MemoryManager.cpp 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210
  1. /*
  2. * Copyright (c) 2018-2022, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Assertions.h>
  7. #include <AK/Memory.h>
  8. #include <AK/StringView.h>
  9. #include <Kernel/Arch/CPU.h>
  10. #include <Kernel/Arch/PageDirectory.h>
  11. #include <Kernel/Arch/PageFault.h>
  12. #include <Kernel/Arch/RegisterState.h>
  13. #include <Kernel/BootInfo.h>
  14. #include <Kernel/CMOS.h>
  15. #include <Kernel/FileSystem/Inode.h>
  16. #include <Kernel/Heap/kmalloc.h>
  17. #include <Kernel/KSyms.h>
  18. #include <Kernel/Memory/AnonymousVMObject.h>
  19. #include <Kernel/Memory/MemoryManager.h>
  20. #include <Kernel/Memory/PageDirectory.h>
  21. #include <Kernel/Memory/PhysicalRegion.h>
  22. #include <Kernel/Memory/SharedInodeVMObject.h>
  23. #include <Kernel/Multiboot.h>
  24. #include <Kernel/Panic.h>
  25. #include <Kernel/Prekernel/Prekernel.h>
  26. #include <Kernel/Process.h>
  27. #include <Kernel/Sections.h>
  28. #include <Kernel/StdLib.h>
  29. extern u8 start_of_kernel_image[];
  30. extern u8 end_of_kernel_image[];
  31. extern u8 start_of_kernel_text[];
  32. extern u8 start_of_kernel_data[];
  33. extern u8 end_of_kernel_bss[];
  34. extern u8 start_of_ro_after_init[];
  35. extern u8 end_of_ro_after_init[];
  36. extern u8 start_of_unmap_after_init[];
  37. extern u8 end_of_unmap_after_init[];
  38. extern u8 start_of_kernel_ksyms[];
  39. extern u8 end_of_kernel_ksyms[];
  40. extern multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
  41. extern size_t multiboot_copy_boot_modules_count;
  42. namespace Kernel::Memory {
  43. ErrorOr<FlatPtr> page_round_up(FlatPtr x)
  44. {
  45. if (x > (explode_byte(0xFF) & ~0xFFF)) {
  46. return Error::from_errno(EINVAL);
  47. }
  48. return (((FlatPtr)(x)) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1));
  49. }
  50. // NOTE: We can NOT use Singleton for this class, because
  51. // MemoryManager::initialize is called *before* global constructors are
  52. // run. If we do, then Singleton would get re-initialized, causing
  53. // the memory manager to be initialized twice!
  54. static MemoryManager* s_the;
  55. // The MM lock protects:
  56. // - all data members of MemoryManager
  57. // - the quickmap mechanism
  58. // - the PTE/PDE mapping mechanism
  59. RecursiveSpinlock s_mm_lock { LockRank::MemoryManager };
  60. MemoryManager& MemoryManager::the()
  61. {
  62. return *s_the;
  63. }
  64. bool MemoryManager::is_initialized()
  65. {
  66. return s_the != nullptr;
  67. }
  68. static UNMAP_AFTER_INIT VirtualRange kernel_virtual_range()
  69. {
  70. size_t kernel_range_start = kernel_mapping_base + 2 * MiB; // The first 2 MiB are used for mapping the pre-kernel
  71. return VirtualRange { VirtualAddress(kernel_range_start), KERNEL_PD_END - kernel_range_start };
  72. }
  73. UNMAP_AFTER_INIT MemoryManager::MemoryManager()
  74. : m_region_tree(kernel_virtual_range())
  75. {
  76. s_the = this;
  77. SpinlockLocker lock(s_mm_lock);
  78. parse_memory_map();
  79. activate_kernel_page_directory(kernel_page_directory());
  80. protect_kernel_image();
  81. // We're temporarily "committing" to two pages that we need to allocate below
  82. auto committed_pages = commit_physical_pages(2).release_value();
  83. m_shared_zero_page = committed_pages.take_one();
  84. // We're wasting a page here, we just need a special tag (physical
  85. // address) so that we know when we need to lazily allocate a page
  86. // that we should be drawing this page from the committed pool rather
  87. // than potentially failing if no pages are available anymore.
  88. // By using a tag we don't have to query the VMObject for every page
  89. // whether it was committed or not
  90. m_lazy_committed_page = committed_pages.take_one();
  91. }
  92. UNMAP_AFTER_INIT MemoryManager::~MemoryManager() = default;
  93. UNMAP_AFTER_INIT void MemoryManager::protect_kernel_image()
  94. {
  95. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  96. // Disable writing to the kernel text and rodata segments.
  97. for (auto const* i = start_of_kernel_text; i < start_of_kernel_data; i += PAGE_SIZE) {
  98. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  99. pte.set_writable(false);
  100. }
  101. if (Processor::current().has_nx()) {
  102. // Disable execution of the kernel data, bss and heap segments.
  103. for (auto const* i = start_of_kernel_data; i < end_of_kernel_image; i += PAGE_SIZE) {
  104. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  105. pte.set_execute_disabled(true);
  106. }
  107. }
  108. }
  109. UNMAP_AFTER_INIT void MemoryManager::unmap_prekernel()
  110. {
  111. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  112. SpinlockLocker mm_lock(s_mm_lock);
  113. auto start = start_of_prekernel_image.page_base().get();
  114. auto end = end_of_prekernel_image.page_base().get();
  115. for (auto i = start; i <= end; i += PAGE_SIZE)
  116. release_pte(kernel_page_directory(), VirtualAddress(i), i == end ? IsLastPTERelease::Yes : IsLastPTERelease::No);
  117. flush_tlb(&kernel_page_directory(), VirtualAddress(start), (end - start) / PAGE_SIZE);
  118. }
  119. UNMAP_AFTER_INIT void MemoryManager::protect_readonly_after_init_memory()
  120. {
  121. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  122. // Disable writing to the .ro_after_init section
  123. for (auto i = (FlatPtr)&start_of_ro_after_init; i < (FlatPtr)&end_of_ro_after_init; i += PAGE_SIZE) {
  124. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  125. pte.set_writable(false);
  126. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  127. }
  128. }
  129. void MemoryManager::unmap_text_after_init()
  130. {
  131. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  132. auto start = page_round_down((FlatPtr)&start_of_unmap_after_init);
  133. auto end = page_round_up((FlatPtr)&end_of_unmap_after_init).release_value_but_fixme_should_propagate_errors();
  134. // Unmap the entire .unmap_after_init section
  135. for (auto i = start; i < end; i += PAGE_SIZE) {
  136. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  137. pte.clear();
  138. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  139. }
  140. dmesgln("Unmapped {} KiB of kernel text after init! :^)", (end - start) / KiB);
  141. }
  142. UNMAP_AFTER_INIT void MemoryManager::protect_ksyms_after_init()
  143. {
  144. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  145. auto start = page_round_down((FlatPtr)start_of_kernel_ksyms);
  146. auto end = page_round_up((FlatPtr)end_of_kernel_ksyms).release_value_but_fixme_should_propagate_errors();
  147. for (auto i = start; i < end; i += PAGE_SIZE) {
  148. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  149. pte.set_writable(false);
  150. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  151. }
  152. dmesgln("Write-protected kernel symbols after init.");
  153. }
  154. IterationDecision MemoryManager::for_each_physical_memory_range(Function<IterationDecision(PhysicalMemoryRange const&)> callback)
  155. {
  156. VERIFY(!m_physical_memory_ranges.is_empty());
  157. for (auto& current_range : m_physical_memory_ranges) {
  158. IterationDecision decision = callback(current_range);
  159. if (decision != IterationDecision::Continue)
  160. return decision;
  161. }
  162. return IterationDecision::Continue;
  163. }
  164. UNMAP_AFTER_INIT void MemoryManager::register_reserved_ranges()
  165. {
  166. VERIFY(!m_physical_memory_ranges.is_empty());
  167. ContiguousReservedMemoryRange range;
  168. for (auto& current_range : m_physical_memory_ranges) {
  169. if (current_range.type != PhysicalMemoryRangeType::Reserved) {
  170. if (range.start.is_null())
  171. continue;
  172. m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, current_range.start.get() - range.start.get() });
  173. range.start.set((FlatPtr) nullptr);
  174. continue;
  175. }
  176. if (!range.start.is_null()) {
  177. continue;
  178. }
  179. range.start = current_range.start;
  180. }
  181. if (m_physical_memory_ranges.last().type != PhysicalMemoryRangeType::Reserved)
  182. return;
  183. if (range.start.is_null())
  184. return;
  185. m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, m_physical_memory_ranges.last().start.get() + m_physical_memory_ranges.last().length - range.start.get() });
  186. }
  187. bool MemoryManager::is_allowed_to_read_physical_memory_for_userspace(PhysicalAddress start_address, size_t read_length) const
  188. {
  189. // Note: Guard against overflow in case someone tries to mmap on the edge of
  190. // the RAM
  191. if (start_address.offset_addition_would_overflow(read_length))
  192. return false;
  193. auto end_address = start_address.offset(read_length);
  194. for (auto const& current_range : m_reserved_memory_ranges) {
  195. if (current_range.start > start_address)
  196. continue;
  197. if (current_range.start.offset(current_range.length) < end_address)
  198. continue;
  199. return true;
  200. }
  201. return false;
  202. }
  203. UNMAP_AFTER_INIT void MemoryManager::parse_memory_map()
  204. {
  205. // Register used memory regions that we know of.
  206. m_used_memory_ranges.ensure_capacity(4);
  207. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::LowMemory, PhysicalAddress(0x00000000), PhysicalAddress(1 * MiB) });
  208. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Kernel, PhysicalAddress(virtual_to_low_physical((FlatPtr)start_of_kernel_image)), PhysicalAddress(page_round_up(virtual_to_low_physical((FlatPtr)end_of_kernel_image)).release_value_but_fixme_should_propagate_errors()) });
  209. if (multiboot_flags & 0x4) {
  210. auto* bootmods_start = multiboot_copy_boot_modules_array;
  211. auto* bootmods_end = bootmods_start + multiboot_copy_boot_modules_count;
  212. for (auto* bootmod = bootmods_start; bootmod < bootmods_end; bootmod++) {
  213. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::BootModule, PhysicalAddress(bootmod->start), PhysicalAddress(bootmod->end) });
  214. }
  215. }
  216. auto* mmap_begin = multiboot_memory_map;
  217. auto* mmap_end = multiboot_memory_map + multiboot_memory_map_count;
  218. struct ContiguousPhysicalVirtualRange {
  219. PhysicalAddress lower;
  220. PhysicalAddress upper;
  221. };
  222. Vector<ContiguousPhysicalVirtualRange> contiguous_physical_ranges;
  223. for (auto* mmap = mmap_begin; mmap < mmap_end; mmap++) {
  224. // We have to copy these onto the stack, because we take a reference to these when printing them out,
  225. // and doing so on a packed struct field is UB.
  226. auto address = mmap->addr;
  227. auto length = mmap->len;
  228. ArmedScopeGuard write_back_guard = [&]() {
  229. mmap->addr = address;
  230. mmap->len = length;
  231. };
  232. dmesgln("MM: Multiboot mmap: address={:p}, length={}, type={}", address, length, mmap->type);
  233. auto start_address = PhysicalAddress(address);
  234. switch (mmap->type) {
  235. case (MULTIBOOT_MEMORY_AVAILABLE):
  236. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Usable, start_address, length });
  237. break;
  238. case (MULTIBOOT_MEMORY_RESERVED):
  239. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Reserved, start_address, length });
  240. break;
  241. case (MULTIBOOT_MEMORY_ACPI_RECLAIMABLE):
  242. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_Reclaimable, start_address, length });
  243. break;
  244. case (MULTIBOOT_MEMORY_NVS):
  245. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_NVS, start_address, length });
  246. break;
  247. case (MULTIBOOT_MEMORY_BADRAM):
  248. dmesgln("MM: Warning, detected bad memory range!");
  249. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::BadMemory, start_address, length });
  250. break;
  251. default:
  252. dbgln("MM: Unknown range!");
  253. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Unknown, start_address, length });
  254. break;
  255. }
  256. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  257. continue;
  258. // Fix up unaligned memory regions.
  259. auto diff = (FlatPtr)address % PAGE_SIZE;
  260. if (diff != 0) {
  261. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting {:p} by {} bytes", address, diff);
  262. diff = PAGE_SIZE - diff;
  263. address += diff;
  264. length -= diff;
  265. }
  266. if ((length % PAGE_SIZE) != 0) {
  267. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting length {} by {} bytes", length, length % PAGE_SIZE);
  268. length -= length % PAGE_SIZE;
  269. }
  270. if (length < PAGE_SIZE) {
  271. dmesgln("MM: Memory physical_region from bootloader is too small; we want >= {} bytes, but got {} bytes", PAGE_SIZE, length);
  272. continue;
  273. }
  274. for (PhysicalSize page_base = address; page_base <= (address + length); page_base += PAGE_SIZE) {
  275. auto addr = PhysicalAddress(page_base);
  276. // Skip used memory ranges.
  277. bool should_skip = false;
  278. for (auto& used_range : m_used_memory_ranges) {
  279. if (addr.get() >= used_range.start.get() && addr.get() <= used_range.end.get()) {
  280. should_skip = true;
  281. break;
  282. }
  283. }
  284. if (should_skip)
  285. continue;
  286. if (contiguous_physical_ranges.is_empty() || contiguous_physical_ranges.last().upper.offset(PAGE_SIZE) != addr) {
  287. contiguous_physical_ranges.append(ContiguousPhysicalVirtualRange {
  288. .lower = addr,
  289. .upper = addr,
  290. });
  291. } else {
  292. contiguous_physical_ranges.last().upper = addr;
  293. }
  294. }
  295. }
  296. for (auto& range : contiguous_physical_ranges) {
  297. m_physical_regions.append(PhysicalRegion::try_create(range.lower, range.upper).release_nonnull());
  298. }
  299. for (auto& region : m_physical_regions)
  300. m_system_memory_info.physical_pages += region.size();
  301. register_reserved_ranges();
  302. for (auto& range : m_reserved_memory_ranges) {
  303. dmesgln("MM: Contiguous reserved range from {}, length is {}", range.start, range.length);
  304. }
  305. initialize_physical_pages();
  306. VERIFY(m_system_memory_info.physical_pages > 0);
  307. // We start out with no committed pages
  308. m_system_memory_info.physical_pages_uncommitted = m_system_memory_info.physical_pages;
  309. for (auto& used_range : m_used_memory_ranges) {
  310. dmesgln("MM: {} range @ {} - {} (size {:#x})", UserMemoryRangeTypeNames[to_underlying(used_range.type)], used_range.start, used_range.end.offset(-1), used_range.end.as_ptr() - used_range.start.as_ptr());
  311. }
  312. for (auto& region : m_physical_regions) {
  313. dmesgln("MM: User physical region: {} - {} (size {:#x})", region.lower(), region.upper().offset(-1), PAGE_SIZE * region.size());
  314. region.initialize_zones();
  315. }
  316. }
  317. UNMAP_AFTER_INIT void MemoryManager::initialize_physical_pages()
  318. {
  319. // We assume that the physical page range is contiguous and doesn't contain huge gaps!
  320. PhysicalAddress highest_physical_address;
  321. for (auto& range : m_used_memory_ranges) {
  322. if (range.end.get() > highest_physical_address.get())
  323. highest_physical_address = range.end;
  324. }
  325. for (auto& region : m_physical_memory_ranges) {
  326. auto range_end = PhysicalAddress(region.start).offset(region.length);
  327. if (range_end.get() > highest_physical_address.get())
  328. highest_physical_address = range_end;
  329. }
  330. // Calculate how many total physical pages the array will have
  331. m_physical_page_entries_count = PhysicalAddress::physical_page_index(highest_physical_address.get()) + 1;
  332. VERIFY(m_physical_page_entries_count != 0);
  333. VERIFY(!Checked<decltype(m_physical_page_entries_count)>::multiplication_would_overflow(m_physical_page_entries_count, sizeof(PhysicalPageEntry)));
  334. // Calculate how many bytes the array will consume
  335. auto physical_page_array_size = m_physical_page_entries_count * sizeof(PhysicalPageEntry);
  336. auto physical_page_array_pages = page_round_up(physical_page_array_size).release_value_but_fixme_should_propagate_errors() / PAGE_SIZE;
  337. VERIFY(physical_page_array_pages * PAGE_SIZE >= physical_page_array_size);
  338. // Calculate how many page tables we will need to be able to map them all
  339. auto needed_page_table_count = (physical_page_array_pages + 512 - 1) / 512;
  340. auto physical_page_array_pages_and_page_tables_count = physical_page_array_pages + needed_page_table_count;
  341. // Now that we know how much memory we need for a contiguous array of PhysicalPage instances, find a memory region that can fit it
  342. PhysicalRegion* found_region { nullptr };
  343. Optional<size_t> found_region_index;
  344. for (size_t i = 0; i < m_physical_regions.size(); ++i) {
  345. auto& region = m_physical_regions[i];
  346. if (region.size() >= physical_page_array_pages_and_page_tables_count) {
  347. found_region = &region;
  348. found_region_index = i;
  349. break;
  350. }
  351. }
  352. if (!found_region) {
  353. dmesgln("MM: Need {} bytes for physical page management, but no memory region is large enough!", physical_page_array_pages_and_page_tables_count);
  354. VERIFY_NOT_REACHED();
  355. }
  356. VERIFY(m_system_memory_info.physical_pages >= physical_page_array_pages_and_page_tables_count);
  357. m_system_memory_info.physical_pages -= physical_page_array_pages_and_page_tables_count;
  358. if (found_region->size() == physical_page_array_pages_and_page_tables_count) {
  359. // We're stealing the entire region
  360. m_physical_pages_region = m_physical_regions.take(*found_region_index);
  361. } else {
  362. m_physical_pages_region = found_region->try_take_pages_from_beginning(physical_page_array_pages_and_page_tables_count);
  363. }
  364. m_used_memory_ranges.append({ UsedMemoryRangeType::PhysicalPages, m_physical_pages_region->lower(), m_physical_pages_region->upper() });
  365. // Create the bare page directory. This is not a fully constructed page directory and merely contains the allocators!
  366. m_kernel_page_directory = PageDirectory::must_create_kernel_page_directory();
  367. {
  368. // Carve out the whole page directory covering the kernel image to make MemoryManager::initialize_physical_pages() happy
  369. FlatPtr start_of_range = ((FlatPtr)start_of_kernel_image & ~(FlatPtr)0x1fffff);
  370. FlatPtr end_of_range = ((FlatPtr)end_of_kernel_image & ~(FlatPtr)0x1fffff) + 0x200000;
  371. MUST(m_region_tree.place_specifically(*MUST(Region::create_unbacked()).leak_ptr(), VirtualRange { VirtualAddress(start_of_range), end_of_range - start_of_range }));
  372. }
  373. // Allocate a virtual address range for our array
  374. // This looks awkward, but it basically creates a dummy region to occupy the address range permanently.
  375. auto& region = *MUST(Region::create_unbacked()).leak_ptr();
  376. MUST(m_region_tree.place_anywhere(region, RandomizeVirtualAddress::No, physical_page_array_pages * PAGE_SIZE));
  377. auto range = region.range();
  378. // Now that we have our special m_physical_pages_region region with enough pages to hold the entire array
  379. // try to map the entire region into kernel space so we always have it
  380. // We can't use ensure_pte here because it would try to allocate a PhysicalPage and we don't have the array
  381. // mapped yet so we can't create them
  382. SpinlockLocker lock(s_mm_lock);
  383. // Create page tables at the beginning of m_physical_pages_region, followed by the PhysicalPageEntry array
  384. auto page_tables_base = m_physical_pages_region->lower();
  385. auto physical_page_array_base = page_tables_base.offset(needed_page_table_count * PAGE_SIZE);
  386. auto physical_page_array_current_page = physical_page_array_base.get();
  387. auto virtual_page_array_base = range.base().get();
  388. auto virtual_page_array_current_page = virtual_page_array_base;
  389. for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
  390. auto virtual_page_base_for_this_pt = virtual_page_array_current_page;
  391. auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
  392. auto* pt = reinterpret_cast<PageTableEntry*>(quickmap_page(pt_paddr));
  393. __builtin_memset(pt, 0, PAGE_SIZE);
  394. for (size_t pte_index = 0; pte_index < PAGE_SIZE / sizeof(PageTableEntry); pte_index++) {
  395. auto& pte = pt[pte_index];
  396. pte.set_physical_page_base(physical_page_array_current_page);
  397. pte.set_user_allowed(false);
  398. pte.set_writable(true);
  399. if (Processor::current().has_nx())
  400. pte.set_execute_disabled(false);
  401. pte.set_global(true);
  402. pte.set_present(true);
  403. physical_page_array_current_page += PAGE_SIZE;
  404. virtual_page_array_current_page += PAGE_SIZE;
  405. }
  406. unquickmap_page();
  407. // Hook the page table into the kernel page directory
  408. u32 page_directory_index = (virtual_page_base_for_this_pt >> 21) & 0x1ff;
  409. auto* pd = reinterpret_cast<PageDirectoryEntry*>(quickmap_page(boot_pd_kernel));
  410. PageDirectoryEntry& pde = pd[page_directory_index];
  411. VERIFY(!pde.is_present()); // Nothing should be using this PD yet
  412. // We can't use ensure_pte quite yet!
  413. pde.set_page_table_base(pt_paddr.get());
  414. pde.set_user_allowed(false);
  415. pde.set_present(true);
  416. pde.set_writable(true);
  417. pde.set_global(true);
  418. unquickmap_page();
  419. flush_tlb_local(VirtualAddress(virtual_page_base_for_this_pt));
  420. }
  421. // We now have the entire PhysicalPageEntry array mapped!
  422. m_physical_page_entries = (PhysicalPageEntry*)range.base().get();
  423. for (size_t i = 0; i < m_physical_page_entries_count; i++)
  424. new (&m_physical_page_entries[i]) PageTableEntry();
  425. // Now we should be able to allocate PhysicalPage instances,
  426. // so finish setting up the kernel page directory
  427. m_kernel_page_directory->allocate_kernel_directory();
  428. // Now create legit PhysicalPage objects for the page tables we created.
  429. virtual_page_array_current_page = virtual_page_array_base;
  430. for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
  431. VERIFY(virtual_page_array_current_page <= range.end().get());
  432. auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
  433. auto physical_page_index = PhysicalAddress::physical_page_index(pt_paddr.get());
  434. auto& physical_page_entry = m_physical_page_entries[physical_page_index];
  435. auto physical_page = adopt_lock_ref(*new (&physical_page_entry.allocated.physical_page) PhysicalPage(MayReturnToFreeList::No));
  436. // NOTE: This leaked ref is matched by the unref in MemoryManager::release_pte()
  437. (void)physical_page.leak_ref();
  438. virtual_page_array_current_page += (PAGE_SIZE / sizeof(PageTableEntry)) * PAGE_SIZE;
  439. }
  440. dmesgln("MM: Physical page entries: {}", range);
  441. }
  442. PhysicalPageEntry& MemoryManager::get_physical_page_entry(PhysicalAddress physical_address)
  443. {
  444. VERIFY(m_physical_page_entries);
  445. auto physical_page_entry_index = PhysicalAddress::physical_page_index(physical_address.get());
  446. VERIFY(physical_page_entry_index < m_physical_page_entries_count);
  447. return m_physical_page_entries[physical_page_entry_index];
  448. }
  449. PhysicalAddress MemoryManager::get_physical_address(PhysicalPage const& physical_page)
  450. {
  451. PhysicalPageEntry const& physical_page_entry = *reinterpret_cast<PhysicalPageEntry const*>((u8 const*)&physical_page - __builtin_offsetof(PhysicalPageEntry, allocated.physical_page));
  452. VERIFY(m_physical_page_entries);
  453. size_t physical_page_entry_index = &physical_page_entry - m_physical_page_entries;
  454. VERIFY(physical_page_entry_index < m_physical_page_entries_count);
  455. return PhysicalAddress((PhysicalPtr)physical_page_entry_index * PAGE_SIZE);
  456. }
  457. PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr)
  458. {
  459. VERIFY_INTERRUPTS_DISABLED();
  460. VERIFY(page_directory.get_lock().is_locked_by_current_processor());
  461. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  462. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  463. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  464. auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
  465. PageDirectoryEntry const& pde = pd[page_directory_index];
  466. if (!pde.is_present())
  467. return nullptr;
  468. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  469. }
  470. PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  471. {
  472. VERIFY_INTERRUPTS_DISABLED();
  473. VERIFY(page_directory.get_lock().is_locked_by_current_processor());
  474. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  475. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  476. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  477. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  478. auto& pde = pd[page_directory_index];
  479. if (pde.is_present())
  480. return &quickmap_pt(PhysicalAddress(pde.page_table_base()))[page_table_index];
  481. bool did_purge = false;
  482. auto page_table_or_error = allocate_physical_page(ShouldZeroFill::Yes, &did_purge);
  483. if (page_table_or_error.is_error()) {
  484. dbgln("MM: Unable to allocate page table to map {}", vaddr);
  485. return nullptr;
  486. }
  487. auto page_table = page_table_or_error.release_value();
  488. if (did_purge) {
  489. // If any memory had to be purged, ensure_pte may have been called as part
  490. // of the purging process. So we need to re-map the pd in this case to ensure
  491. // we're writing to the correct underlying physical page
  492. pd = quickmap_pd(page_directory, page_directory_table_index);
  493. VERIFY(&pde == &pd[page_directory_index]); // Sanity check
  494. VERIFY(!pde.is_present()); // Should have not changed
  495. }
  496. pde.set_page_table_base(page_table->paddr().get());
  497. pde.set_user_allowed(true);
  498. pde.set_present(true);
  499. pde.set_writable(true);
  500. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  501. // NOTE: This leaked ref is matched by the unref in MemoryManager::release_pte()
  502. (void)page_table.leak_ref();
  503. return &quickmap_pt(PhysicalAddress(pde.page_table_base()))[page_table_index];
  504. }
  505. void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, IsLastPTERelease is_last_pte_release)
  506. {
  507. VERIFY_INTERRUPTS_DISABLED();
  508. VERIFY(page_directory.get_lock().is_locked_by_current_processor());
  509. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  510. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  511. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  512. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  513. PageDirectoryEntry& pde = pd[page_directory_index];
  514. if (pde.is_present()) {
  515. auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()));
  516. auto& pte = page_table[page_table_index];
  517. pte.clear();
  518. if (is_last_pte_release == IsLastPTERelease::Yes || page_table_index == 0x1ff) {
  519. // If this is the last PTE in a region or the last PTE in a page table then
  520. // check if we can also release the page table
  521. bool all_clear = true;
  522. for (u32 i = 0; i <= 0x1ff; i++) {
  523. if (!page_table[i].is_null()) {
  524. all_clear = false;
  525. break;
  526. }
  527. }
  528. if (all_clear) {
  529. get_physical_page_entry(PhysicalAddress { pde.page_table_base() }).allocated.physical_page.unref();
  530. pde.clear();
  531. }
  532. }
  533. }
  534. }
  535. UNMAP_AFTER_INIT void MemoryManager::initialize(u32 cpu)
  536. {
  537. ProcessorSpecific<MemoryManagerData>::initialize();
  538. if (cpu == 0) {
  539. new MemoryManager;
  540. kmalloc_enable_expand();
  541. }
  542. }
  543. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress address)
  544. {
  545. if (is_user_address(address))
  546. return nullptr;
  547. return MM.m_region_tree.find_region_containing(address);
  548. }
  549. Region* MemoryManager::find_user_region_from_vaddr_no_lock(AddressSpace& space, VirtualAddress vaddr)
  550. {
  551. VERIFY(space.get_lock().is_locked_by_current_processor());
  552. return space.find_region_containing({ vaddr, 1 });
  553. }
  554. Region* MemoryManager::find_user_region_from_vaddr(AddressSpace& space, VirtualAddress vaddr)
  555. {
  556. SpinlockLocker lock(space.get_lock());
  557. return find_user_region_from_vaddr_no_lock(space, vaddr);
  558. }
  559. void MemoryManager::validate_syscall_preconditions(AddressSpace& space, RegisterState const& regs)
  560. {
  561. // We take the space lock once here and then use the no_lock variants
  562. // to avoid excessive spinlock recursion in this extremely common path.
  563. SpinlockLocker lock(space.get_lock());
  564. auto unlock_and_handle_crash = [&lock, &regs](char const* description, int signal) {
  565. lock.unlock();
  566. handle_crash(regs, description, signal);
  567. };
  568. {
  569. VirtualAddress userspace_sp = VirtualAddress { regs.userspace_sp() };
  570. if (!MM.validate_user_stack_no_lock(space, userspace_sp)) {
  571. dbgln("Invalid stack pointer: {}", userspace_sp);
  572. return unlock_and_handle_crash("Bad stack on syscall entry", SIGSEGV);
  573. }
  574. }
  575. {
  576. VirtualAddress ip = VirtualAddress { regs.ip() };
  577. auto* calling_region = MM.find_user_region_from_vaddr_no_lock(space, ip);
  578. if (!calling_region) {
  579. dbgln("Syscall from {:p} which has no associated region", ip);
  580. return unlock_and_handle_crash("Syscall from unknown region", SIGSEGV);
  581. }
  582. if (calling_region->is_writable()) {
  583. dbgln("Syscall from writable memory at {:p}", ip);
  584. return unlock_and_handle_crash("Syscall from writable memory", SIGSEGV);
  585. }
  586. if (space.enforces_syscall_regions() && !calling_region->is_syscall_region()) {
  587. dbgln("Syscall from non-syscall region");
  588. return unlock_and_handle_crash("Syscall from non-syscall region", SIGSEGV);
  589. }
  590. }
  591. }
  592. Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr)
  593. {
  594. if (auto* region = kernel_region_from_vaddr(vaddr))
  595. return region;
  596. auto page_directory = PageDirectory::find_current();
  597. if (!page_directory)
  598. return nullptr;
  599. VERIFY(page_directory->address_space());
  600. return find_user_region_from_vaddr(*page_directory->address_space(), vaddr);
  601. }
  602. PageFaultResponse MemoryManager::handle_page_fault(PageFault const& fault)
  603. {
  604. auto faulted_in_range = [&fault](auto const* start, auto const* end) {
  605. return fault.vaddr() >= VirtualAddress { start } && fault.vaddr() < VirtualAddress { end };
  606. };
  607. if (faulted_in_range(&start_of_ro_after_init, &end_of_ro_after_init))
  608. PANIC("Attempt to write into READONLY_AFTER_INIT section");
  609. if (faulted_in_range(&start_of_unmap_after_init, &end_of_unmap_after_init)) {
  610. auto const* kernel_symbol = symbolicate_kernel_address(fault.vaddr().get());
  611. PANIC("Attempt to access UNMAP_AFTER_INIT section ({:p}: {})", fault.vaddr(), kernel_symbol ? kernel_symbol->name : "(Unknown)");
  612. }
  613. if (faulted_in_range(&start_of_kernel_ksyms, &end_of_kernel_ksyms))
  614. PANIC("Attempt to access KSYMS section");
  615. if (Processor::current_in_irq()) {
  616. dbgln("CPU[{}] BUG! Page fault while handling IRQ! code={}, vaddr={}, irq level: {}",
  617. Processor::current_id(), fault.code(), fault.vaddr(), Processor::current_in_irq());
  618. dump_kernel_regions();
  619. return PageFaultResponse::ShouldCrash;
  620. }
  621. dbgln_if(PAGE_FAULT_DEBUG, "MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::current_id(), fault.code(), fault.vaddr());
  622. auto* region = find_region_from_vaddr(fault.vaddr());
  623. if (!region) {
  624. return PageFaultResponse::ShouldCrash;
  625. }
  626. return region->handle_fault(fault);
  627. }
  628. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_contiguous_kernel_region(size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  629. {
  630. VERIFY(!(size % PAGE_SIZE));
  631. OwnPtr<KString> name_kstring;
  632. if (!name.is_null())
  633. name_kstring = TRY(KString::try_create(name));
  634. auto vmobject = TRY(AnonymousVMObject::try_create_physically_contiguous_with_size(size));
  635. auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
  636. TRY(m_region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size));
  637. TRY(region->map(kernel_page_directory()));
  638. return region;
  639. }
  640. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_page(StringView name, Memory::Region::Access access, LockRefPtr<Memory::PhysicalPage>& dma_buffer_page)
  641. {
  642. dma_buffer_page = TRY(allocate_physical_page());
  643. // Do not enable Cache for this region as physical memory transfers are performed (Most architectures have this behaviour by default)
  644. return allocate_kernel_region(dma_buffer_page->paddr(), PAGE_SIZE, name, access, Region::Cacheable::No);
  645. }
  646. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_page(StringView name, Memory::Region::Access access)
  647. {
  648. LockRefPtr<Memory::PhysicalPage> dma_buffer_page;
  649. return allocate_dma_buffer_page(name, access, dma_buffer_page);
  650. }
  651. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_pages(size_t size, StringView name, Memory::Region::Access access, NonnullLockRefPtrVector<Memory::PhysicalPage>& dma_buffer_pages)
  652. {
  653. VERIFY(!(size % PAGE_SIZE));
  654. dma_buffer_pages = TRY(allocate_contiguous_physical_pages(size));
  655. // Do not enable Cache for this region as physical memory transfers are performed (Most architectures have this behaviour by default)
  656. return allocate_kernel_region(dma_buffer_pages.first().paddr(), size, name, access, Region::Cacheable::No);
  657. }
  658. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_pages(size_t size, StringView name, Memory::Region::Access access)
  659. {
  660. VERIFY(!(size % PAGE_SIZE));
  661. NonnullLockRefPtrVector<Memory::PhysicalPage> dma_buffer_pages;
  662. return allocate_dma_buffer_pages(size, name, access, dma_buffer_pages);
  663. }
  664. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region(size_t size, StringView name, Region::Access access, AllocationStrategy strategy, Region::Cacheable cacheable)
  665. {
  666. VERIFY(!(size % PAGE_SIZE));
  667. OwnPtr<KString> name_kstring;
  668. if (!name.is_null())
  669. name_kstring = TRY(KString::try_create(name));
  670. auto vmobject = TRY(AnonymousVMObject::try_create_with_size(size, strategy));
  671. auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
  672. TRY(m_region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size));
  673. TRY(region->map(kernel_page_directory()));
  674. return region;
  675. }
  676. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  677. {
  678. VERIFY(!(size % PAGE_SIZE));
  679. auto vmobject = TRY(AnonymousVMObject::try_create_for_physical_range(paddr, size));
  680. OwnPtr<KString> name_kstring;
  681. if (!name.is_null())
  682. name_kstring = TRY(KString::try_create(name));
  683. auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
  684. TRY(m_region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size, PAGE_SIZE));
  685. TRY(region->map(kernel_page_directory()));
  686. return region;
  687. }
  688. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  689. {
  690. VERIFY(!(size % PAGE_SIZE));
  691. OwnPtr<KString> name_kstring;
  692. if (!name.is_null())
  693. name_kstring = TRY(KString::try_create(name));
  694. auto region = TRY(Region::create_unplaced(vmobject, 0, move(name_kstring), access, cacheable));
  695. TRY(m_region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size));
  696. TRY(region->map(kernel_page_directory()));
  697. return region;
  698. }
  699. ErrorOr<CommittedPhysicalPageSet> MemoryManager::commit_physical_pages(size_t page_count)
  700. {
  701. VERIFY(page_count > 0);
  702. SpinlockLocker lock(s_mm_lock);
  703. if (m_system_memory_info.physical_pages_uncommitted < page_count) {
  704. dbgln("MM: Unable to commit {} pages, have only {}", page_count, m_system_memory_info.physical_pages_uncommitted);
  705. Process::for_each([&](Process const& process) {
  706. dbgln("{}({}) resident:{}, shared:{}, virtual:{}",
  707. process.name(),
  708. process.pid(),
  709. process.address_space().amount_resident() / PAGE_SIZE,
  710. process.address_space().amount_shared() / PAGE_SIZE,
  711. process.address_space().amount_virtual() / PAGE_SIZE);
  712. return IterationDecision::Continue;
  713. });
  714. return ENOMEM;
  715. }
  716. m_system_memory_info.physical_pages_uncommitted -= page_count;
  717. m_system_memory_info.physical_pages_committed += page_count;
  718. return CommittedPhysicalPageSet { {}, page_count };
  719. }
  720. void MemoryManager::uncommit_physical_pages(Badge<CommittedPhysicalPageSet>, size_t page_count)
  721. {
  722. VERIFY(page_count > 0);
  723. SpinlockLocker lock(s_mm_lock);
  724. VERIFY(m_system_memory_info.physical_pages_committed >= page_count);
  725. m_system_memory_info.physical_pages_uncommitted += page_count;
  726. m_system_memory_info.physical_pages_committed -= page_count;
  727. }
  728. void MemoryManager::deallocate_physical_page(PhysicalAddress paddr)
  729. {
  730. SpinlockLocker lock(s_mm_lock);
  731. // Are we returning a user page?
  732. for (auto& region : m_physical_regions) {
  733. if (!region.contains(paddr))
  734. continue;
  735. region.return_page(paddr);
  736. --m_system_memory_info.physical_pages_used;
  737. // Always return pages to the uncommitted pool. Pages that were
  738. // committed and allocated are only freed upon request. Once
  739. // returned there is no guarantee being able to get them back.
  740. ++m_system_memory_info.physical_pages_uncommitted;
  741. return;
  742. }
  743. PANIC("MM: deallocate_physical_page couldn't figure out region for page @ {}", paddr);
  744. }
  745. LockRefPtr<PhysicalPage> MemoryManager::find_free_physical_page(bool committed)
  746. {
  747. VERIFY(s_mm_lock.is_locked());
  748. LockRefPtr<PhysicalPage> page;
  749. if (committed) {
  750. // Draw from the committed pages pool. We should always have these pages available
  751. VERIFY(m_system_memory_info.physical_pages_committed > 0);
  752. m_system_memory_info.physical_pages_committed--;
  753. } else {
  754. // We need to make sure we don't touch pages that we have committed to
  755. if (m_system_memory_info.physical_pages_uncommitted == 0)
  756. return {};
  757. m_system_memory_info.physical_pages_uncommitted--;
  758. }
  759. for (auto& region : m_physical_regions) {
  760. page = region.take_free_page();
  761. if (!page.is_null()) {
  762. ++m_system_memory_info.physical_pages_used;
  763. break;
  764. }
  765. }
  766. VERIFY(!page.is_null());
  767. return page;
  768. }
  769. NonnullLockRefPtr<PhysicalPage> MemoryManager::allocate_committed_physical_page(Badge<CommittedPhysicalPageSet>, ShouldZeroFill should_zero_fill)
  770. {
  771. SpinlockLocker lock(s_mm_lock);
  772. auto page = find_free_physical_page(true);
  773. if (should_zero_fill == ShouldZeroFill::Yes) {
  774. auto* ptr = quickmap_page(*page);
  775. memset(ptr, 0, PAGE_SIZE);
  776. unquickmap_page();
  777. }
  778. return page.release_nonnull();
  779. }
  780. ErrorOr<NonnullLockRefPtr<PhysicalPage>> MemoryManager::allocate_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge)
  781. {
  782. SpinlockLocker lock(s_mm_lock);
  783. auto page = find_free_physical_page(false);
  784. bool purged_pages = false;
  785. if (!page) {
  786. // We didn't have a single free physical page. Let's try to free something up!
  787. // First, we look for a purgeable VMObject in the volatile state.
  788. for_each_vmobject([&](auto& vmobject) {
  789. if (!vmobject.is_anonymous())
  790. return IterationDecision::Continue;
  791. auto& anonymous_vmobject = static_cast<AnonymousVMObject&>(vmobject);
  792. if (!anonymous_vmobject.is_purgeable() || !anonymous_vmobject.is_volatile())
  793. return IterationDecision::Continue;
  794. if (auto purged_page_count = anonymous_vmobject.purge()) {
  795. dbgln("MM: Purge saved the day! Purged {} pages from AnonymousVMObject", purged_page_count);
  796. page = find_free_physical_page(false);
  797. purged_pages = true;
  798. VERIFY(page);
  799. return IterationDecision::Break;
  800. }
  801. return IterationDecision::Continue;
  802. });
  803. }
  804. if (!page) {
  805. // Second, we look for a file-backed VMObject with clean pages.
  806. for_each_vmobject([&](auto& vmobject) {
  807. if (!vmobject.is_inode())
  808. return IterationDecision::Continue;
  809. auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject);
  810. if (auto released_page_count = inode_vmobject.try_release_clean_pages(1)) {
  811. dbgln("MM: Clean inode release saved the day! Released {} pages from InodeVMObject", released_page_count);
  812. page = find_free_physical_page(false);
  813. VERIFY(page);
  814. return IterationDecision::Break;
  815. }
  816. return IterationDecision::Continue;
  817. });
  818. }
  819. if (!page) {
  820. dmesgln("MM: no physical pages available");
  821. return ENOMEM;
  822. }
  823. if (should_zero_fill == ShouldZeroFill::Yes) {
  824. auto* ptr = quickmap_page(*page);
  825. memset(ptr, 0, PAGE_SIZE);
  826. unquickmap_page();
  827. }
  828. if (did_purge)
  829. *did_purge = purged_pages;
  830. return page.release_nonnull();
  831. }
  832. ErrorOr<NonnullLockRefPtrVector<PhysicalPage>> MemoryManager::allocate_contiguous_physical_pages(size_t size)
  833. {
  834. VERIFY(!(size % PAGE_SIZE));
  835. SpinlockLocker mm_lock(s_mm_lock);
  836. size_t page_count = ceil_div(size, static_cast<size_t>(PAGE_SIZE));
  837. // We need to make sure we don't touch pages that we have committed to
  838. if (m_system_memory_info.physical_pages_uncommitted < page_count)
  839. return ENOMEM;
  840. for (auto& physical_region : m_physical_regions) {
  841. auto physical_pages = physical_region.take_contiguous_free_pages(page_count);
  842. if (!physical_pages.is_empty()) {
  843. // Note: The locking semantics are a bit awkward here, the region destructor can
  844. // deadlock due to invalid lock ordering if we still hold the s_mm_lock when the
  845. // region is constructed or destructed. Since we are now done enumerating anyway,
  846. // it's safe to just unlock here and have MM.allocate_kernel_region do the right thing.
  847. mm_lock.unlock();
  848. {
  849. auto cleanup_region = TRY(MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * page_count, "MemoryManager Allocation Sanitization"sv, Region::Access::Read | Region::Access::Write));
  850. memset(cleanup_region->vaddr().as_ptr(), 0, PAGE_SIZE * page_count);
  851. }
  852. m_system_memory_info.physical_pages_uncommitted -= page_count;
  853. m_system_memory_info.physical_pages_used += page_count;
  854. return physical_pages;
  855. }
  856. }
  857. dmesgln("MM: no contiguous physical pages available");
  858. return ENOMEM;
  859. }
  860. void MemoryManager::enter_process_address_space(Process& process)
  861. {
  862. enter_address_space(process.address_space());
  863. }
  864. void MemoryManager::enter_address_space(AddressSpace& space)
  865. {
  866. auto* current_thread = Thread::current();
  867. VERIFY(current_thread != nullptr);
  868. SpinlockLocker lock(s_mm_lock);
  869. current_thread->regs().cr3 = space.page_directory().cr3();
  870. activate_page_directory(space.page_directory(), current_thread);
  871. }
  872. void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
  873. {
  874. Processor::flush_tlb_local(vaddr, page_count);
  875. }
  876. void MemoryManager::flush_tlb(PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count)
  877. {
  878. Processor::flush_tlb(page_directory, vaddr, page_count);
  879. }
  880. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  881. {
  882. VERIFY_INTERRUPTS_DISABLED();
  883. VirtualAddress vaddr(KERNEL_QUICKMAP_PD_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
  884. size_t pte_index = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  885. auto& pte = boot_pd_kernel_pt1023[pte_index];
  886. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  887. if (pte.physical_page_base() != pd_paddr.get()) {
  888. pte.set_physical_page_base(pd_paddr.get());
  889. pte.set_present(true);
  890. pte.set_writable(true);
  891. pte.set_user_allowed(false);
  892. flush_tlb_local(vaddr);
  893. }
  894. return (PageDirectoryEntry*)vaddr.get();
  895. }
  896. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  897. {
  898. VERIFY_INTERRUPTS_DISABLED();
  899. VirtualAddress vaddr(KERNEL_QUICKMAP_PT_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
  900. size_t pte_index = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  901. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_index];
  902. if (pte.physical_page_base() != pt_paddr.get()) {
  903. pte.set_physical_page_base(pt_paddr.get());
  904. pte.set_present(true);
  905. pte.set_writable(true);
  906. pte.set_user_allowed(false);
  907. flush_tlb_local(vaddr);
  908. }
  909. return (PageTableEntry*)vaddr.get();
  910. }
  911. u8* MemoryManager::quickmap_page(PhysicalAddress const& physical_address)
  912. {
  913. VERIFY_INTERRUPTS_DISABLED();
  914. VERIFY(s_mm_lock.is_locked_by_current_processor());
  915. auto& mm_data = get_data();
  916. mm_data.m_quickmap_prev_flags = mm_data.m_quickmap_in_use.lock();
  917. VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
  918. u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  919. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
  920. if (pte.physical_page_base() != physical_address.get()) {
  921. pte.set_physical_page_base(physical_address.get());
  922. pte.set_present(true);
  923. pte.set_writable(true);
  924. pte.set_user_allowed(false);
  925. flush_tlb_local(vaddr);
  926. }
  927. return vaddr.as_ptr();
  928. }
  929. void MemoryManager::unquickmap_page()
  930. {
  931. VERIFY_INTERRUPTS_DISABLED();
  932. VERIFY(s_mm_lock.is_locked_by_current_processor());
  933. auto& mm_data = get_data();
  934. VERIFY(mm_data.m_quickmap_in_use.is_locked());
  935. VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
  936. u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  937. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
  938. pte.clear();
  939. flush_tlb_local(vaddr);
  940. mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_prev_flags);
  941. }
  942. bool MemoryManager::validate_user_stack_no_lock(AddressSpace& space, VirtualAddress vaddr) const
  943. {
  944. VERIFY(space.get_lock().is_locked_by_current_processor());
  945. if (!is_user_address(vaddr))
  946. return false;
  947. auto* region = find_user_region_from_vaddr_no_lock(space, vaddr);
  948. return region && region->is_user() && region->is_stack();
  949. }
  950. bool MemoryManager::validate_user_stack(AddressSpace& space, VirtualAddress vaddr) const
  951. {
  952. SpinlockLocker lock(space.get_lock());
  953. return validate_user_stack_no_lock(space, vaddr);
  954. }
  955. void MemoryManager::unregister_kernel_region(Region& region)
  956. {
  957. VERIFY(region.is_kernel());
  958. m_region_tree.remove(region);
  959. }
  960. void MemoryManager::dump_kernel_regions()
  961. {
  962. dbgln("Kernel regions:");
  963. #if ARCH(I386)
  964. char const* addr_padding = "";
  965. #else
  966. char const* addr_padding = " ";
  967. #endif
  968. dbgln("BEGIN{} END{} SIZE{} ACCESS NAME",
  969. addr_padding, addr_padding, addr_padding);
  970. SpinlockLocker lock(s_mm_lock);
  971. SpinlockLocker tree_locker(m_region_tree.get_lock());
  972. for (auto const& region : m_region_tree.regions()) {
  973. dbgln("{:p} -- {:p} {:p} {:c}{:c}{:c}{:c}{:c}{:c} {}",
  974. region.vaddr().get(),
  975. region.vaddr().offset(region.size() - 1).get(),
  976. region.size(),
  977. region.is_readable() ? 'R' : ' ',
  978. region.is_writable() ? 'W' : ' ',
  979. region.is_executable() ? 'X' : ' ',
  980. region.is_shared() ? 'S' : ' ',
  981. region.is_stack() ? 'T' : ' ',
  982. region.is_syscall_region() ? 'C' : ' ',
  983. region.name());
  984. }
  985. }
  986. void MemoryManager::set_page_writable_direct(VirtualAddress vaddr, bool writable)
  987. {
  988. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  989. auto* pte = ensure_pte(kernel_page_directory(), vaddr);
  990. VERIFY(pte);
  991. if (pte->is_writable() == writable)
  992. return;
  993. pte->set_writable(writable);
  994. flush_tlb(&kernel_page_directory(), vaddr);
  995. }
  996. CommittedPhysicalPageSet::~CommittedPhysicalPageSet()
  997. {
  998. if (m_page_count)
  999. MM.uncommit_physical_pages({}, m_page_count);
  1000. }
  1001. NonnullLockRefPtr<PhysicalPage> CommittedPhysicalPageSet::take_one()
  1002. {
  1003. VERIFY(m_page_count > 0);
  1004. --m_page_count;
  1005. return MM.allocate_committed_physical_page({}, MemoryManager::ShouldZeroFill::Yes);
  1006. }
  1007. void CommittedPhysicalPageSet::uncommit_one()
  1008. {
  1009. VERIFY(m_page_count > 0);
  1010. --m_page_count;
  1011. MM.uncommit_physical_pages({}, 1);
  1012. }
  1013. void MemoryManager::copy_physical_page(PhysicalPage& physical_page, u8 page_buffer[PAGE_SIZE])
  1014. {
  1015. SpinlockLocker locker(s_mm_lock);
  1016. auto* quickmapped_page = quickmap_page(physical_page);
  1017. memcpy(page_buffer, quickmapped_page, PAGE_SIZE);
  1018. unquickmap_page();
  1019. }
  1020. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::create_identity_mapped_region(PhysicalAddress address, size_t size)
  1021. {
  1022. auto vmobject = TRY(Memory::AnonymousVMObject::try_create_for_physical_range(address, size));
  1023. auto region = TRY(Memory::Region::create_unplaced(move(vmobject), 0, {}, Memory::Region::Access::ReadWriteExecute));
  1024. Memory::VirtualRange range { VirtualAddress { (FlatPtr)address.get() }, size };
  1025. region->m_range = range;
  1026. TRY(region->map(MM.kernel_page_directory()));
  1027. return region;
  1028. }
  1029. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_unbacked_region_anywhere(size_t size, size_t alignment)
  1030. {
  1031. auto region = TRY(Region::create_unbacked());
  1032. TRY(m_region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size, alignment));
  1033. return region;
  1034. }
  1035. }