 Math.sqrt ( x ), https://tc39.es/ecma262/#sec-math.sqrt
  92. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::sqrt)
  93. {
  94. auto number = TRY_OR_DISCARD(vm.argument(0).to_number(global_object));
  95. if (number.is_nan())
  96. return js_nan();
  97. return Value(::sqrt(number.as_double()));
  98. }
  99. // 21.3.2.16 Math.floor ( x ), https://tc39.es/ecma262/#sec-math.floor
  100. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::floor)
  101. {
  102. auto number = TRY_OR_DISCARD(vm.argument(0).to_number(global_object));
  103. if (number.is_nan())
  104. return js_nan();
  105. return Value(::floor(number.as_double()));
  106. }
  107. // 21.3.2.10 Math.ceil ( x ), https://tc39.es/ecma262/#sec-math.ceil
  108. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::ceil)
  109. {
  110. auto number = TRY_OR_DISCARD(vm.argument(0).to_number(global_object));
  111. if (number.is_nan())
  112. return js_nan();
  113. auto number_double = number.as_double();
  114. if (number_double < 0 && number_double > -1)
  115. return Value(-0.f);
  116. return Value(::ceil(number.as_double()));
  117. }
  118. // 21.3.2.28 Math.round ( x ), https://tc39.es/ecma262/#sec-math.round
  119. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::round)
  120. {
  121. auto value = TRY_OR_DISCARD(vm.argument(0).to_number(global_object)).as_double();
  122. double integer = ::ceil(value);
  123. if (integer - 0.5 > value)
  124. integer--;
  125. return Value(integer);
  126. }
  127. // 21.3.2.24 Math.max ( ...args ), https://tc39.es/ecma262/#sec-math.max
  128. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::max)
  129. {
  130. Vector<Value> coerced;
  131. for (size_t i = 0; i < vm.argument_count(); ++i)
  132. coerced.append(TRY_OR_DISCARD(vm.argument(i).to_number(global_object)));
  133. auto highest = js_negative_infinity();
  134. for (auto& number : coerced) {
  135. if (number.is_nan())
  136. return js_nan();
  137. if ((number.is_positive_zero() && highest.is_negative_zero()) || number.as_double() > highest.as_double())
  138. highest = number;
  139. }
  140. return highest;
  141. }
  142. // 21.3.2.25 Math.min ( ...args ), https://tc39.es/ecma262/#sec-math.min
  143. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::min)
  144. {
  145. Vector<Value> coerced;
  146. for (size_t i = 0; i < vm.argument_count(); ++i)
  147. coerced.append(TRY_OR_DISCARD(vm.argument(i).to_number(global_object)));
  148. auto lowest = js_infinity();
  149. for (auto& number : coerced) {
  150. if (number.is_nan())
  151. return js_nan();
  152. if ((number.is_negative_zero() && lowest.is_positive_zero()) || number.as_double() < lowest.as_double())
  153. lowest = number;
  154. }
  155. return lowest;
  156. }
  157. // 21.3.2.35 Math.trunc ( x ), https://tc39.es/ecma262/#sec-math.trunc
  158. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::trunc)
  159. {
  160. auto number = TRY_OR_DISCARD(vm.argument(0).to_number(global_object));
  161. if (number.is_nan())
  162. return js_nan();
  163. if (number.as_double() < 0)
  164. return MathObject::ceil(vm, global_object);
  165. return MathObject::floor(vm, global_object);
  166. }
  167. // 21.3.2.30 Math.sin ( x ), https://tc39.es/ecma262/#sec-math.sin
  168. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::sin)
  169. {
  170. auto number = TRY_OR_DISCARD(vm.argument(0).to_number(global_object));
  171. if (number.is_nan())
  172. return js_nan();
  173. return Value(::sin(number.as_double()));
  174. }
  175. // 21.3.2.12 Math.cos ( x ), https://tc39.es/ecma262/#sec-math.cos
  176. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::cos)
  177. {
  178. auto number = TRY_OR_DISCARD(vm.argument(0).to_number(global_object));
  179. if (number.is_nan())
  180. return js_nan();
  181. return Value(::cos(number.as_double()));
  182. }
  183. // 21.3.2.33 Math.tan ( x ), https://tc39.es/ecma262/#sec-math.tan
  184. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::tan)
  185. {
  186. auto number = TRY_OR_DISCARD(vm.argument(0).to_number(global_object));
  187. if (number.is_nan())
  188. return js_nan();
  189. return Value(::tan(number.as_double()));
  190. }
  191. // 21.3.2.26 Math.pow ( base, exponent ), https://tc39.es/ecma262/#sec-math.pow
  192. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::pow)
  193. {
  194. auto base = TRY_OR_DISCARD(vm.argument(0).to_number(global_object));
  195. auto exponent = TRY_OR_DISCARD(vm.argument(1).to_number(global_object));
  196. if (exponent.is_nan())
  197. return js_nan();
  198. if (exponent.is_positive_zero() || exponent.is_negative_zero())
  199. return Value(1);
  200. if (base.is_nan())
  201. return js_nan();
  202. if (base.is_positive_infinity())
  203. return exponent.as_double() > 0 ? js_infinity() : Value(0);
  204. if (base.is_negative_infinity()) {
  205. auto is_odd_integral_number = exponent.is_integral_number() && (exponent.as_i32() % 2 != 0);
  206. if (exponent.as_double() > 0)
  207. return is_odd_integral_number ? js_negative_infinity() : js_infinity();
  208. else
  209. return is_odd_integral_number ? Value(-0.0) : Value(0);
  210. }
  211. if (base.is_positive_zero())
  212. return exponent.as_double() > 0 ? Value(0) : js_infinity();
  213. if (base.is_negative_zero()) {
  214. auto is_odd_integral_number = exponent.is_integral_number() && (exponent.as_i32() % 2 != 0);
  215. if (exponent.as_double() > 0)
  216. return is_odd_integral_number ? Value(-0.0) : Value(0);
  217. else
  218. return is_odd_integral_number ? js_negative_infinity() : js_infinity();
  219. }
  220. VERIFY(base.is_finite_number() && !base.is_positive_zero() && !base.is_negative_zero());
  221. if (exponent.is_positive_infinity()) {
  222. auto absolute_base = fabs(base.as_double());
  223. if (absolute_base > 1)
  224. return js_infinity();
  225. else if (absolute_base == 1)
  226. return js_nan();
  227. else if (absolute_base < 1)
  228. return Value(0);
  229. }
  230. if (exponent.is_negative_infinity()) {
  231. auto absolute_base = fabs(base.as_double());
  232. if (absolute_base > 1)
  233. return Value(0);
  234. else if (absolute_base == 1)
  235. return js_nan();
  236. else if (absolute_base < 1)
  237. return js_infinity();
  238. }
  239. VERIFY(exponent.is_finite_number() && !exponent.is_positive_zero() && !exponent.is_negative_zero());
  240. if (base.as_double() < 0 && !exponent.is_integral_number())
  241. return js_nan();
  242. return Value(::pow(base.as_double(), exponent.as_double()));
  243. }
  244. // 21.3.2.14 Math.exp ( x ), https://tc39.es/ecma262/#sec-math.exp
  245. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::exp)
  246. {
  247. auto number = TRY_OR_DISCARD(vm.argument(0).to_number(global_object));
  248. if (number.is_nan())
  249. return js_nan();
  250. return Value(::exp(number.as_double()));
  251. }
  252. // 21.3.2.15 Math.expm1 ( x ), https://tc39.es/ecma262/#sec-math.expm1
  253. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::expm1)
  254. {
  255. auto number = TRY_OR_DISCARD(vm.argument(0).to_number(global_object));
  256. if (number.is_nan())
  257. return js_nan();
  258. return Value(::expm1(number.as_double()));
  259. }
  260. // 21.3.2.29 Math.sign ( x ), https://tc39.es/ecma262/#sec-math.sign
  261. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::sign)
  262. {
  263. auto number = TRY_OR_DISCARD(vm.argument(0).to_number(global_object));
  264. if (number.is_positive_zero())
  265. return Value(0);
  266. if (number.is_negative_zero())
  267. return Value(-0.0);
  268. if (number.as_double() > 0)
  269. return Value(1);
  270. if (number.as_double() < 0)
  271. return Value(-1);
  272. return js_nan();
  273. }
  274. // 21.3.2.11 Math.clz32 ( x ), https://tc39.es/ecma262/#sec-math.clz32
  275. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::clz32)
  276. {
  277. auto number = TRY_OR_DISCARD(vm.argument(0).to_u32(global_object));
  278. if (number == 0)
  279. return Value(32);
  280. return Value(__builtin_clz(number));
  281. }
  282. // 21.3.2.2 Math.acos ( x ), https://tc39.es/ecma262/#sec-math.acos
  283. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::acos)
  284. {
  285. auto number = TRY_OR_DISCARD(vm.argument(0).to_number(global_object));
  286. if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1)
  287. return js_nan();
  288. if (number.as_double() == 1)
  289. return Value(0);
  290. return Value(::acos(number.as_double()));
  291. }
  292. // 21.3.2.3 Math.acosh ( x ), https://tc39.es/ecma262/#sec-math.acosh
  293. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::acosh)
  294. {
  295. auto value = TRY_OR_DISCARD(vm.argument(0).to_number(global_object)).as_double();
  296. if (value < 1)
  297. return js_nan();
  298. return Value(::acosh(value));
  299. }
  300. // 21.3.2.4 Math.asin ( x ), https://tc39.es/ecma262/#sec-math.asin
  301. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::asin)
  302. {
  303. auto number = TRY_OR_DISCARD(vm.argument(0).to_number(global_object));
  304. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  305. return number;
  306. return Value(::asin(number.as_double()));
  307. }
  308. // 21.3.2.5 Math.asinh ( x ), https://tc39.es/ecma262/#sec-math.asinh
  309. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::asinh)
  310. {
  311. return Value(::asinh(TRY_OR_DISCARD(vm.argument(0).to_number(global_object)).as_double()));
  312. }
  313. // 21.3.2.6 Math.atan ( x ), https://tc39.es/ecma262/#sec-math.atan
  314. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::atan)
  315. {
  316. auto number = TRY_OR_DISCARD(vm.argument(0).to_number(global_object));
  317. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  318. return number;
  319. if (number.is_positive_infinity())
  320. return Value(M_PI_2);
  321. if (number.is_negative_infinity())
  322. return Value(-M_PI_2);
  323. return Value(::atan(number.as_double()));
  324. }
  325. // 21.3.2.7 Math.atanh ( x ), https://tc39.es/ecma262/#sec-math.atanh
  326. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::atanh)
  327. {
  328. auto value = TRY_OR_DISCARD(vm.argument(0).to_number(global_object)).as_double();
  329. if (value > 1 || value < -1)
  330. return js_nan();
  331. return Value(::atanh(value));
  332. }
  333. // 21.3.2.21 Math.log1p ( x ), https://tc39.es/ecma262/#sec-math.log1p
  334. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::log1p)
  335. {
  336. auto value = TRY_OR_DISCARD(vm.argument(0).to_number(global_object)).as_double();
  337. if (value < -1)
  338. return js_nan();
  339. return Value(::log1p(value));
  340. }
  341. // 21.3.2.9 Math.cbrt ( x ), https://tc39.es/ecma262/#sec-math.cbrt
  342. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::cbrt)
  343. {
  344. return Value(::cbrt(TRY_OR_DISCARD(vm.argument(0).to_number(global_object)).as_double()));
  345. }
  346. // 21.3.2.8 Math.atan2 ( y, x ), https://tc39.es/ecma262/#sec-math.atan2
  347. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::atan2)
  348. {
  349. auto constexpr three_quarters_pi = M_PI_4 + M_PI_2;
  350. auto y = TRY_OR_DISCARD(vm.argument(0).to_number(global_object));
  351. auto x = TRY_OR_DISCARD(vm.argument(1).to_number(global_object));
  352. if (y.is_nan() || x.is_nan())
  353. return js_nan();
  354. if (y.is_positive_infinity()) {
  355. if (x.is_positive_infinity())
  356. return Value(M_PI_4);
  357. else if (x.is_negative_infinity())
  358. return Value(three_quarters_pi);
  359. else
  360. return Value(M_PI_2);
  361. }
  362. if (y.is_negative_infinity()) {
  363. if (x.is_positive_infinity())
  364. return Value(-M_PI_4);
  365. else if (x.is_negative_infinity())
  366. return Value(-three_quarters_pi);
  367. else
  368. return Value(-M_PI_2);
  369. }
  370. if (y.is_positive_zero()) {
  371. if (x.as_double() > 0 || x.is_positive_zero())
  372. return Value(0.0);
  373. else
  374. return Value(M_PI);
  375. }
  376. if (y.is_negative_zero()) {
  377. if (x.as_double() > 0 || x.is_positive_zero())
  378. return Value(-0.0);
  379. else
  380. return Value(-M_PI);
  381. }
  382. VERIFY(y.is_finite_number() && !y.is_positive_zero() && !y.is_negative_zero());
  383. if (y.as_double() > 0) {
  384. if (x.is_positive_infinity())
  385. return Value(0);
  386. else if (x.is_negative_infinity())
  387. return Value(M_PI);
  388. else if (x.is_positive_zero() || x.is_negative_zero())
  389. return Value(M_PI_2);
  390. }
  391. if (y.as_double() < 0) {
  392. if (x.is_positive_infinity())
  393. return Value(-0.0);
  394. else if (x.is_negative_infinity())
  395. return Value(-M_PI);
  396. else if (x.is_positive_zero() || x.is_negative_zero())
  397. return Value(-M_PI_2);
  398. }
  399. VERIFY(x.is_finite_number() && !x.is_positive_zero() && !x.is_negative_zero());
  400. return Value(::atan2(y.as_double(), x.as_double()));
  401. }
  402. // 21.3.2.17 Math.fround ( x ), https://tc39.es/ecma262/#sec-math.fround
  403. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::fround)
  404. {
  405. auto number = TRY_OR_DISCARD(vm.argument(0).to_number(global_object));
  406. if (number.is_nan())
  407. return js_nan();
  408. return Value((float)number.as_double());
  409. }
  410. // 21.3.2.18 Math.hypot ( ...args ), https://tc39.es/ecma262/#sec-math.hypot
  411. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::hypot)
  412. {
  413. Vector<Value> coerced;
  414. for (size_t i = 0; i < vm.argument_count(); ++i)
  415. coerced.append(TRY_OR_DISCARD(vm.argument(i).to_number(global_object)));
  416. for (auto& number : coerced) {
  417. if (number.is_positive_infinity() || number.is_negative_infinity())
  418. return js_infinity();
  419. }
  420. auto only_zero = true;
  421. double sum_of_squares = 0;
  422. for (auto& number : coerced) {
  423. if (number.is_nan() || number.is_positive_infinity())
  424. return number;
  425. if (number.is_negative_infinity())
  426. return js_infinity();
  427. if (!number.is_positive_zero() && !number.is_negative_zero())
  428. only_zero = false;
  429. sum_of_squares += number.as_double() * number.as_double();
  430. }
  431. if (only_zero)
  432. return Value(0);
  433. return Value(::sqrt(sum_of_squares));
  434. }
  435. // 21.3.2.19 Math.imul ( x, y ), https://tc39.es/ecma262/#sec-math.imul
  436. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::imul)
  437. {
  438. auto a = TRY_OR_DISCARD(vm.argument(0).to_u32(global_object));
  439. auto b = TRY_OR_DISCARD(vm.argument(1).to_u32(global_object));
  440. return Value(static_cast<i32>(a * b));
  441. }
  442. // 21.3.2.20 Math.log ( x ), https://tc39.es/ecma262/#sec-math.log
  443. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::log)
  444. {
  445. auto value = TRY_OR_DISCARD(vm.argument(0).to_number(global_object)).as_double();
  446. if (value < 0)
  447. return js_nan();
  448. return Value(::log(value));
  449. }
  450. // 21.3.2.23 Math.log2 ( x ), https://tc39.es/ecma262/#sec-math.log2
  451. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::log2)
  452. {
  453. auto value = TRY_OR_DISCARD(vm.argument(0).to_number(global_object)).as_double();
  454. if (value < 0)
  455. return js_nan();
  456. return Value(::log2(value));
  457. }
  458. // 21.3.2.22 Math.log10 ( x ), https://tc39.es/ecma262/#sec-math.log10
  459. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::log10)
  460. {
  461. auto value = TRY_OR_DISCARD(vm.argument(0).to_number(global_object)).as_double();
  462. if (value < 0)
  463. return js_nan();
  464. return Value(::log10(value));
  465. }
  466. // 21.3.2.31 Math.sinh ( x ), https://tc39.es/ecma262/#sec-math.sinh
  467. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::sinh)
  468. {
  469. auto number = TRY_OR_DISCARD(vm.argument(0).to_number(global_object));
  470. if (number.is_nan())
  471. return js_nan();
  472. return Value(::sinh(number.as_double()));
  473. }
  474. // 21.3.2.13 Math.cosh ( x ), https://tc39.es/ecma262/#sec-math.cosh
  475. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::cosh)
  476. {
  477. auto number = TRY_OR_DISCARD(vm.argument(0).to_number(global_object));
  478. if (number.is_nan())
  479. return js_nan();
  480. return Value(::cosh(number.as_double()));
  481. }
  482. // 21.3.2.34 Math.tanh ( x ), https://tc39.es/ecma262/#sec-math.tanh
  483. JS_DEFINE_OLD_NATIVE_FUNCTION(MathObject::tanh)
  484. {
  485. auto number = TRY_OR_DISCARD(vm.argument(0).to_number(global_object));
  486. if (number.is_nan())
  487. return js_nan();
  488. if (number.is_positive_infinity())
  489. return Value(1);
  490. if (number.is_negative_infinity())
  491. return Value(-1);
  492. return Value(::tanh(number.as_double()));
  493. }
  494. }