123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530 |
- /*
- * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #include <AK/Math.h>
- #include <AK/StringBuilder.h>
- #include <AK/TypeCasts.h>
- #include <LibGfx/BoundingBox.h>
- #include <LibGfx/DeprecatedPainter.h>
- #include <LibGfx/DeprecatedPath.h>
- #include <LibGfx/Font/ScaledFont.h>
- #include <LibGfx/TextLayout.h>
- namespace Gfx {
- void DeprecatedPath::approximate_elliptical_arc_with_cubic_beziers(FloatPoint center, FloatSize radii, float x_axis_rotation, float theta, float theta_delta)
- {
- float sin_x_rotation;
- float cos_x_rotation;
- AK::sincos(x_axis_rotation, sin_x_rotation, cos_x_rotation);
- auto arc_point_and_derivative = [&](float t, FloatPoint& point, FloatPoint& derivative) {
- float sin_angle;
- float cos_angle;
- AK::sincos(t, sin_angle, cos_angle);
- point = FloatPoint {
- center.x()
- + radii.width() * cos_x_rotation * cos_angle
- - radii.height() * sin_x_rotation * sin_angle,
- center.y()
- + radii.width() * sin_x_rotation * cos_angle
- + radii.height() * cos_x_rotation * sin_angle,
- };
- derivative = FloatPoint {
- -radii.width() * cos_x_rotation * sin_angle
- - radii.height() * sin_x_rotation * cos_angle,
- -radii.width() * sin_x_rotation * sin_angle
- + radii.height() * cos_x_rotation * cos_angle,
- };
- };
- auto approximate_arc_between = [&](float start_angle, float end_angle) {
- auto t = AK::tan((end_angle - start_angle) / 2);
- auto alpha = AK::sin(end_angle - start_angle) * ((AK::sqrt(4 + 3 * t * t) - 1) / 3);
- FloatPoint p1, d1;
- FloatPoint p2, d2;
- arc_point_and_derivative(start_angle, p1, d1);
- arc_point_and_derivative(end_angle, p2, d2);
- auto q1 = p1 + d1.scaled(alpha, alpha);
- auto q2 = p2 - d2.scaled(alpha, alpha);
- cubic_bezier_curve_to(q1, q2, p2);
- };
- // FIXME: Come up with a more mathematically sound step size (using some error calculation).
- auto step = theta_delta;
- int step_count = 1;
- while (fabs(step) > AK::Pi<float> / 4) {
- step /= 2;
- step_count *= 2;
- }
- float prev = theta;
- float t = prev + step;
- for (int i = 0; i < step_count; i++, prev = t, t += step)
- approximate_arc_between(prev, t);
- }
- void DeprecatedPath::elliptical_arc_to(FloatPoint point, FloatSize radii, float x_axis_rotation, bool large_arc, bool sweep)
- {
- auto next_point = point;
- double rx = radii.width();
- double ry = radii.height();
- double x_axis_rotation_s;
- double x_axis_rotation_c;
- AK::sincos(static_cast<double>(x_axis_rotation), x_axis_rotation_s, x_axis_rotation_c);
- FloatPoint last_point = this->last_point();
- // Step 1 of out-of-range radii correction
- if (rx == 0.0 || ry == 0.0) {
- append_segment<DeprecatedPathSegment::LineTo>(next_point);
- return;
- }
- // Step 2 of out-of-range radii correction
- if (rx < 0)
- rx *= -1.0;
- if (ry < 0)
- ry *= -1.0;
- // POSSIBLY HACK: Handle the case where both points are the same.
- auto same_endpoints = next_point == last_point;
- if (same_endpoints) {
- if (!large_arc) {
- // Nothing is going to be drawn anyway.
- return;
- }
- // Move the endpoint by a small amount to avoid division by zero.
- next_point.translate_by(0.01f, 0.01f);
- }
- // Find (cx, cy), theta_1, theta_delta
- // Step 1: Compute (x1', y1')
- auto x_avg = static_cast<double>(last_point.x() - next_point.x()) / 2.0;
- auto y_avg = static_cast<double>(last_point.y() - next_point.y()) / 2.0;
- auto x1p = x_axis_rotation_c * x_avg + x_axis_rotation_s * y_avg;
- auto y1p = -x_axis_rotation_s * x_avg + x_axis_rotation_c * y_avg;
- // Step 2: Compute (cx', cy')
- double x1p_sq = x1p * x1p;
- double y1p_sq = y1p * y1p;
- double rx_sq = rx * rx;
- double ry_sq = ry * ry;
- // Step 3 of out-of-range radii correction
- double lambda = x1p_sq / rx_sq + y1p_sq / ry_sq;
- double multiplier;
- if (lambda > 1.0) {
- auto lambda_sqrt = AK::sqrt(lambda);
- rx *= lambda_sqrt;
- ry *= lambda_sqrt;
- multiplier = 0.0;
- } else {
- double numerator = rx_sq * ry_sq - rx_sq * y1p_sq - ry_sq * x1p_sq;
- double denominator = rx_sq * y1p_sq + ry_sq * x1p_sq;
- multiplier = AK::sqrt(AK::max(0., numerator) / denominator);
- }
- if (large_arc == sweep)
- multiplier *= -1.0;
- double cxp = multiplier * rx * y1p / ry;
- double cyp = multiplier * -ry * x1p / rx;
- // Step 3: Compute (cx, cy) from (cx', cy')
- x_avg = (last_point.x() + next_point.x()) / 2.0f;
- y_avg = (last_point.y() + next_point.y()) / 2.0f;
- double cx = x_axis_rotation_c * cxp - x_axis_rotation_s * cyp + x_avg;
- double cy = x_axis_rotation_s * cxp + x_axis_rotation_c * cyp + y_avg;
- double theta_1 = AK::atan2((y1p - cyp) / ry, (x1p - cxp) / rx);
- double theta_2 = AK::atan2((-y1p - cyp) / ry, (-x1p - cxp) / rx);
- auto theta_delta = theta_2 - theta_1;
- if (!sweep && theta_delta > 0.0) {
- theta_delta -= 2 * AK::Pi<double>;
- } else if (sweep && theta_delta < 0) {
- theta_delta += 2 * AK::Pi<double>;
- }
- approximate_elliptical_arc_with_cubic_beziers(
- { cx, cy },
- { rx, ry },
- x_axis_rotation,
- theta_1,
- theta_delta);
- }
- void DeprecatedPath::text(Utf8View text, Font const& font)
- {
- if (!is<ScaledFont>(font)) {
- // FIXME: This API only accepts Gfx::Font for ease of use.
- dbgln("Cannot path-ify bitmap fonts!");
- return;
- }
- auto& scaled_font = static_cast<ScaledFont const&>(font);
- for_each_glyph_position(
- last_point(), text, scaled_font, [&](DrawGlyphOrEmoji const& glyph_or_emoji) {
- if (glyph_or_emoji.has<DrawGlyph>()) {
- auto& glyph = glyph_or_emoji.get<DrawGlyph>();
- move_to(glyph.position);
- scaled_font.append_glyph_path_to(*this, glyph.glyph_id);
- }
- },
- IncludeLeftBearing::Yes);
- }
- DeprecatedPath DeprecatedPath::place_text_along(Utf8View text, Font const& font) const
- {
- if (!is<ScaledFont>(font)) {
- // FIXME: This API only accepts Gfx::Font for ease of use.
- dbgln("Cannot path-ify bitmap fonts!");
- return {};
- }
- auto lines = split_lines();
- auto next_point_for_offset = [&, line_index = 0U, distance_along_path = 0.0f, last_line_length = 0.0f](float offset) mutable -> Optional<FloatPoint> {
- while (line_index < lines.size() && offset > distance_along_path) {
- last_line_length = lines[line_index++].length();
- distance_along_path += last_line_length;
- }
- if (offset > distance_along_path)
- return {};
- if (last_line_length > 1) {
- // If the last line segment was fairly long, compute the point in the line.
- float p = (last_line_length + offset - distance_along_path) / last_line_length;
- auto current_line = lines[line_index - 1];
- return current_line.a() + (current_line.b() - current_line.a()).scaled(p);
- }
- if (line_index >= lines.size())
- return {};
- return lines[line_index].a();
- };
- auto& scaled_font = static_cast<Gfx::ScaledFont const&>(font);
- Gfx::DeprecatedPath result_path;
- Gfx::for_each_glyph_position(
- {}, text, font, [&](Gfx::DrawGlyphOrEmoji glyph_or_emoji) {
- auto* glyph = glyph_or_emoji.get_pointer<Gfx::DrawGlyph>();
- if (!glyph)
- return;
- auto offset = glyph->position.x();
- auto width = scaled_font.glyph_metrics(glyph->glyph_id).advance_width;
- auto start = next_point_for_offset(offset);
- if (!start.has_value())
- return;
- auto end = next_point_for_offset(offset + width);
- if (!end.has_value())
- return;
- // Find the angle between the start and end points on the path.
- auto delta = *end - *start;
- auto angle = AK::atan2(delta.y(), delta.x());
- Gfx::DeprecatedPath glyph_path;
- // Rotate the glyph then move it to start point.
- scaled_font.append_glyph_path_to(glyph_path, glyph->glyph_id);
- auto transform = Gfx::AffineTransform {}
- .translate(*start)
- .multiply(Gfx::AffineTransform {}.rotate_radians(angle))
- .multiply(Gfx::AffineTransform {}.translate({ 0, -scaled_font.pixel_metrics().ascent }));
- glyph_path = glyph_path.copy_transformed(transform);
- result_path.append_path(glyph_path);
- },
- Gfx::IncludeLeftBearing::Yes);
- return result_path;
- }
- void DeprecatedPath::close()
- {
- // If there's no `moveto` starting this subpath assume the start is (0, 0).
- FloatPoint first_point_in_subpath = { 0, 0 };
- for (auto it = end(); it-- != begin();) {
- auto segment = *it;
- if (segment.command() == DeprecatedPathSegment::MoveTo) {
- first_point_in_subpath = segment.point();
- break;
- }
- }
- if (first_point_in_subpath != last_point())
- line_to(first_point_in_subpath);
- }
- void DeprecatedPath::close_all_subpaths()
- {
- auto it = begin();
- // Note: Get the end outside the loop as closing subpaths will move the end.
- auto end = this->end();
- while (it < end) {
- // If there's no `moveto` starting this subpath assume the start is (0, 0).
- FloatPoint first_point_in_subpath = { 0, 0 };
- auto segment = *it;
- if (segment.command() == DeprecatedPathSegment::MoveTo) {
- first_point_in_subpath = segment.point();
- ++it;
- }
- // Find the end of the current subpath.
- FloatPoint cursor = first_point_in_subpath;
- while (it < end) {
- auto segment = *it;
- if (segment.command() == DeprecatedPathSegment::MoveTo)
- break;
- cursor = segment.point();
- ++it;
- }
- // Close the subpath.
- if (first_point_in_subpath != cursor) {
- move_to(cursor);
- line_to(first_point_in_subpath);
- }
- }
- }
- ByteString DeprecatedPath::to_byte_string() const
- {
- // Dumps this path as an SVG compatible string.
- StringBuilder builder;
- if (is_empty() || m_commands.first() != DeprecatedPathSegment::MoveTo)
- builder.append("M 0,0"sv);
- for (auto segment : *this) {
- if (!builder.is_empty())
- builder.append(' ');
- switch (segment.command()) {
- case DeprecatedPathSegment::MoveTo:
- builder.append('M');
- break;
- case DeprecatedPathSegment::LineTo:
- builder.append('L');
- break;
- case DeprecatedPathSegment::QuadraticBezierCurveTo:
- builder.append('Q');
- break;
- case DeprecatedPathSegment::CubicBezierCurveTo:
- builder.append('C');
- break;
- }
- for (auto point : segment.points())
- builder.appendff(" {},{}", point.x(), point.y());
- }
- return builder.to_byte_string();
- }
- void DeprecatedPath::segmentize_path()
- {
- Vector<FloatLine> segments;
- FloatBoundingBox bounding_box;
- auto add_line = [&](auto const& p0, auto const& p1) {
- segments.append({ p0, p1 });
- bounding_box.add_point(p1);
- };
- FloatPoint cursor { 0, 0 };
- for (auto segment : *this) {
- switch (segment.command()) {
- case DeprecatedPathSegment::MoveTo:
- bounding_box.add_point(segment.point());
- break;
- case DeprecatedPathSegment::LineTo: {
- add_line(cursor, segment.point());
- break;
- }
- case DeprecatedPathSegment::QuadraticBezierCurveTo: {
- DeprecatedPainter::for_each_line_segment_on_bezier_curve(segment.through(), cursor, segment.point(), [&](FloatPoint p0, FloatPoint p1) {
- add_line(p0, p1);
- });
- break;
- }
- case DeprecatedPathSegment::CubicBezierCurveTo: {
- DeprecatedPainter::for_each_line_segment_on_cubic_bezier_curve(segment.through_0(), segment.through_1(), cursor, segment.point(), [&](FloatPoint p0, FloatPoint p1) {
- add_line(p0, p1);
- });
- break;
- }
- }
- cursor = segment.point();
- }
- m_split_lines = SplitLines { move(segments), bounding_box };
- }
- DeprecatedPath DeprecatedPath::copy_transformed(Gfx::AffineTransform const& transform) const
- {
- DeprecatedPath result;
- result.m_commands = m_commands;
- result.m_points.ensure_capacity(m_points.size());
- for (auto point : m_points)
- result.m_points.unchecked_append(transform.map(point));
- return result;
- }
- template<typename T>
- struct RoundTrip {
- RoundTrip(ReadonlySpan<T> span)
- : m_span(span)
- {
- }
- size_t size() const
- {
- return m_span.size() * 2 - 1;
- }
- T const& operator[](size_t index) const
- {
- // Follow the path:
- if (index < m_span.size())
- return m_span[index];
- // Then in reverse:
- if (index < size())
- return m_span[size() - index - 1];
- // Then wrap around again:
- return m_span[index - size() + 1];
- }
- private:
- ReadonlySpan<T> m_span;
- };
- DeprecatedPath DeprecatedPath::stroke_to_fill(float thickness) const
- {
- // Note: This convolves a polygon with the path using the algorithm described
- // in https://keithp.com/~keithp/talks/cairo2003.pdf (3.1 Stroking Splines via Convolution)
- VERIFY(thickness > 0);
- auto lines = split_lines();
- if (lines.is_empty())
- return DeprecatedPath {};
- // Paths can be disconnected, which a pain to deal with, so split it up.
- Vector<Vector<FloatPoint>> segments;
- segments.append({ lines.first().a() });
- for (auto& line : lines) {
- if (line.a() == segments.last().last()) {
- segments.last().append(line.b());
- } else {
- segments.append({ line.a(), line.b() });
- }
- }
- constexpr auto flatness = 0.15f;
- auto pen_vertex_count = 4;
- if (thickness > flatness) {
- pen_vertex_count = max(
- static_cast<int>(ceilf(AK::Pi<float>
- / acosf(1 - (2 * flatness) / thickness))),
- pen_vertex_count);
- }
- if (pen_vertex_count % 2 == 1)
- pen_vertex_count += 1;
- Vector<FloatPoint, 128> pen_vertices;
- pen_vertices.ensure_capacity(pen_vertex_count);
- // Generate vertices for the pen (going counterclockwise). The pen does not necessarily need
- // to be a circle (or an approximation of one), but other shapes are untested.
- float theta = 0;
- float theta_delta = (AK::Pi<float> * 2) / pen_vertex_count;
- for (int i = 0; i < pen_vertex_count; i++) {
- float sin_theta;
- float cos_theta;
- AK::sincos(theta, sin_theta, cos_theta);
- pen_vertices.unchecked_append({ cos_theta * thickness / 2, sin_theta * thickness / 2 });
- theta -= theta_delta;
- }
- auto wrapping_index = [](auto& vertices, auto index) {
- return vertices[(index + vertices.size()) % vertices.size()];
- };
- auto angle_between = [](auto p1, auto p2) {
- auto delta = p2 - p1;
- return atan2f(delta.y(), delta.x());
- };
- struct ActiveRange {
- float start;
- float end;
- bool in_range(float angle) const
- {
- // Note: Since active ranges go counterclockwise start > end unless we wrap around at 180 degrees
- return ((angle <= start && angle >= end)
- || (start < end && angle <= start)
- || (start < end && angle >= end));
- }
- };
- Vector<ActiveRange, 128> active_ranges;
- active_ranges.ensure_capacity(pen_vertices.size());
- for (auto i = 0; i < pen_vertex_count; i++) {
- active_ranges.unchecked_append({ angle_between(wrapping_index(pen_vertices, i - 1), pen_vertices[i]),
- angle_between(pen_vertices[i], wrapping_index(pen_vertices, i + 1)) });
- }
- auto clockwise = [](float current_angle, float target_angle) {
- if (target_angle < 0)
- target_angle += AK::Pi<float> * 2;
- if (current_angle < 0)
- current_angle += AK::Pi<float> * 2;
- if (target_angle < current_angle)
- target_angle += AK::Pi<float> * 2;
- return (target_angle - current_angle) <= AK::Pi<float>;
- };
- DeprecatedPath convolution;
- for (auto& segment : segments) {
- RoundTrip<FloatPoint> shape { segment };
- bool first = true;
- auto add_vertex = [&](auto v) {
- if (first) {
- convolution.move_to(v);
- first = false;
- } else {
- convolution.line_to(v);
- }
- };
- auto shape_idx = 0u;
- auto slope = [&] {
- return angle_between(shape[shape_idx], shape[shape_idx + 1]);
- };
- auto start_slope = slope();
- // Note: At least one range must be active.
- auto active = *active_ranges.find_first_index_if([&](auto& range) {
- return range.in_range(start_slope);
- });
- while (shape_idx < shape.size()) {
- add_vertex(shape[shape_idx] + pen_vertices[active]);
- auto slope_now = slope();
- auto range = active_ranges[active];
- if (range.in_range(slope_now)) {
- shape_idx++;
- } else {
- if (clockwise(slope_now, range.end)) {
- if (active == static_cast<size_t>(pen_vertex_count - 1))
- active = 0;
- else
- active++;
- } else {
- if (active == 0)
- active = pen_vertex_count - 1;
- else
- active--;
- }
- }
- }
- }
- return convolution;
- }
- }
|