Region.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Memory.h>
  7. #include <AK/StringView.h>
  8. #include <Kernel/Arch/x86/PageFault.h>
  9. #include <Kernel/Debug.h>
  10. #include <Kernel/FileSystem/Inode.h>
  11. #include <Kernel/Memory/AnonymousVMObject.h>
  12. #include <Kernel/Memory/MemoryManager.h>
  13. #include <Kernel/Memory/PageDirectory.h>
  14. #include <Kernel/Memory/Region.h>
  15. #include <Kernel/Memory/SharedInodeVMObject.h>
  16. #include <Kernel/Panic.h>
  17. #include <Kernel/Process.h>
  18. #include <Kernel/Scheduler.h>
  19. #include <Kernel/Thread.h>
  20. namespace Kernel::Memory {
  21. Region::Region(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  22. : m_range(range)
  23. , m_offset_in_vmobject(offset_in_vmobject)
  24. , m_vmobject(move(vmobject))
  25. , m_name(move(name))
  26. , m_access(access | ((access & 0x7) << 4))
  27. , m_shared(shared)
  28. , m_cacheable(cacheable == Cacheable::Yes)
  29. {
  30. VERIFY(m_range.base().is_page_aligned());
  31. VERIFY(m_range.size());
  32. VERIFY((m_range.size() % PAGE_SIZE) == 0);
  33. m_vmobject->add_region(*this);
  34. if (is_kernel())
  35. MM.register_kernel_region(*this);
  36. }
  37. Region::~Region()
  38. {
  39. if (is_writable() && vmobject().is_shared_inode()) {
  40. // FIXME: This is very aggressive. Find a way to do less work!
  41. (void)static_cast<SharedInodeVMObject&>(vmobject()).sync();
  42. }
  43. m_vmobject->remove_region(*this);
  44. if (is_kernel())
  45. MM.unregister_kernel_region(*this);
  46. if (m_page_directory) {
  47. SpinlockLocker pd_locker(m_page_directory->get_lock());
  48. if (!is_readable() && !is_writable() && !is_executable()) {
  49. // If the region is "PROT_NONE", we didn't map it in the first place,
  50. // so all we need to do here is deallocate the VM.
  51. m_page_directory->range_allocator().deallocate(range());
  52. } else {
  53. SpinlockLocker mm_locker(s_mm_lock);
  54. unmap_with_locks_held(ShouldDeallocateVirtualRange::Yes, ShouldFlushTLB::Yes, pd_locker, mm_locker);
  55. VERIFY(!m_page_directory);
  56. }
  57. }
  58. }
  59. ErrorOr<NonnullOwnPtr<Region>> Region::try_clone()
  60. {
  61. VERIFY(Process::has_current());
  62. if (m_shared) {
  63. VERIFY(!m_stack);
  64. if (vmobject().is_inode())
  65. VERIFY(vmobject().is_shared_inode());
  66. // Create a new region backed by the same VMObject.
  67. OwnPtr<KString> region_name;
  68. if (m_name)
  69. region_name = TRY(m_name->try_clone());
  70. auto region = TRY(Region::try_create_user_accessible(
  71. m_range, m_vmobject, m_offset_in_vmobject, move(region_name), access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared));
  72. region->set_mmap(m_mmap);
  73. region->set_shared(m_shared);
  74. region->set_syscall_region(is_syscall_region());
  75. return region;
  76. }
  77. if (vmobject().is_inode())
  78. VERIFY(vmobject().is_private_inode());
  79. auto vmobject_clone = TRY(vmobject().try_clone());
  80. // Set up a COW region. The parent (this) region becomes COW as well!
  81. if (is_writable())
  82. remap();
  83. OwnPtr<KString> clone_region_name;
  84. if (m_name)
  85. clone_region_name = TRY(m_name->try_clone());
  86. auto clone_region = TRY(Region::try_create_user_accessible(
  87. m_range, move(vmobject_clone), m_offset_in_vmobject, move(clone_region_name), access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared));
  88. if (m_stack) {
  89. VERIFY(is_readable());
  90. VERIFY(is_writable());
  91. VERIFY(vmobject().is_anonymous());
  92. clone_region->set_stack(true);
  93. }
  94. clone_region->set_syscall_region(is_syscall_region());
  95. clone_region->set_mmap(m_mmap);
  96. return clone_region;
  97. }
  98. void Region::set_vmobject(NonnullRefPtr<VMObject>&& obj)
  99. {
  100. if (m_vmobject.ptr() == obj.ptr())
  101. return;
  102. m_vmobject->remove_region(*this);
  103. m_vmobject = move(obj);
  104. m_vmobject->add_region(*this);
  105. }
  106. size_t Region::cow_pages() const
  107. {
  108. if (!vmobject().is_anonymous())
  109. return 0;
  110. return static_cast<AnonymousVMObject const&>(vmobject()).cow_pages();
  111. }
  112. size_t Region::amount_dirty() const
  113. {
  114. if (!vmobject().is_inode())
  115. return amount_resident();
  116. return static_cast<InodeVMObject const&>(vmobject()).amount_dirty();
  117. }
  118. size_t Region::amount_resident() const
  119. {
  120. size_t bytes = 0;
  121. for (size_t i = 0; i < page_count(); ++i) {
  122. auto const* page = physical_page(i);
  123. if (page && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  124. bytes += PAGE_SIZE;
  125. }
  126. return bytes;
  127. }
  128. size_t Region::amount_shared() const
  129. {
  130. size_t bytes = 0;
  131. for (size_t i = 0; i < page_count(); ++i) {
  132. auto const* page = physical_page(i);
  133. if (page && page->ref_count() > 1 && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  134. bytes += PAGE_SIZE;
  135. }
  136. return bytes;
  137. }
  138. ErrorOr<NonnullOwnPtr<Region>> Region::try_create_user_accessible(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  139. {
  140. return adopt_nonnull_own_or_enomem(new (nothrow) Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, shared));
  141. }
  142. ErrorOr<NonnullOwnPtr<Region>> Region::try_create_kernel_only(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable)
  143. {
  144. return adopt_nonnull_own_or_enomem(new (nothrow) Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, false));
  145. }
  146. bool Region::should_cow(size_t page_index) const
  147. {
  148. if (!vmobject().is_anonymous())
  149. return false;
  150. return static_cast<AnonymousVMObject const&>(vmobject()).should_cow(first_page_index() + page_index, m_shared);
  151. }
  152. void Region::set_should_cow(size_t page_index, bool cow)
  153. {
  154. VERIFY(!m_shared);
  155. if (vmobject().is_anonymous())
  156. static_cast<AnonymousVMObject&>(vmobject()).set_should_cow(first_page_index() + page_index, cow);
  157. }
  158. bool Region::map_individual_page_impl(size_t page_index)
  159. {
  160. VERIFY(m_page_directory->get_lock().is_locked_by_current_processor());
  161. VERIFY(s_mm_lock.is_locked_by_current_processor());
  162. auto page_vaddr = vaddr_from_page_index(page_index);
  163. bool user_allowed = page_vaddr.get() >= USER_RANGE_BASE && is_user_address(page_vaddr);
  164. if (is_mmap() && !user_allowed) {
  165. PANIC("About to map mmap'ed page at a kernel address");
  166. }
  167. auto* pte = MM.ensure_pte(*m_page_directory, page_vaddr);
  168. if (!pte)
  169. return false;
  170. auto* page = physical_page(page_index);
  171. if (!page || (!is_readable() && !is_writable())) {
  172. pte->clear();
  173. } else {
  174. pte->set_cache_disabled(!m_cacheable);
  175. pte->set_physical_page_base(page->paddr().get());
  176. pte->set_present(true);
  177. if (page->is_shared_zero_page() || page->is_lazy_committed_page() || should_cow(page_index))
  178. pte->set_writable(false);
  179. else
  180. pte->set_writable(is_writable());
  181. if (Processor::current().has_feature(CPUFeature::NX))
  182. pte->set_execute_disabled(!is_executable());
  183. if (Processor::current().has_feature(CPUFeature::PAT))
  184. pte->set_pat(is_write_combine());
  185. pte->set_user_allowed(user_allowed);
  186. }
  187. return true;
  188. }
  189. bool Region::do_remap_vmobject_page(size_t page_index, bool with_flush)
  190. {
  191. if (!m_page_directory)
  192. return true; // not an error, region may have not yet mapped it
  193. if (!translate_vmobject_page(page_index))
  194. return true; // not an error, region doesn't map this page
  195. SpinlockLocker page_lock(m_page_directory->get_lock());
  196. SpinlockLocker lock(s_mm_lock);
  197. VERIFY(physical_page(page_index));
  198. bool success = map_individual_page_impl(page_index);
  199. if (with_flush)
  200. MemoryManager::flush_tlb(m_page_directory, vaddr_from_page_index(page_index));
  201. return success;
  202. }
  203. bool Region::remap_vmobject_page(size_t page_index, bool with_flush)
  204. {
  205. auto& vmobject = this->vmobject();
  206. bool success = true;
  207. SpinlockLocker lock(vmobject.m_lock);
  208. vmobject.for_each_region([&](auto& region) {
  209. if (!region.do_remap_vmobject_page(page_index, with_flush))
  210. success = false;
  211. });
  212. return success;
  213. }
  214. void Region::unmap(ShouldDeallocateVirtualRange should_deallocate_range, ShouldFlushTLB should_flush_tlb)
  215. {
  216. if (!m_page_directory)
  217. return;
  218. SpinlockLocker pd_locker(m_page_directory->get_lock());
  219. SpinlockLocker mm_locker(s_mm_lock);
  220. unmap_with_locks_held(should_deallocate_range, should_flush_tlb, pd_locker, mm_locker);
  221. }
  222. void Region::unmap_with_locks_held(ShouldDeallocateVirtualRange deallocate_range, ShouldFlushTLB should_flush_tlb, SpinlockLocker<RecursiveSpinlock>&, SpinlockLocker<RecursiveSpinlock>&)
  223. {
  224. if (!m_page_directory)
  225. return;
  226. size_t count = page_count();
  227. for (size_t i = 0; i < count; ++i) {
  228. auto vaddr = vaddr_from_page_index(i);
  229. MM.release_pte(*m_page_directory, vaddr, i == count - 1 ? MemoryManager::IsLastPTERelease::Yes : MemoryManager::IsLastPTERelease::No);
  230. }
  231. if (should_flush_tlb == ShouldFlushTLB::Yes)
  232. MemoryManager::flush_tlb(m_page_directory, vaddr(), page_count());
  233. if (deallocate_range == ShouldDeallocateVirtualRange::Yes) {
  234. m_page_directory->range_allocator().deallocate(range());
  235. }
  236. m_page_directory = nullptr;
  237. }
  238. void Region::set_page_directory(PageDirectory& page_directory)
  239. {
  240. VERIFY(!m_page_directory || m_page_directory == &page_directory);
  241. VERIFY(s_mm_lock.is_locked_by_current_processor());
  242. m_page_directory = page_directory;
  243. }
  244. ErrorOr<void> Region::map(PageDirectory& page_directory, ShouldFlushTLB should_flush_tlb)
  245. {
  246. SpinlockLocker page_lock(page_directory.get_lock());
  247. SpinlockLocker lock(s_mm_lock);
  248. // FIXME: Find a better place for this sanity check(?)
  249. if (is_user() && !is_shared()) {
  250. VERIFY(!vmobject().is_shared_inode());
  251. }
  252. set_page_directory(page_directory);
  253. size_t page_index = 0;
  254. while (page_index < page_count()) {
  255. if (!map_individual_page_impl(page_index))
  256. break;
  257. ++page_index;
  258. }
  259. if (page_index > 0) {
  260. if (should_flush_tlb == ShouldFlushTLB::Yes)
  261. MemoryManager::flush_tlb(m_page_directory, vaddr(), page_index);
  262. if (page_index == page_count())
  263. return {};
  264. }
  265. return ENOMEM;
  266. }
  267. void Region::remap()
  268. {
  269. VERIFY(m_page_directory);
  270. auto result = map(*m_page_directory);
  271. if (result.is_error())
  272. TODO();
  273. }
  274. ErrorOr<void> Region::set_write_combine(bool enable)
  275. {
  276. if (enable && !Processor::current().has_feature(CPUFeature::PAT)) {
  277. dbgln("PAT is not supported, implement MTRR fallback if available");
  278. return Error::from_errno(ENOTSUP);
  279. }
  280. m_write_combine = enable;
  281. remap();
  282. return {};
  283. }
  284. void Region::clear_to_zero()
  285. {
  286. VERIFY(vmobject().is_anonymous());
  287. SpinlockLocker locker(vmobject().m_lock);
  288. for (auto i = 0u; i < page_count(); ++i) {
  289. auto& page = physical_page_slot(i);
  290. VERIFY(page);
  291. if (page->is_shared_zero_page())
  292. continue;
  293. page = MM.shared_zero_page();
  294. }
  295. }
  296. PageFaultResponse Region::handle_fault(PageFault const& fault)
  297. {
  298. auto page_index_in_region = page_index_from_address(fault.vaddr());
  299. if (fault.type() == PageFault::Type::PageNotPresent) {
  300. if (fault.is_read() && !is_readable()) {
  301. dbgln("NP(non-readable) fault in Region({})[{}]", this, page_index_in_region);
  302. return PageFaultResponse::ShouldCrash;
  303. }
  304. if (fault.is_write() && !is_writable()) {
  305. dbgln("NP(non-writable) write fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  306. return PageFaultResponse::ShouldCrash;
  307. }
  308. if (vmobject().is_inode()) {
  309. dbgln_if(PAGE_FAULT_DEBUG, "NP(inode) fault in Region({})[{}]", this, page_index_in_region);
  310. return handle_inode_fault(page_index_in_region);
  311. }
  312. auto& page_slot = physical_page_slot(page_index_in_region);
  313. if (page_slot->is_lazy_committed_page()) {
  314. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  315. VERIFY(m_vmobject->is_anonymous());
  316. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({});
  317. if (!remap_vmobject_page(page_index_in_vmobject))
  318. return PageFaultResponse::OutOfMemory;
  319. return PageFaultResponse::Continue;
  320. }
  321. dbgln("BUG! Unexpected NP fault at {}", fault.vaddr());
  322. return PageFaultResponse::ShouldCrash;
  323. }
  324. VERIFY(fault.type() == PageFault::Type::ProtectionViolation);
  325. if (fault.access() == PageFault::Access::Write && is_writable() && should_cow(page_index_in_region)) {
  326. dbgln_if(PAGE_FAULT_DEBUG, "PV(cow) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  327. auto* phys_page = physical_page(page_index_in_region);
  328. if (phys_page->is_shared_zero_page() || phys_page->is_lazy_committed_page()) {
  329. dbgln_if(PAGE_FAULT_DEBUG, "NP(zero) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  330. return handle_zero_fault(page_index_in_region);
  331. }
  332. return handle_cow_fault(page_index_in_region);
  333. }
  334. dbgln("PV(error) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  335. return PageFaultResponse::ShouldCrash;
  336. }
  337. PageFaultResponse Region::handle_zero_fault(size_t page_index_in_region)
  338. {
  339. VERIFY_INTERRUPTS_DISABLED();
  340. VERIFY(vmobject().is_anonymous());
  341. auto& page_slot = physical_page_slot(page_index_in_region);
  342. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  343. SpinlockLocker locker(vmobject().m_lock);
  344. if (!page_slot.is_null() && !page_slot->is_shared_zero_page() && !page_slot->is_lazy_committed_page()) {
  345. dbgln_if(PAGE_FAULT_DEBUG, "MM: zero_page() but page already present. Fine with me!");
  346. if (!remap_vmobject_page(page_index_in_vmobject))
  347. return PageFaultResponse::OutOfMemory;
  348. return PageFaultResponse::Continue;
  349. }
  350. auto current_thread = Thread::current();
  351. if (current_thread != nullptr)
  352. current_thread->did_zero_fault();
  353. if (page_slot->is_lazy_committed_page()) {
  354. VERIFY(m_vmobject->is_anonymous());
  355. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({});
  356. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED COMMITTED {}", page_slot->paddr());
  357. } else {
  358. auto page_or_error = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
  359. if (page_or_error.is_error()) {
  360. dmesgln("MM: handle_zero_fault was unable to allocate a physical page");
  361. return PageFaultResponse::OutOfMemory;
  362. }
  363. page_slot = page_or_error.release_value();
  364. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED {}", page_slot->paddr());
  365. }
  366. if (!remap_vmobject_page(page_index_in_vmobject)) {
  367. dmesgln("MM: handle_zero_fault was unable to allocate a page table to map {}", page_slot);
  368. return PageFaultResponse::OutOfMemory;
  369. }
  370. return PageFaultResponse::Continue;
  371. }
  372. PageFaultResponse Region::handle_cow_fault(size_t page_index_in_region)
  373. {
  374. VERIFY_INTERRUPTS_DISABLED();
  375. auto current_thread = Thread::current();
  376. if (current_thread)
  377. current_thread->did_cow_fault();
  378. if (!vmobject().is_anonymous())
  379. return PageFaultResponse::ShouldCrash;
  380. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  381. auto response = reinterpret_cast<AnonymousVMObject&>(vmobject()).handle_cow_fault(page_index_in_vmobject, vaddr().offset(page_index_in_region * PAGE_SIZE));
  382. if (!remap_vmobject_page(page_index_in_vmobject))
  383. return PageFaultResponse::OutOfMemory;
  384. return response;
  385. }
  386. PageFaultResponse Region::handle_inode_fault(size_t page_index_in_region)
  387. {
  388. VERIFY_INTERRUPTS_DISABLED();
  389. VERIFY(vmobject().is_inode());
  390. VERIFY(!s_mm_lock.is_locked_by_current_processor());
  391. VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
  392. auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject());
  393. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  394. auto& vmobject_physical_page_entry = inode_vmobject.physical_pages()[page_index_in_vmobject];
  395. {
  396. SpinlockLocker locker(inode_vmobject.m_lock);
  397. if (!vmobject_physical_page_entry.is_null()) {
  398. dbgln_if(PAGE_FAULT_DEBUG, "handle_inode_fault: Page faulted in by someone else before reading, remapping.");
  399. if (!remap_vmobject_page(page_index_in_vmobject))
  400. return PageFaultResponse::OutOfMemory;
  401. return PageFaultResponse::Continue;
  402. }
  403. }
  404. dbgln_if(PAGE_FAULT_DEBUG, "Inode fault in {} page index: {}", name(), page_index_in_region);
  405. auto current_thread = Thread::current();
  406. if (current_thread)
  407. current_thread->did_inode_fault();
  408. u8 page_buffer[PAGE_SIZE];
  409. auto& inode = inode_vmobject.inode();
  410. auto buffer = UserOrKernelBuffer::for_kernel_buffer(page_buffer);
  411. auto result = inode.read_bytes(page_index_in_vmobject * PAGE_SIZE, PAGE_SIZE, buffer, nullptr);
  412. if (result.is_error()) {
  413. dmesgln("handle_inode_fault: Error ({}) while reading from inode", result.error());
  414. return PageFaultResponse::ShouldCrash;
  415. }
  416. auto nread = result.value();
  417. if (nread < PAGE_SIZE) {
  418. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  419. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  420. }
  421. SpinlockLocker locker(inode_vmobject.m_lock);
  422. if (!vmobject_physical_page_entry.is_null()) {
  423. // Someone else faulted in this page while we were reading from the inode.
  424. // No harm done (other than some duplicate work), remap the page here and return.
  425. dbgln_if(PAGE_FAULT_DEBUG, "handle_inode_fault: Page faulted in by someone else, remapping.");
  426. if (!remap_vmobject_page(page_index_in_vmobject))
  427. return PageFaultResponse::OutOfMemory;
  428. return PageFaultResponse::Continue;
  429. }
  430. auto vmobject_physical_page_or_error = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
  431. if (vmobject_physical_page_or_error.is_error()) {
  432. dmesgln("MM: handle_inode_fault was unable to allocate a physical page");
  433. return PageFaultResponse::OutOfMemory;
  434. }
  435. vmobject_physical_page_entry = vmobject_physical_page_or_error.release_value();
  436. {
  437. SpinlockLocker mm_locker(s_mm_lock);
  438. u8* dest_ptr = MM.quickmap_page(*vmobject_physical_page_entry);
  439. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  440. MM.unquickmap_page();
  441. }
  442. if (!remap_vmobject_page(page_index_in_vmobject))
  443. return PageFaultResponse::OutOfMemory;
  444. return PageFaultResponse::Continue;
  445. }
  446. }