MemoryManager.cpp 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Assertions.h>
  7. #include <AK/Memory.h>
  8. #include <AK/StringView.h>
  9. #include <Kernel/BootInfo.h>
  10. #include <Kernel/CMOS.h>
  11. #include <Kernel/FileSystem/Inode.h>
  12. #include <Kernel/Heap/kmalloc.h>
  13. #include <Kernel/Memory/AnonymousVMObject.h>
  14. #include <Kernel/Memory/MemoryManager.h>
  15. #include <Kernel/Memory/PageDirectory.h>
  16. #include <Kernel/Memory/PhysicalRegion.h>
  17. #include <Kernel/Memory/SharedInodeVMObject.h>
  18. #include <Kernel/Multiboot.h>
  19. #include <Kernel/Panic.h>
  20. #include <Kernel/Process.h>
  21. #include <Kernel/Sections.h>
  22. #include <Kernel/StdLib.h>
  23. extern u8 start_of_kernel_image[];
  24. extern u8 end_of_kernel_image[];
  25. extern u8 start_of_kernel_text[];
  26. extern u8 start_of_kernel_data[];
  27. extern u8 end_of_kernel_bss[];
  28. extern u8 start_of_ro_after_init[];
  29. extern u8 end_of_ro_after_init[];
  30. extern u8 start_of_unmap_after_init[];
  31. extern u8 end_of_unmap_after_init[];
  32. extern u8 start_of_kernel_ksyms[];
  33. extern u8 end_of_kernel_ksyms[];
  34. extern multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
  35. extern size_t multiboot_copy_boot_modules_count;
  36. // Treat the super pages as logically separate from .bss
  37. __attribute__((section(".super_pages"))) static u8 super_pages[1 * MiB];
  38. namespace Kernel::Memory {
  39. // NOTE: We can NOT use Singleton for this class, because
  40. // MemoryManager::initialize is called *before* global constructors are
  41. // run. If we do, then Singleton would get re-initialized, causing
  42. // the memory manager to be initialized twice!
  43. static MemoryManager* s_the;
  44. RecursiveSpinLock s_mm_lock;
  45. MemoryManager& MemoryManager::the()
  46. {
  47. return *s_the;
  48. }
  49. bool MemoryManager::is_initialized()
  50. {
  51. return s_the != nullptr;
  52. }
  53. UNMAP_AFTER_INIT MemoryManager::MemoryManager()
  54. {
  55. s_the = this;
  56. ScopedSpinLock lock(s_mm_lock);
  57. parse_memory_map();
  58. write_cr3(kernel_page_directory().cr3());
  59. protect_kernel_image();
  60. // We're temporarily "committing" to two pages that we need to allocate below
  61. auto committed_pages = commit_user_physical_pages(2);
  62. m_shared_zero_page = committed_pages->take_one();
  63. // We're wasting a page here, we just need a special tag (physical
  64. // address) so that we know when we need to lazily allocate a page
  65. // that we should be drawing this page from the committed pool rather
  66. // than potentially failing if no pages are available anymore.
  67. // By using a tag we don't have to query the VMObject for every page
  68. // whether it was committed or not
  69. m_lazy_committed_page = committed_pages->take_one();
  70. }
  71. UNMAP_AFTER_INIT MemoryManager::~MemoryManager()
  72. {
  73. }
  74. UNMAP_AFTER_INIT void MemoryManager::protect_kernel_image()
  75. {
  76. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  77. // Disable writing to the kernel text and rodata segments.
  78. for (auto i = start_of_kernel_text; i < start_of_kernel_data; i += PAGE_SIZE) {
  79. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  80. pte.set_writable(false);
  81. }
  82. if (Processor::current().has_feature(CPUFeature::NX)) {
  83. // Disable execution of the kernel data, bss and heap segments.
  84. for (auto i = start_of_kernel_data; i < end_of_kernel_image; i += PAGE_SIZE) {
  85. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  86. pte.set_execute_disabled(true);
  87. }
  88. }
  89. }
  90. UNMAP_AFTER_INIT void MemoryManager::protect_readonly_after_init_memory()
  91. {
  92. ScopedSpinLock mm_lock(s_mm_lock);
  93. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  94. // Disable writing to the .ro_after_init section
  95. for (auto i = (FlatPtr)&start_of_ro_after_init; i < (FlatPtr)&end_of_ro_after_init; i += PAGE_SIZE) {
  96. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  97. pte.set_writable(false);
  98. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  99. }
  100. }
  101. void MemoryManager::unmap_text_after_init()
  102. {
  103. ScopedSpinLock mm_lock(s_mm_lock);
  104. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  105. auto start = page_round_down((FlatPtr)&start_of_unmap_after_init);
  106. auto end = page_round_up((FlatPtr)&end_of_unmap_after_init);
  107. // Unmap the entire .unmap_after_init section
  108. for (auto i = start; i < end; i += PAGE_SIZE) {
  109. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  110. pte.clear();
  111. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  112. }
  113. dmesgln("Unmapped {} KiB of kernel text after init! :^)", (end - start) / KiB);
  114. }
  115. void MemoryManager::unmap_ksyms_after_init()
  116. {
  117. ScopedSpinLock mm_lock(s_mm_lock);
  118. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  119. auto start = page_round_down((FlatPtr)start_of_kernel_ksyms);
  120. auto end = page_round_up((FlatPtr)end_of_kernel_ksyms);
  121. // Unmap the entire .ksyms section
  122. for (auto i = start; i < end; i += PAGE_SIZE) {
  123. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  124. pte.clear();
  125. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  126. }
  127. dmesgln("Unmapped {} KiB of kernel symbols after init! :^)", (end - start) / KiB);
  128. }
  129. UNMAP_AFTER_INIT void MemoryManager::register_reserved_ranges()
  130. {
  131. VERIFY(!m_physical_memory_ranges.is_empty());
  132. ContiguousReservedMemoryRange range;
  133. for (auto& current_range : m_physical_memory_ranges) {
  134. if (current_range.type != PhysicalMemoryRangeType::Reserved) {
  135. if (range.start.is_null())
  136. continue;
  137. m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, current_range.start.get() - range.start.get() });
  138. range.start.set((FlatPtr) nullptr);
  139. continue;
  140. }
  141. if (!range.start.is_null()) {
  142. continue;
  143. }
  144. range.start = current_range.start;
  145. }
  146. if (m_physical_memory_ranges.last().type != PhysicalMemoryRangeType::Reserved)
  147. return;
  148. if (range.start.is_null())
  149. return;
  150. m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, m_physical_memory_ranges.last().start.get() + m_physical_memory_ranges.last().length - range.start.get() });
  151. }
  152. bool MemoryManager::is_allowed_to_mmap_to_userspace(PhysicalAddress start_address, VirtualRange const& range) const
  153. {
  154. VERIFY(!m_reserved_memory_ranges.is_empty());
  155. for (auto& current_range : m_reserved_memory_ranges) {
  156. if (!(current_range.start <= start_address))
  157. continue;
  158. if (!(current_range.start.offset(current_range.length) > start_address))
  159. continue;
  160. if (current_range.length < range.size())
  161. return false;
  162. return true;
  163. }
  164. return false;
  165. }
  166. UNMAP_AFTER_INIT void MemoryManager::parse_memory_map()
  167. {
  168. // Register used memory regions that we know of.
  169. m_used_memory_ranges.ensure_capacity(4);
  170. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::LowMemory, PhysicalAddress(0x00000000), PhysicalAddress(1 * MiB) });
  171. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Prekernel, start_of_prekernel_image, end_of_prekernel_image });
  172. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Kernel, PhysicalAddress(virtual_to_low_physical((FlatPtr)start_of_kernel_image)), PhysicalAddress(page_round_up(virtual_to_low_physical((FlatPtr)end_of_kernel_image))) });
  173. if (multiboot_flags & 0x4) {
  174. auto* bootmods_start = multiboot_copy_boot_modules_array;
  175. auto* bootmods_end = bootmods_start + multiboot_copy_boot_modules_count;
  176. for (auto* bootmod = bootmods_start; bootmod < bootmods_end; bootmod++) {
  177. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::BootModule, PhysicalAddress(bootmod->start), PhysicalAddress(bootmod->end) });
  178. }
  179. }
  180. auto* mmap_begin = multiboot_memory_map;
  181. auto* mmap_end = multiboot_memory_map + multiboot_memory_map_count;
  182. struct ContiguousPhysicalVirtualRange {
  183. PhysicalAddress lower;
  184. PhysicalAddress upper;
  185. };
  186. Vector<ContiguousPhysicalVirtualRange> contiguous_physical_ranges;
  187. for (auto* mmap = mmap_begin; mmap < mmap_end; mmap++) {
  188. dmesgln("MM: Multiboot mmap: address={:p}, length={}, type={}", mmap->addr, mmap->len, mmap->type);
  189. auto start_address = PhysicalAddress(mmap->addr);
  190. auto length = mmap->len;
  191. switch (mmap->type) {
  192. case (MULTIBOOT_MEMORY_AVAILABLE):
  193. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Usable, start_address, length });
  194. break;
  195. case (MULTIBOOT_MEMORY_RESERVED):
  196. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Reserved, start_address, length });
  197. break;
  198. case (MULTIBOOT_MEMORY_ACPI_RECLAIMABLE):
  199. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_Reclaimable, start_address, length });
  200. break;
  201. case (MULTIBOOT_MEMORY_NVS):
  202. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_NVS, start_address, length });
  203. break;
  204. case (MULTIBOOT_MEMORY_BADRAM):
  205. dmesgln("MM: Warning, detected bad memory range!");
  206. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::BadMemory, start_address, length });
  207. break;
  208. default:
  209. dbgln("MM: Unknown range!");
  210. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Unknown, start_address, length });
  211. break;
  212. }
  213. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  214. continue;
  215. // Fix up unaligned memory regions.
  216. auto diff = (FlatPtr)mmap->addr % PAGE_SIZE;
  217. if (diff != 0) {
  218. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting {:p} by {} bytes", mmap->addr, diff);
  219. diff = PAGE_SIZE - diff;
  220. mmap->addr += diff;
  221. mmap->len -= diff;
  222. }
  223. if ((mmap->len % PAGE_SIZE) != 0) {
  224. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting length {} by {} bytes", mmap->len, mmap->len % PAGE_SIZE);
  225. mmap->len -= mmap->len % PAGE_SIZE;
  226. }
  227. if (mmap->len < PAGE_SIZE) {
  228. dmesgln("MM: Memory physical_region from bootloader is too small; we want >= {} bytes, but got {} bytes", PAGE_SIZE, mmap->len);
  229. continue;
  230. }
  231. for (PhysicalSize page_base = mmap->addr; page_base <= (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  232. auto addr = PhysicalAddress(page_base);
  233. // Skip used memory ranges.
  234. bool should_skip = false;
  235. for (auto& used_range : m_used_memory_ranges) {
  236. if (addr.get() >= used_range.start.get() && addr.get() <= used_range.end.get()) {
  237. should_skip = true;
  238. break;
  239. }
  240. }
  241. if (should_skip)
  242. continue;
  243. if (contiguous_physical_ranges.is_empty() || contiguous_physical_ranges.last().upper.offset(PAGE_SIZE) != addr) {
  244. contiguous_physical_ranges.append(ContiguousPhysicalVirtualRange {
  245. .lower = addr,
  246. .upper = addr,
  247. });
  248. } else {
  249. contiguous_physical_ranges.last().upper = addr;
  250. }
  251. }
  252. }
  253. for (auto& range : contiguous_physical_ranges) {
  254. m_user_physical_regions.append(PhysicalRegion::try_create(range.lower, range.upper).release_nonnull());
  255. }
  256. // Super pages are guaranteed to be in the first 16MB of physical memory
  257. VERIFY(virtual_to_low_physical((FlatPtr)super_pages) + sizeof(super_pages) < 0x1000000);
  258. // Append statically-allocated super physical physical_region.
  259. m_super_physical_region = PhysicalRegion::try_create(
  260. PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages))),
  261. PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages + sizeof(super_pages)))));
  262. VERIFY(m_super_physical_region);
  263. m_system_memory_info.super_physical_pages += m_super_physical_region->size();
  264. for (auto& region : m_user_physical_regions)
  265. m_system_memory_info.user_physical_pages += region.size();
  266. register_reserved_ranges();
  267. for (auto& range : m_reserved_memory_ranges) {
  268. dmesgln("MM: Contiguous reserved range from {}, length is {}", range.start, range.length);
  269. }
  270. initialize_physical_pages();
  271. VERIFY(m_system_memory_info.super_physical_pages > 0);
  272. VERIFY(m_system_memory_info.user_physical_pages > 0);
  273. // We start out with no committed pages
  274. m_system_memory_info.user_physical_pages_uncommitted = m_system_memory_info.user_physical_pages;
  275. for (auto& used_range : m_used_memory_ranges) {
  276. dmesgln("MM: {} range @ {} - {} (size {:#x})", UserMemoryRangeTypeNames[to_underlying(used_range.type)], used_range.start, used_range.end.offset(-1), used_range.end.as_ptr() - used_range.start.as_ptr());
  277. }
  278. dmesgln("MM: Super physical region: {} - {} (size {:#x})", m_super_physical_region->lower(), m_super_physical_region->upper().offset(-1), PAGE_SIZE * m_super_physical_region->size());
  279. m_super_physical_region->initialize_zones();
  280. for (auto& region : m_user_physical_regions) {
  281. dmesgln("MM: User physical region: {} - {} (size {:#x})", region.lower(), region.upper().offset(-1), PAGE_SIZE * region.size());
  282. region.initialize_zones();
  283. }
  284. }
  285. UNMAP_AFTER_INIT void MemoryManager::initialize_physical_pages()
  286. {
  287. // We assume that the physical page range is contiguous and doesn't contain huge gaps!
  288. PhysicalAddress highest_physical_address;
  289. for (auto& range : m_used_memory_ranges) {
  290. if (range.end.get() > highest_physical_address.get())
  291. highest_physical_address = range.end;
  292. }
  293. for (auto& region : m_physical_memory_ranges) {
  294. auto range_end = PhysicalAddress(region.start).offset(region.length);
  295. if (range_end.get() > highest_physical_address.get())
  296. highest_physical_address = range_end;
  297. }
  298. // Calculate how many total physical pages the array will have
  299. m_physical_page_entries_count = PhysicalAddress::physical_page_index(highest_physical_address.get()) + 1;
  300. VERIFY(m_physical_page_entries_count != 0);
  301. VERIFY(!Checked<decltype(m_physical_page_entries_count)>::multiplication_would_overflow(m_physical_page_entries_count, sizeof(PhysicalPageEntry)));
  302. // Calculate how many bytes the array will consume
  303. auto physical_page_array_size = m_physical_page_entries_count * sizeof(PhysicalPageEntry);
  304. auto physical_page_array_pages = page_round_up(physical_page_array_size) / PAGE_SIZE;
  305. VERIFY(physical_page_array_pages * PAGE_SIZE >= physical_page_array_size);
  306. // Calculate how many page tables we will need to be able to map them all
  307. auto needed_page_table_count = (physical_page_array_pages + 512 - 1) / 512;
  308. auto physical_page_array_pages_and_page_tables_count = physical_page_array_pages + needed_page_table_count;
  309. // Now that we know how much memory we need for a contiguous array of PhysicalPage instances, find a memory region that can fit it
  310. PhysicalRegion* found_region { nullptr };
  311. Optional<size_t> found_region_index;
  312. for (size_t i = 0; i < m_user_physical_regions.size(); ++i) {
  313. auto& region = m_user_physical_regions[i];
  314. if (region.size() >= physical_page_array_pages_and_page_tables_count) {
  315. found_region = &region;
  316. found_region_index = i;
  317. break;
  318. }
  319. }
  320. if (!found_region) {
  321. dmesgln("MM: Need {} bytes for physical page management, but no memory region is large enough!", physical_page_array_pages_and_page_tables_count);
  322. VERIFY_NOT_REACHED();
  323. }
  324. VERIFY(m_system_memory_info.user_physical_pages >= physical_page_array_pages_and_page_tables_count);
  325. m_system_memory_info.user_physical_pages -= physical_page_array_pages_and_page_tables_count;
  326. if (found_region->size() == physical_page_array_pages_and_page_tables_count) {
  327. // We're stealing the entire region
  328. m_physical_pages_region = m_user_physical_regions.take(*found_region_index);
  329. } else {
  330. m_physical_pages_region = found_region->try_take_pages_from_beginning(physical_page_array_pages_and_page_tables_count);
  331. }
  332. m_used_memory_ranges.append({ UsedMemoryRangeType::PhysicalPages, m_physical_pages_region->lower(), m_physical_pages_region->upper() });
  333. // Create the bare page directory. This is not a fully constructed page directory and merely contains the allocators!
  334. m_kernel_page_directory = PageDirectory::must_create_kernel_page_directory();
  335. // Allocate a virtual address range for our array
  336. auto range = m_kernel_page_directory->range_allocator().allocate_anywhere(physical_page_array_pages * PAGE_SIZE);
  337. if (!range.has_value()) {
  338. dmesgln("MM: Could not allocate {} bytes to map physical page array!", physical_page_array_pages * PAGE_SIZE);
  339. VERIFY_NOT_REACHED();
  340. }
  341. // Now that we have our special m_physical_pages_region region with enough pages to hold the entire array
  342. // try to map the entire region into kernel space so we always have it
  343. // We can't use ensure_pte here because it would try to allocate a PhysicalPage and we don't have the array
  344. // mapped yet so we can't create them
  345. ScopedSpinLock lock(s_mm_lock);
  346. // Create page tables at the beginning of m_physical_pages_region, followed by the PhysicalPageEntry array
  347. auto page_tables_base = m_physical_pages_region->lower();
  348. auto physical_page_array_base = page_tables_base.offset(needed_page_table_count * PAGE_SIZE);
  349. auto physical_page_array_current_page = physical_page_array_base.get();
  350. auto virtual_page_array_base = range.value().base().get();
  351. auto virtual_page_array_current_page = virtual_page_array_base;
  352. for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
  353. auto virtual_page_base_for_this_pt = virtual_page_array_current_page;
  354. auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
  355. auto* pt = reinterpret_cast<PageTableEntry*>(quickmap_page(pt_paddr));
  356. __builtin_memset(pt, 0, PAGE_SIZE);
  357. for (size_t pte_index = 0; pte_index < PAGE_SIZE / sizeof(PageTableEntry); pte_index++) {
  358. auto& pte = pt[pte_index];
  359. pte.set_physical_page_base(physical_page_array_current_page);
  360. pte.set_user_allowed(false);
  361. pte.set_writable(true);
  362. if (Processor::current().has_feature(CPUFeature::NX))
  363. pte.set_execute_disabled(false);
  364. pte.set_global(true);
  365. pte.set_present(true);
  366. physical_page_array_current_page += PAGE_SIZE;
  367. virtual_page_array_current_page += PAGE_SIZE;
  368. }
  369. unquickmap_page();
  370. // Hook the page table into the kernel page directory
  371. u32 page_directory_index = (virtual_page_base_for_this_pt >> 21) & 0x1ff;
  372. auto* pd = reinterpret_cast<PageDirectoryEntry*>(quickmap_page(boot_pd_kernel));
  373. PageDirectoryEntry& pde = pd[page_directory_index];
  374. VERIFY(!pde.is_present()); // Nothing should be using this PD yet
  375. // We can't use ensure_pte quite yet!
  376. pde.set_page_table_base(pt_paddr.get());
  377. pde.set_user_allowed(false);
  378. pde.set_present(true);
  379. pde.set_writable(true);
  380. pde.set_global(true);
  381. unquickmap_page();
  382. flush_tlb_local(VirtualAddress(virtual_page_base_for_this_pt));
  383. }
  384. // We now have the entire PhysicalPageEntry array mapped!
  385. m_physical_page_entries = (PhysicalPageEntry*)range.value().base().get();
  386. for (size_t i = 0; i < m_physical_page_entries_count; i++)
  387. new (&m_physical_page_entries[i]) PageTableEntry();
  388. // Now we should be able to allocate PhysicalPage instances,
  389. // so finish setting up the kernel page directory
  390. m_kernel_page_directory->allocate_kernel_directory();
  391. // Now create legit PhysicalPage objects for the page tables we created, so that
  392. // we can put them into kernel_page_directory().m_page_tables
  393. auto& kernel_page_tables = kernel_page_directory().m_page_tables;
  394. virtual_page_array_current_page = virtual_page_array_base;
  395. for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
  396. VERIFY(virtual_page_array_current_page <= range.value().end().get());
  397. auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
  398. auto physical_page_index = PhysicalAddress::physical_page_index(pt_paddr.get());
  399. auto& physical_page_entry = m_physical_page_entries[physical_page_index];
  400. auto physical_page = adopt_ref(*new (&physical_page_entry.allocated.physical_page) PhysicalPage(MayReturnToFreeList::No));
  401. auto result = kernel_page_tables.set(virtual_page_array_current_page & ~0x1fffff, move(physical_page));
  402. VERIFY(result == AK::HashSetResult::InsertedNewEntry);
  403. virtual_page_array_current_page += (PAGE_SIZE / sizeof(PageTableEntry)) * PAGE_SIZE;
  404. }
  405. dmesgln("MM: Physical page entries: {}", range.value());
  406. }
  407. PhysicalPageEntry& MemoryManager::get_physical_page_entry(PhysicalAddress physical_address)
  408. {
  409. VERIFY(m_physical_page_entries);
  410. auto physical_page_entry_index = PhysicalAddress::physical_page_index(physical_address.get());
  411. VERIFY(physical_page_entry_index < m_physical_page_entries_count);
  412. return m_physical_page_entries[physical_page_entry_index];
  413. }
  414. PhysicalAddress MemoryManager::get_physical_address(PhysicalPage const& physical_page)
  415. {
  416. PhysicalPageEntry const& physical_page_entry = *reinterpret_cast<PhysicalPageEntry const*>((u8 const*)&physical_page - __builtin_offsetof(PhysicalPageEntry, allocated.physical_page));
  417. VERIFY(m_physical_page_entries);
  418. size_t physical_page_entry_index = &physical_page_entry - m_physical_page_entries;
  419. VERIFY(physical_page_entry_index < m_physical_page_entries_count);
  420. return PhysicalAddress((PhysicalPtr)physical_page_entry_index * PAGE_SIZE);
  421. }
  422. PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr)
  423. {
  424. VERIFY_INTERRUPTS_DISABLED();
  425. VERIFY(s_mm_lock.own_lock());
  426. VERIFY(page_directory.get_lock().own_lock());
  427. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  428. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  429. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  430. auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
  431. PageDirectoryEntry const& pde = pd[page_directory_index];
  432. if (!pde.is_present())
  433. return nullptr;
  434. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  435. }
  436. PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  437. {
  438. VERIFY_INTERRUPTS_DISABLED();
  439. VERIFY(s_mm_lock.own_lock());
  440. VERIFY(page_directory.get_lock().own_lock());
  441. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  442. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  443. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  444. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  445. PageDirectoryEntry& pde = pd[page_directory_index];
  446. if (!pde.is_present()) {
  447. bool did_purge = false;
  448. auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes, &did_purge);
  449. if (!page_table) {
  450. dbgln("MM: Unable to allocate page table to map {}", vaddr);
  451. return nullptr;
  452. }
  453. if (did_purge) {
  454. // If any memory had to be purged, ensure_pte may have been called as part
  455. // of the purging process. So we need to re-map the pd in this case to ensure
  456. // we're writing to the correct underlying physical page
  457. pd = quickmap_pd(page_directory, page_directory_table_index);
  458. VERIFY(&pde == &pd[page_directory_index]); // Sanity check
  459. VERIFY(!pde.is_present()); // Should have not changed
  460. }
  461. pde.set_page_table_base(page_table->paddr().get());
  462. pde.set_user_allowed(true);
  463. pde.set_present(true);
  464. pde.set_writable(true);
  465. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  466. // Use page_directory_table_index and page_directory_index as key
  467. // This allows us to release the page table entry when no longer needed
  468. auto result = page_directory.m_page_tables.set(vaddr.get() & ~(FlatPtr)0x1fffff, move(page_table));
  469. // If you're hitting this VERIFY on x86_64 chances are a 64-bit pointer was truncated somewhere
  470. VERIFY(result == AK::HashSetResult::InsertedNewEntry);
  471. }
  472. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  473. }
  474. void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, bool is_last_release)
  475. {
  476. VERIFY_INTERRUPTS_DISABLED();
  477. VERIFY(s_mm_lock.own_lock());
  478. VERIFY(page_directory.get_lock().own_lock());
  479. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  480. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  481. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  482. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  483. PageDirectoryEntry& pde = pd[page_directory_index];
  484. if (pde.is_present()) {
  485. auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()));
  486. auto& pte = page_table[page_table_index];
  487. pte.clear();
  488. if (is_last_release || page_table_index == 0x1ff) {
  489. // If this is the last PTE in a region or the last PTE in a page table then
  490. // check if we can also release the page table
  491. bool all_clear = true;
  492. for (u32 i = 0; i <= 0x1ff; i++) {
  493. if (!page_table[i].is_null()) {
  494. all_clear = false;
  495. break;
  496. }
  497. }
  498. if (all_clear) {
  499. pde.clear();
  500. auto result = page_directory.m_page_tables.remove(vaddr.get() & ~0x1fffff);
  501. VERIFY(result);
  502. }
  503. }
  504. }
  505. }
  506. UNMAP_AFTER_INIT void MemoryManager::initialize(u32 cpu)
  507. {
  508. ProcessorSpecific<MemoryManagerData>::initialize();
  509. if (cpu == 0) {
  510. new MemoryManager;
  511. kmalloc_enable_expand();
  512. }
  513. }
  514. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  515. {
  516. ScopedSpinLock lock(s_mm_lock);
  517. for (auto& region : MM.m_kernel_regions) {
  518. if (region.contains(vaddr))
  519. return &region;
  520. }
  521. return nullptr;
  522. }
  523. Region* MemoryManager::find_user_region_from_vaddr_no_lock(AddressSpace& space, VirtualAddress vaddr)
  524. {
  525. VERIFY(space.get_lock().own_lock());
  526. return space.find_region_containing({ vaddr, 1 });
  527. }
  528. Region* MemoryManager::find_user_region_from_vaddr(AddressSpace& space, VirtualAddress vaddr)
  529. {
  530. ScopedSpinLock lock(space.get_lock());
  531. return find_user_region_from_vaddr_no_lock(space, vaddr);
  532. }
  533. void MemoryManager::validate_syscall_preconditions(AddressSpace& space, RegisterState const& regs)
  534. {
  535. // We take the space lock once here and then use the no_lock variants
  536. // to avoid excessive spinlock recursion in this extemely common path.
  537. ScopedSpinLock lock(space.get_lock());
  538. auto unlock_and_handle_crash = [&lock, &regs](const char* description, int signal) {
  539. lock.unlock();
  540. handle_crash(regs, description, signal);
  541. };
  542. {
  543. VirtualAddress userspace_sp = VirtualAddress { regs.userspace_sp() };
  544. if (!MM.validate_user_stack_no_lock(space, userspace_sp)) {
  545. dbgln("Invalid stack pointer: {:p}", userspace_sp);
  546. unlock_and_handle_crash("Bad stack on syscall entry", SIGSTKFLT);
  547. }
  548. }
  549. {
  550. VirtualAddress ip = VirtualAddress { regs.ip() };
  551. auto* calling_region = MM.find_user_region_from_vaddr_no_lock(space, ip);
  552. if (!calling_region) {
  553. dbgln("Syscall from {:p} which has no associated region", ip);
  554. unlock_and_handle_crash("Syscall from unknown region", SIGSEGV);
  555. }
  556. if (calling_region->is_writable()) {
  557. dbgln("Syscall from writable memory at {:p}", ip);
  558. unlock_and_handle_crash("Syscall from writable memory", SIGSEGV);
  559. }
  560. if (space.enforces_syscall_regions() && !calling_region->is_syscall_region()) {
  561. dbgln("Syscall from non-syscall region");
  562. unlock_and_handle_crash("Syscall from non-syscall region", SIGSEGV);
  563. }
  564. }
  565. }
  566. Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr)
  567. {
  568. ScopedSpinLock lock(s_mm_lock);
  569. if (auto* region = kernel_region_from_vaddr(vaddr))
  570. return region;
  571. auto page_directory = PageDirectory::find_by_cr3(read_cr3());
  572. if (!page_directory)
  573. return nullptr;
  574. VERIFY(page_directory->address_space());
  575. return find_user_region_from_vaddr(*page_directory->address_space(), vaddr);
  576. }
  577. PageFaultResponse MemoryManager::handle_page_fault(PageFault const& fault)
  578. {
  579. VERIFY_INTERRUPTS_DISABLED();
  580. if (Processor::current().in_irq()) {
  581. dbgln("CPU[{}] BUG! Page fault while handling IRQ! code={}, vaddr={}, irq level: {}",
  582. Processor::id(), fault.code(), fault.vaddr(), Processor::current().in_irq());
  583. dump_kernel_regions();
  584. return PageFaultResponse::ShouldCrash;
  585. }
  586. dbgln_if(PAGE_FAULT_DEBUG, "MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::id(), fault.code(), fault.vaddr());
  587. auto* region = find_region_from_vaddr(fault.vaddr());
  588. if (!region) {
  589. return PageFaultResponse::ShouldCrash;
  590. }
  591. return region->handle_fault(fault);
  592. }
  593. OwnPtr<Region> MemoryManager::allocate_contiguous_kernel_region(size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  594. {
  595. VERIFY(!(size % PAGE_SIZE));
  596. ScopedSpinLock lock(s_mm_lock);
  597. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  598. if (!range.has_value())
  599. return {};
  600. auto vmobject = AnonymousVMObject::try_create_physically_contiguous_with_size(size);
  601. if (!vmobject) {
  602. kernel_page_directory().range_allocator().deallocate(range.value());
  603. return {};
  604. }
  605. return allocate_kernel_region_with_vmobject(range.value(), *vmobject, name, access, cacheable);
  606. }
  607. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, StringView name, Region::Access access, AllocationStrategy strategy, Region::Cacheable cacheable)
  608. {
  609. VERIFY(!(size % PAGE_SIZE));
  610. auto vm_object = AnonymousVMObject::try_create_with_size(size, strategy);
  611. if (!vm_object)
  612. return {};
  613. ScopedSpinLock lock(s_mm_lock);
  614. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  615. if (!range.has_value())
  616. return {};
  617. return allocate_kernel_region_with_vmobject(range.value(), vm_object.release_nonnull(), name, access, cacheable);
  618. }
  619. OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  620. {
  621. auto vm_object = AnonymousVMObject::try_create_for_physical_range(paddr, size);
  622. if (!vm_object)
  623. return {};
  624. VERIFY(!(size % PAGE_SIZE));
  625. ScopedSpinLock lock(s_mm_lock);
  626. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  627. if (!range.has_value())
  628. return {};
  629. return allocate_kernel_region_with_vmobject(range.value(), *vm_object, name, access, cacheable);
  630. }
  631. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VirtualRange const& range, VMObject& vmobject, StringView name, Region::Access access, Region::Cacheable cacheable)
  632. {
  633. ScopedSpinLock lock(s_mm_lock);
  634. auto region = Region::try_create_kernel_only(range, vmobject, 0, KString::try_create(name), access, cacheable);
  635. if (region)
  636. region->map(kernel_page_directory());
  637. return region;
  638. }
  639. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  640. {
  641. VERIFY(!(size % PAGE_SIZE));
  642. ScopedSpinLock lock(s_mm_lock);
  643. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  644. if (!range.has_value())
  645. return {};
  646. return allocate_kernel_region_with_vmobject(range.value(), vmobject, name, access, cacheable);
  647. }
  648. Optional<CommittedPhysicalPageSet> MemoryManager::commit_user_physical_pages(size_t page_count)
  649. {
  650. VERIFY(page_count > 0);
  651. ScopedSpinLock lock(s_mm_lock);
  652. if (m_system_memory_info.user_physical_pages_uncommitted < page_count)
  653. return {};
  654. m_system_memory_info.user_physical_pages_uncommitted -= page_count;
  655. m_system_memory_info.user_physical_pages_committed += page_count;
  656. return CommittedPhysicalPageSet { {}, page_count };
  657. }
  658. void MemoryManager::uncommit_user_physical_pages(Badge<CommittedPhysicalPageSet>, size_t page_count)
  659. {
  660. VERIFY(page_count > 0);
  661. ScopedSpinLock lock(s_mm_lock);
  662. VERIFY(m_system_memory_info.user_physical_pages_committed >= page_count);
  663. m_system_memory_info.user_physical_pages_uncommitted += page_count;
  664. m_system_memory_info.user_physical_pages_committed -= page_count;
  665. }
  666. void MemoryManager::deallocate_physical_page(PhysicalAddress paddr)
  667. {
  668. ScopedSpinLock lock(s_mm_lock);
  669. // Are we returning a user page?
  670. for (auto& region : m_user_physical_regions) {
  671. if (!region.contains(paddr))
  672. continue;
  673. region.return_page(paddr);
  674. --m_system_memory_info.user_physical_pages_used;
  675. // Always return pages to the uncommitted pool. Pages that were
  676. // committed and allocated are only freed upon request. Once
  677. // returned there is no guarantee being able to get them back.
  678. ++m_system_memory_info.user_physical_pages_uncommitted;
  679. return;
  680. }
  681. // If it's not a user page, it should be a supervisor page.
  682. if (!m_super_physical_region->contains(paddr))
  683. PANIC("MM: deallocate_user_physical_page couldn't figure out region for page @ {}", paddr);
  684. m_super_physical_region->return_page(paddr);
  685. --m_system_memory_info.super_physical_pages_used;
  686. }
  687. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page(bool committed)
  688. {
  689. VERIFY(s_mm_lock.is_locked());
  690. RefPtr<PhysicalPage> page;
  691. if (committed) {
  692. // Draw from the committed pages pool. We should always have these pages available
  693. VERIFY(m_system_memory_info.user_physical_pages_committed > 0);
  694. m_system_memory_info.user_physical_pages_committed--;
  695. } else {
  696. // We need to make sure we don't touch pages that we have committed to
  697. if (m_system_memory_info.user_physical_pages_uncommitted == 0)
  698. return {};
  699. m_system_memory_info.user_physical_pages_uncommitted--;
  700. }
  701. for (auto& region : m_user_physical_regions) {
  702. page = region.take_free_page();
  703. if (!page.is_null()) {
  704. ++m_system_memory_info.user_physical_pages_used;
  705. break;
  706. }
  707. }
  708. VERIFY(!committed || !page.is_null());
  709. return page;
  710. }
  711. NonnullRefPtr<PhysicalPage> MemoryManager::allocate_committed_user_physical_page(Badge<CommittedPhysicalPageSet>, ShouldZeroFill should_zero_fill)
  712. {
  713. ScopedSpinLock lock(s_mm_lock);
  714. auto page = find_free_user_physical_page(true);
  715. if (should_zero_fill == ShouldZeroFill::Yes) {
  716. auto* ptr = quickmap_page(*page);
  717. memset(ptr, 0, PAGE_SIZE);
  718. unquickmap_page();
  719. }
  720. return page.release_nonnull();
  721. }
  722. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge)
  723. {
  724. ScopedSpinLock lock(s_mm_lock);
  725. auto page = find_free_user_physical_page(false);
  726. bool purged_pages = false;
  727. if (!page) {
  728. // We didn't have a single free physical page. Let's try to free something up!
  729. // First, we look for a purgeable VMObject in the volatile state.
  730. for_each_vmobject([&](auto& vmobject) {
  731. if (!vmobject.is_anonymous())
  732. return IterationDecision::Continue;
  733. auto& anonymous_vmobject = static_cast<AnonymousVMObject&>(vmobject);
  734. if (!anonymous_vmobject.is_purgeable() || !anonymous_vmobject.is_volatile())
  735. return IterationDecision::Continue;
  736. if (auto purged_page_count = anonymous_vmobject.purge()) {
  737. dbgln("MM: Purge saved the day! Purged {} pages from AnonymousVMObject", purged_page_count);
  738. page = find_free_user_physical_page(false);
  739. purged_pages = true;
  740. VERIFY(page);
  741. return IterationDecision::Break;
  742. }
  743. return IterationDecision::Continue;
  744. });
  745. if (!page) {
  746. dmesgln("MM: no user physical pages available");
  747. return {};
  748. }
  749. }
  750. if (should_zero_fill == ShouldZeroFill::Yes) {
  751. auto* ptr = quickmap_page(*page);
  752. memset(ptr, 0, PAGE_SIZE);
  753. unquickmap_page();
  754. }
  755. if (did_purge)
  756. *did_purge = purged_pages;
  757. return page;
  758. }
  759. NonnullRefPtrVector<PhysicalPage> MemoryManager::allocate_contiguous_supervisor_physical_pages(size_t size)
  760. {
  761. VERIFY(!(size % PAGE_SIZE));
  762. ScopedSpinLock lock(s_mm_lock);
  763. size_t count = ceil_div(size, static_cast<size_t>(PAGE_SIZE));
  764. auto physical_pages = m_super_physical_region->take_contiguous_free_pages(count);
  765. if (physical_pages.is_empty()) {
  766. dmesgln("MM: no super physical pages available");
  767. VERIFY_NOT_REACHED();
  768. return {};
  769. }
  770. auto cleanup_region = MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write);
  771. fast_u32_fill((u32*)cleanup_region->vaddr().as_ptr(), 0, (PAGE_SIZE * count) / sizeof(u32));
  772. m_system_memory_info.super_physical_pages_used += count;
  773. return physical_pages;
  774. }
  775. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  776. {
  777. ScopedSpinLock lock(s_mm_lock);
  778. auto page = m_super_physical_region->take_free_page();
  779. if (!page) {
  780. dmesgln("MM: no super physical pages available");
  781. VERIFY_NOT_REACHED();
  782. return {};
  783. }
  784. fast_u32_fill((u32*)page->paddr().offset(physical_to_virtual_offset).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  785. ++m_system_memory_info.super_physical_pages_used;
  786. return page;
  787. }
  788. void MemoryManager::enter_process_paging_scope(Process& process)
  789. {
  790. enter_space(process.address_space());
  791. }
  792. void MemoryManager::enter_space(AddressSpace& space)
  793. {
  794. auto current_thread = Thread::current();
  795. VERIFY(current_thread != nullptr);
  796. ScopedSpinLock lock(s_mm_lock);
  797. current_thread->regs().cr3 = space.page_directory().cr3();
  798. write_cr3(space.page_directory().cr3());
  799. }
  800. void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
  801. {
  802. Processor::flush_tlb_local(vaddr, page_count);
  803. }
  804. void MemoryManager::flush_tlb(PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count)
  805. {
  806. Processor::flush_tlb(page_directory, vaddr, page_count);
  807. }
  808. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  809. {
  810. VERIFY(s_mm_lock.own_lock());
  811. auto& mm_data = get_data();
  812. auto& pte = boot_pd_kernel_pt1023[(KERNEL_QUICKMAP_PD - KERNEL_PT1024_BASE) / PAGE_SIZE];
  813. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  814. if (pte.physical_page_base() != pd_paddr.get()) {
  815. pte.set_physical_page_base(pd_paddr.get());
  816. pte.set_present(true);
  817. pte.set_writable(true);
  818. pte.set_user_allowed(false);
  819. // Because we must continue to hold the MM lock while we use this
  820. // mapping, it is sufficient to only flush on the current CPU. Other
  821. // CPUs trying to use this API must wait on the MM lock anyway
  822. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PD));
  823. } else {
  824. // Even though we don't allow this to be called concurrently, it's
  825. // possible that this PD was mapped on a different CPU and we don't
  826. // broadcast the flush. If so, we still need to flush the TLB.
  827. if (mm_data.m_last_quickmap_pd != pd_paddr)
  828. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PD));
  829. }
  830. mm_data.m_last_quickmap_pd = pd_paddr;
  831. return (PageDirectoryEntry*)KERNEL_QUICKMAP_PD;
  832. }
  833. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  834. {
  835. VERIFY(s_mm_lock.own_lock());
  836. auto& mm_data = get_data();
  837. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[(KERNEL_QUICKMAP_PT - KERNEL_PT1024_BASE) / PAGE_SIZE];
  838. if (pte.physical_page_base() != pt_paddr.get()) {
  839. pte.set_physical_page_base(pt_paddr.get());
  840. pte.set_present(true);
  841. pte.set_writable(true);
  842. pte.set_user_allowed(false);
  843. // Because we must continue to hold the MM lock while we use this
  844. // mapping, it is sufficient to only flush on the current CPU. Other
  845. // CPUs trying to use this API must wait on the MM lock anyway
  846. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PT));
  847. } else {
  848. // Even though we don't allow this to be called concurrently, it's
  849. // possible that this PT was mapped on a different CPU and we don't
  850. // broadcast the flush. If so, we still need to flush the TLB.
  851. if (mm_data.m_last_quickmap_pt != pt_paddr)
  852. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PT));
  853. }
  854. mm_data.m_last_quickmap_pt = pt_paddr;
  855. return (PageTableEntry*)KERNEL_QUICKMAP_PT;
  856. }
  857. u8* MemoryManager::quickmap_page(PhysicalAddress const& physical_address)
  858. {
  859. VERIFY_INTERRUPTS_DISABLED();
  860. auto& mm_data = get_data();
  861. mm_data.m_quickmap_prev_flags = mm_data.m_quickmap_in_use.lock();
  862. ScopedSpinLock lock(s_mm_lock);
  863. VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::id() * PAGE_SIZE);
  864. u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  865. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
  866. if (pte.physical_page_base() != physical_address.get()) {
  867. pte.set_physical_page_base(physical_address.get());
  868. pte.set_present(true);
  869. pte.set_writable(true);
  870. pte.set_user_allowed(false);
  871. flush_tlb_local(vaddr);
  872. }
  873. return vaddr.as_ptr();
  874. }
  875. void MemoryManager::unquickmap_page()
  876. {
  877. VERIFY_INTERRUPTS_DISABLED();
  878. ScopedSpinLock lock(s_mm_lock);
  879. auto& mm_data = get_data();
  880. VERIFY(mm_data.m_quickmap_in_use.is_locked());
  881. VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::id() * PAGE_SIZE);
  882. u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  883. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
  884. pte.clear();
  885. flush_tlb_local(vaddr);
  886. mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_prev_flags);
  887. }
  888. bool MemoryManager::validate_user_stack_no_lock(AddressSpace& space, VirtualAddress vaddr) const
  889. {
  890. VERIFY(space.get_lock().own_lock());
  891. if (!is_user_address(vaddr))
  892. return false;
  893. auto* region = find_user_region_from_vaddr_no_lock(space, vaddr);
  894. return region && region->is_user() && region->is_stack();
  895. }
  896. bool MemoryManager::validate_user_stack(AddressSpace& space, VirtualAddress vaddr) const
  897. {
  898. ScopedSpinLock lock(space.get_lock());
  899. return validate_user_stack_no_lock(space, vaddr);
  900. }
  901. void MemoryManager::register_vmobject(VMObject& vmobject)
  902. {
  903. ScopedSpinLock lock(s_mm_lock);
  904. m_vmobjects.append(vmobject);
  905. }
  906. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  907. {
  908. ScopedSpinLock lock(s_mm_lock);
  909. m_vmobjects.remove(vmobject);
  910. }
  911. void MemoryManager::register_region(Region& region)
  912. {
  913. ScopedSpinLock lock(s_mm_lock);
  914. if (region.is_kernel())
  915. m_kernel_regions.append(region);
  916. else
  917. m_user_regions.append(region);
  918. }
  919. void MemoryManager::unregister_region(Region& region)
  920. {
  921. ScopedSpinLock lock(s_mm_lock);
  922. if (region.is_kernel())
  923. m_kernel_regions.remove(region);
  924. else
  925. m_user_regions.remove(region);
  926. }
  927. void MemoryManager::dump_kernel_regions()
  928. {
  929. dbgln("Kernel regions:");
  930. #if ARCH(I386)
  931. auto addr_padding = "";
  932. #else
  933. auto addr_padding = " ";
  934. #endif
  935. dbgln("BEGIN{} END{} SIZE{} ACCESS NAME",
  936. addr_padding, addr_padding, addr_padding);
  937. ScopedSpinLock lock(s_mm_lock);
  938. for (auto& region : m_kernel_regions) {
  939. dbgln("{:p} -- {:p} {:p} {:c}{:c}{:c}{:c}{:c}{:c} {}",
  940. region.vaddr().get(),
  941. region.vaddr().offset(region.size() - 1).get(),
  942. region.size(),
  943. region.is_readable() ? 'R' : ' ',
  944. region.is_writable() ? 'W' : ' ',
  945. region.is_executable() ? 'X' : ' ',
  946. region.is_shared() ? 'S' : ' ',
  947. region.is_stack() ? 'T' : ' ',
  948. region.is_syscall_region() ? 'C' : ' ',
  949. region.name());
  950. }
  951. }
  952. void MemoryManager::set_page_writable_direct(VirtualAddress vaddr, bool writable)
  953. {
  954. ScopedSpinLock lock(s_mm_lock);
  955. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  956. auto* pte = ensure_pte(kernel_page_directory(), vaddr);
  957. VERIFY(pte);
  958. if (pte->is_writable() == writable)
  959. return;
  960. pte->set_writable(writable);
  961. flush_tlb(&kernel_page_directory(), vaddr);
  962. }
  963. CommittedPhysicalPageSet::~CommittedPhysicalPageSet()
  964. {
  965. if (m_page_count)
  966. MM.uncommit_user_physical_pages({}, m_page_count);
  967. }
  968. NonnullRefPtr<PhysicalPage> CommittedPhysicalPageSet::take_one()
  969. {
  970. VERIFY(m_page_count > 0);
  971. --m_page_count;
  972. return MM.allocate_committed_user_physical_page({}, MemoryManager::ShouldZeroFill::Yes);
  973. }
  974. void CommittedPhysicalPageSet::uncommit_one()
  975. {
  976. VERIFY(m_page_count > 0);
  977. --m_page_count;
  978. MM.uncommit_user_physical_pages({}, 1);
  979. }
  980. }