NetworkTask.cpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292
  1. #include <Kernel/E1000NetworkAdapter.h>
  2. #include <Kernel/EthernetFrameHeader.h>
  3. #include <Kernel/ARP.h>
  4. #include <Kernel/ICMP.h>
  5. #include <Kernel/UDP.h>
  6. #include <Kernel/TCP.h>
  7. #include <Kernel/IPv4.h>
  8. #include <Kernel/IPv4Socket.h>
  9. #include <Kernel/Process.h>
  10. #include <Kernel/EtherType.h>
  11. #include <AK/Lock.h>
  12. //#define ETHERNET_DEBUG
  13. #define IPV4_DEBUG
  14. //#define ICMP_DEBUG
  15. #define UDP_DEBUG
  16. #define TCP_DEBUG
  17. static void handle_arp(const EthernetFrameHeader&, int frame_size);
  18. static void handle_ipv4(const EthernetFrameHeader&, int frame_size);
  19. static void handle_icmp(const EthernetFrameHeader&, int frame_size);
  20. static void handle_udp(const EthernetFrameHeader&, int frame_size);
  21. static void handle_tcp(const EthernetFrameHeader&, int frame_size);
  22. Lockable<HashMap<IPv4Address, MACAddress>>& arp_table()
  23. {
  24. static Lockable<HashMap<IPv4Address, MACAddress>>* the;
  25. if (!the)
  26. the = new Lockable<HashMap<IPv4Address, MACAddress>>;
  27. return *the;
  28. }
  29. void NetworkTask_main()
  30. {
  31. auto* e1000_ptr = E1000NetworkAdapter::the();
  32. ASSERT(e1000_ptr);
  33. auto& e1000 = *e1000_ptr;
  34. e1000.set_ipv4_address(IPv4Address(192, 168, 5, 2));
  35. kprintf("NetworkTask: Enter main loop.\n");
  36. for (;;) {
  37. auto packet = e1000.dequeue_packet();
  38. if (packet.is_null()) {
  39. sleep(100);
  40. continue;
  41. }
  42. if (packet.size() < (int)(sizeof(EthernetFrameHeader))) {
  43. kprintf("NetworkTask: Packet is too small to be an Ethernet packet! (%d)\n", packet.size());
  44. continue;
  45. }
  46. auto& eth = *(const EthernetFrameHeader*)packet.pointer();
  47. #ifdef ETHERNET_DEBUG
  48. kprintf("NetworkTask: From %s to %s, ether_type=%w, packet_length=%u\n",
  49. eth.source().to_string().characters(),
  50. eth.destination().to_string().characters(),
  51. eth.ether_type(),
  52. packet.size()
  53. );
  54. #endif
  55. switch (eth.ether_type()) {
  56. case EtherType::ARP:
  57. handle_arp(eth, packet.size());
  58. break;
  59. case EtherType::IPv4:
  60. handle_ipv4(eth, packet.size());
  61. break;
  62. }
  63. }
  64. }
  65. void handle_arp(const EthernetFrameHeader& eth, int frame_size)
  66. {
  67. constexpr int minimum_arp_frame_size = sizeof(EthernetFrameHeader) + sizeof(ARPPacket);
  68. if (frame_size < minimum_arp_frame_size) {
  69. kprintf("handle_arp: Frame too small (%d, need %d)\n", frame_size, minimum_arp_frame_size);
  70. return;
  71. }
  72. auto& packet = *static_cast<const ARPPacket*>(eth.payload());
  73. if (packet.hardware_type() != 1 || packet.hardware_address_length() != sizeof(MACAddress)) {
  74. kprintf("handle_arp: Hardware type not ethernet (%w, len=%u)\n",
  75. packet.hardware_type(),
  76. packet.hardware_address_length()
  77. );
  78. return;
  79. }
  80. if (packet.protocol_type() != EtherType::IPv4 || packet.protocol_address_length() != sizeof(IPv4Address)) {
  81. kprintf("handle_arp: Protocol type not IPv4 (%w, len=%u)\n",
  82. packet.hardware_type(),
  83. packet.protocol_address_length()
  84. );
  85. return;
  86. }
  87. #ifdef ARP_DEBUG
  88. kprintf("handle_arp: operation=%w, sender=%s/%s, target=%s/%s\n",
  89. packet.operation(),
  90. packet.sender_hardware_address().to_string().characters(),
  91. packet.sender_protocol_address().to_string().characters(),
  92. packet.target_hardware_address().to_string().characters(),
  93. packet.target_protocol_address().to_string().characters()
  94. );
  95. #endif
  96. if (packet.operation() == ARPOperation::Request) {
  97. // Who has this IP address?
  98. if (auto* adapter = NetworkAdapter::from_ipv4_address(packet.target_protocol_address())) {
  99. // We do!
  100. kprintf("handle_arp: Responding to ARP request for my IPv4 address (%s)\n",
  101. adapter->ipv4_address().to_string().characters());
  102. ARPPacket response;
  103. response.set_operation(ARPOperation::Response);
  104. response.set_target_hardware_address(packet.sender_hardware_address());
  105. response.set_target_protocol_address(packet.sender_protocol_address());
  106. response.set_sender_hardware_address(adapter->mac_address());
  107. response.set_sender_protocol_address(adapter->ipv4_address());
  108. adapter->send(packet.sender_hardware_address(), response);
  109. }
  110. return;
  111. }
  112. if (packet.operation() == ARPOperation::Response) {
  113. // Someone has this IPv4 address. I guess we can try to remember that.
  114. // FIXME: Protect against ARP spamming.
  115. // FIXME: Support static ARP table entries.
  116. LOCKER(arp_table().lock());
  117. arp_table().resource().set(packet.sender_protocol_address(), packet.sender_hardware_address());
  118. kprintf("ARP table (%d entries):\n", arp_table().resource().size());
  119. for (auto& it : arp_table().resource()) {
  120. kprintf("%s :: %s\n", it.value.to_string().characters(), it.key.to_string().characters());
  121. }
  122. }
  123. }
  124. void handle_ipv4(const EthernetFrameHeader& eth, int frame_size)
  125. {
  126. constexpr int minimum_ipv4_frame_size = sizeof(EthernetFrameHeader) + sizeof(IPv4Packet);
  127. if (frame_size < minimum_ipv4_frame_size) {
  128. kprintf("handle_ipv4: Frame too small (%d, need %d)\n", frame_size, minimum_ipv4_frame_size);
  129. return;
  130. }
  131. auto& packet = *static_cast<const IPv4Packet*>(eth.payload());
  132. #ifdef IPV4_DEBUG
  133. kprintf("handle_ipv4: source=%s, target=%s\n",
  134. packet.source().to_string().characters(),
  135. packet.destination().to_string().characters()
  136. );
  137. #endif
  138. switch ((IPv4Protocol)packet.protocol()) {
  139. case IPv4Protocol::ICMP:
  140. return handle_icmp(eth, frame_size);
  141. case IPv4Protocol::UDP:
  142. return handle_udp(eth, frame_size);
  143. case IPv4Protocol::TCP:
  144. return handle_tcp(eth, frame_size);
  145. default:
  146. kprintf("handle_ipv4: Unhandled protocol %u\n", packet.protocol());
  147. break;
  148. }
  149. }
  150. void handle_icmp(const EthernetFrameHeader& eth, int frame_size)
  151. {
  152. (void)frame_size;
  153. auto& ipv4_packet = *static_cast<const IPv4Packet*>(eth.payload());
  154. auto& icmp_header = *static_cast<const ICMPHeader*>(ipv4_packet.payload());
  155. #ifdef ICMP_DEBUG
  156. kprintf("handle_icmp: source=%s, destination=%s, type=%b, code=%b\n",
  157. ipv4_packet.source().to_string().characters(),
  158. ipv4_packet.destination().to_string().characters(),
  159. icmp_header.type(),
  160. icmp_header.code()
  161. );
  162. #endif
  163. {
  164. LOCKER(IPv4Socket::all_sockets().lock());
  165. for (RetainPtr<IPv4Socket> socket : IPv4Socket::all_sockets().resource()) {
  166. LOCKER(socket->lock());
  167. if (socket->protocol() != (unsigned)IPv4Protocol::ICMP)
  168. continue;
  169. socket->did_receive(ByteBuffer::copy((const byte*)&ipv4_packet, sizeof(IPv4Packet) + ipv4_packet.payload_size()));
  170. }
  171. }
  172. auto* adapter = NetworkAdapter::from_ipv4_address(ipv4_packet.destination());
  173. if (!adapter)
  174. return;
  175. if (icmp_header.type() == ICMPType::EchoRequest) {
  176. auto& request = reinterpret_cast<const ICMPEchoPacket&>(icmp_header);
  177. kprintf("handle_icmp: EchoRequest from %s: id=%u, seq=%u\n",
  178. ipv4_packet.source().to_string().characters(),
  179. (word)request.identifier,
  180. (word)request.sequence_number
  181. );
  182. size_t icmp_packet_size = ipv4_packet.payload_size();
  183. auto buffer = ByteBuffer::create_zeroed(icmp_packet_size);
  184. auto& response = *(ICMPEchoPacket*)buffer.pointer();
  185. response.header.set_type(ICMPType::EchoReply);
  186. response.header.set_code(0);
  187. response.identifier = request.identifier;
  188. response.sequence_number = request.sequence_number;
  189. if (size_t icmp_payload_size = icmp_packet_size - sizeof(ICMPEchoPacket))
  190. memcpy(response.payload(), request.payload(), icmp_payload_size);
  191. response.header.set_checksum(internet_checksum(&response, icmp_packet_size));
  192. adapter->send_ipv4(eth.source(), ipv4_packet.source(), IPv4Protocol::ICMP, move(buffer));
  193. }
  194. }
  195. void handle_udp(const EthernetFrameHeader& eth, int frame_size)
  196. {
  197. (void)frame_size;
  198. auto& ipv4_packet = *static_cast<const IPv4Packet*>(eth.payload());
  199. auto* adapter = NetworkAdapter::from_ipv4_address(ipv4_packet.destination());
  200. if (!adapter) {
  201. kprintf("handle_udp: this packet is not for me, it's for %s\n", ipv4_packet.destination().to_string().characters());
  202. return;
  203. }
  204. auto& udp_packet = *static_cast<const UDPPacket*>(ipv4_packet.payload());
  205. #ifdef UDP_DEBUG
  206. kprintf("handle_udp: source=%s:%u, destination=%s:%u length=%u\n",
  207. ipv4_packet.source().to_string().characters(),
  208. udp_packet.source_port(),
  209. ipv4_packet.destination().to_string().characters(),
  210. udp_packet.destination_port(),
  211. udp_packet.length()
  212. );
  213. #endif
  214. RetainPtr<IPv4Socket> socket;
  215. {
  216. LOCKER(IPv4Socket::sockets_by_udp_port().lock());
  217. auto it = IPv4Socket::sockets_by_udp_port().resource().find(udp_packet.destination_port());
  218. if (it == IPv4Socket::sockets_by_udp_port().resource().end())
  219. return;
  220. ASSERT((*it).value);
  221. socket = *(*it).value;
  222. }
  223. LOCKER(socket->lock());
  224. ASSERT(socket->type() == SOCK_DGRAM);
  225. ASSERT(socket->source_port() == udp_packet.destination_port());
  226. socket->did_receive(ByteBuffer::copy((const byte*)&ipv4_packet, sizeof(IPv4Packet) + ipv4_packet.payload_size()));
  227. }
  228. void handle_tcp(const EthernetFrameHeader& eth, int frame_size)
  229. {
  230. (void)frame_size;
  231. auto& ipv4_packet = *static_cast<const IPv4Packet*>(eth.payload());
  232. auto* adapter = NetworkAdapter::from_ipv4_address(ipv4_packet.destination());
  233. if (!adapter) {
  234. kprintf("handle_tcp: this packet is not for me, it's for %s\n", ipv4_packet.destination().to_string().characters());
  235. return;
  236. }
  237. auto& tcp_packet = *static_cast<const TCPPacket*>(ipv4_packet.payload());
  238. #ifdef TCP_DEBUG
  239. kprintf("handle_tcp: source=%s:%u, destination=%s:%u seq=%u, ack=%u, flags=%w, window_size=%u\n",
  240. ipv4_packet.source().to_string().characters(),
  241. tcp_packet.source_port(),
  242. ipv4_packet.destination().to_string().characters(),
  243. tcp_packet.destination_port(),
  244. tcp_packet.sequence_number(),
  245. tcp_packet.ack_number(),
  246. tcp_packet.flags(),
  247. tcp_packet.window_size()
  248. );
  249. #endif
  250. RetainPtr<IPv4Socket> socket;
  251. {
  252. LOCKER(IPv4Socket::sockets_by_tcp_port().lock());
  253. auto it = IPv4Socket::sockets_by_tcp_port().resource().find(tcp_packet.destination_port());
  254. if (it == IPv4Socket::sockets_by_tcp_port().resource().end())
  255. return;
  256. ASSERT((*it).value);
  257. socket = *(*it).value;
  258. }
  259. LOCKER(socket->lock());
  260. ASSERT(socket->type() == SOCK_STREAM);
  261. ASSERT(socket->source_port() == tcp_packet.destination_port());
  262. socket->did_receive(ByteBuffer::copy((const byte*)&ipv4_packet, sizeof(IPv4Packet) + ipv4_packet.payload_size()));
  263. }