Random.cpp 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2020, Peter Elliott <pelliott@ualberta.ca>
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #include <AK/Singleton.h>
  8. #include <Kernel/Arch/x86/Processor.h>
  9. #include <Kernel/Devices/RandomDevice.h>
  10. #include <Kernel/Random.h>
  11. #include <Kernel/Sections.h>
  12. #include <Kernel/Time/HPET.h>
  13. #include <Kernel/Time/RTC.h>
  14. #include <Kernel/Time/TimeManagement.h>
  15. namespace Kernel {
  16. static Singleton<KernelRng> s_the;
  17. static Atomic<u32, AK::MemoryOrder::memory_order_relaxed> s_next_random_value = 1;
  18. KernelRng& KernelRng::the()
  19. {
  20. return *s_the;
  21. }
  22. UNMAP_AFTER_INIT KernelRng::KernelRng()
  23. {
  24. bool supports_rdseed = Processor::current().has_feature(CPUFeature::RDSEED);
  25. bool supports_rdrand = Processor::current().has_feature(CPUFeature::RDRAND);
  26. if (supports_rdseed || supports_rdrand) {
  27. dmesgln("KernelRng: Using RDSEED or RDRAND as entropy source");
  28. for (size_t i = 0; i < resource().pool_count * resource().reseed_threshold; ++i) {
  29. u32 value = 0;
  30. if (supports_rdseed) {
  31. asm volatile(
  32. "1:\n"
  33. "rdseed %0\n"
  34. "jnc 1b\n"
  35. : "=r"(value));
  36. } else {
  37. asm volatile(
  38. "1:\n"
  39. "rdrand %0\n"
  40. "jnc 1b\n"
  41. : "=r"(value));
  42. }
  43. this->resource().add_random_event(value, i % 32);
  44. }
  45. } else if (TimeManagement::the().can_query_precise_time()) {
  46. // Add HPET as entropy source if we don't have anything better.
  47. dmesgln("KernelRng: Using HPET as entropy source");
  48. for (size_t i = 0; i < resource().pool_count * resource().reseed_threshold; ++i) {
  49. u64 hpet_time = HPET::the().read_main_counter_unsafe();
  50. this->resource().add_random_event(hpet_time, i % 32);
  51. }
  52. } else {
  53. // Fallback to RTC
  54. dmesgln("KernelRng: Using RTC as entropy source (bad!)");
  55. auto current_time = static_cast<u64>(RTC::now());
  56. for (size_t i = 0; i < resource().pool_count * resource().reseed_threshold; ++i) {
  57. this->resource().add_random_event(current_time, i % 32);
  58. current_time *= 0x574au;
  59. current_time += 0x40b2u;
  60. }
  61. }
  62. }
  63. void KernelRng::wait_for_entropy()
  64. {
  65. SpinlockLocker lock(get_lock());
  66. if (!resource().is_ready()) {
  67. dbgln("Entropy starvation...");
  68. m_seed_queue.wait_forever("KernelRng");
  69. }
  70. }
  71. void KernelRng::wake_if_ready()
  72. {
  73. VERIFY(get_lock().is_locked());
  74. if (resource().is_ready()) {
  75. m_seed_queue.wake_all();
  76. }
  77. }
  78. size_t EntropySource::next_source { static_cast<size_t>(EntropySource::Static::MaxHardcodedSourceIndex) };
  79. static void do_get_fast_random_bytes(u8* buffer, size_t buffer_size)
  80. {
  81. union {
  82. u8 bytes[4];
  83. u32 value;
  84. } u;
  85. size_t offset = 4;
  86. for (size_t i = 0; i < buffer_size; ++i) {
  87. if (offset >= 4) {
  88. auto current_next = s_next_random_value.load();
  89. for (;;) {
  90. auto new_next = current_next * 1103515245 + 12345;
  91. if (s_next_random_value.compare_exchange_strong(current_next, new_next)) {
  92. u.value = new_next;
  93. break;
  94. }
  95. }
  96. offset = 0;
  97. }
  98. buffer[i] = u.bytes[offset++];
  99. }
  100. }
  101. bool get_good_random_bytes(u8* buffer, size_t buffer_size, bool allow_wait, bool fallback_to_fast)
  102. {
  103. bool result = false;
  104. auto& kernel_rng = KernelRng::the();
  105. // FIXME: What if interrupts are disabled because we're in an interrupt?
  106. bool can_wait = are_interrupts_enabled();
  107. if (!can_wait && allow_wait) {
  108. // If we can't wait but the caller would be ok with it, then we
  109. // need to definitely fallback to *something*, even if it's less
  110. // secure...
  111. fallback_to_fast = true;
  112. }
  113. if (can_wait && allow_wait) {
  114. for (;;) {
  115. {
  116. MutexLocker locker(KernelRng::the().lock());
  117. if (kernel_rng.resource().get_random_bytes(buffer, buffer_size)) {
  118. result = true;
  119. break;
  120. }
  121. }
  122. kernel_rng.wait_for_entropy();
  123. }
  124. } else {
  125. // We can't wait/block here, or we are not allowed to block/wait
  126. if (kernel_rng.resource().get_random_bytes(buffer, buffer_size)) {
  127. result = true;
  128. } else if (fallback_to_fast) {
  129. // If interrupts are disabled
  130. do_get_fast_random_bytes(buffer, buffer_size);
  131. result = true;
  132. }
  133. }
  134. // NOTE: The only case where this function should ever return false and
  135. // not actually return random data is if fallback_to_fast == false and
  136. // allow_wait == false and interrupts are enabled!
  137. VERIFY(result || !fallback_to_fast);
  138. return result;
  139. }
  140. void get_fast_random_bytes(u8* buffer, size_t buffer_size)
  141. {
  142. // Try to get good randomness, but don't block if we can't right now
  143. // and allow falling back to fast randomness
  144. auto result = get_good_random_bytes(buffer, buffer_size, false, true);
  145. VERIFY(result);
  146. }
  147. }