Op.cpp 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312
  1. /*
  2. * Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2021-2022, Linus Groh <linusg@serenityos.org>
  4. * Copyright (c) 2021, Gunnar Beutner <gbeutner@serenityos.org>
  5. *
  6. * SPDX-License-Identifier: BSD-2-Clause
  7. */
  8. #include <AK/HashTable.h>
  9. #include <LibJS/Bytecode/Interpreter.h>
  10. #include <LibJS/Bytecode/Op.h>
  11. #include <LibJS/Runtime/AbstractOperations.h>
  12. #include <LibJS/Runtime/Array.h>
  13. #include <LibJS/Runtime/BigInt.h>
  14. #include <LibJS/Runtime/DeclarativeEnvironment.h>
  15. #include <LibJS/Runtime/ECMAScriptFunctionObject.h>
  16. #include <LibJS/Runtime/Environment.h>
  17. #include <LibJS/Runtime/FunctionEnvironment.h>
  18. #include <LibJS/Runtime/GlobalEnvironment.h>
  19. #include <LibJS/Runtime/GlobalObject.h>
  20. #include <LibJS/Runtime/Iterator.h>
  21. #include <LibJS/Runtime/IteratorOperations.h>
  22. #include <LibJS/Runtime/NativeFunction.h>
  23. #include <LibJS/Runtime/ObjectEnvironment.h>
  24. #include <LibJS/Runtime/RegExpObject.h>
  25. #include <LibJS/Runtime/Value.h>
  26. namespace JS::Bytecode {
  27. String Instruction::to_string(Bytecode::Executable const& executable) const
  28. {
  29. #define __BYTECODE_OP(op) \
  30. case Instruction::Type::op: \
  31. return static_cast<Bytecode::Op::op const&>(*this).to_string_impl(executable);
  32. switch (type()) {
  33. ENUMERATE_BYTECODE_OPS(__BYTECODE_OP)
  34. default:
  35. VERIFY_NOT_REACHED();
  36. }
  37. #undef __BYTECODE_OP
  38. }
  39. }
  40. namespace JS::Bytecode::Op {
  41. static ThrowCompletionOr<void> put_by_property_key(Object* object, Value value, PropertyKey name, Bytecode::Interpreter& interpreter, PropertyKind kind)
  42. {
  43. auto& vm = interpreter.vm();
  44. if (kind == PropertyKind::Getter || kind == PropertyKind::Setter) {
  45. // The generator should only pass us functions for getters and setters.
  46. VERIFY(value.is_function());
  47. }
  48. switch (kind) {
  49. case PropertyKind::Getter: {
  50. auto& function = value.as_function();
  51. if (function.name().is_empty() && is<ECMAScriptFunctionObject>(function))
  52. static_cast<ECMAScriptFunctionObject*>(&function)->set_name(String::formatted("get {}", name));
  53. object->define_direct_accessor(name, &function, nullptr, Attribute::Configurable | Attribute::Enumerable);
  54. break;
  55. }
  56. case PropertyKind::Setter: {
  57. auto& function = value.as_function();
  58. if (function.name().is_empty() && is<ECMAScriptFunctionObject>(function))
  59. static_cast<ECMAScriptFunctionObject*>(&function)->set_name(String::formatted("set {}", name));
  60. object->define_direct_accessor(name, nullptr, &function, Attribute::Configurable | Attribute::Enumerable);
  61. break;
  62. }
  63. case PropertyKind::KeyValue: {
  64. bool succeeded = TRY(object->internal_set(name, interpreter.accumulator(), object));
  65. if (!succeeded && vm.in_strict_mode())
  66. return vm.throw_completion<TypeError>(ErrorType::ReferenceNullishSetProperty, name, interpreter.accumulator().to_string_without_side_effects());
  67. break;
  68. }
  69. case PropertyKind::Spread:
  70. TRY(object->copy_data_properties(vm, value, {}));
  71. break;
  72. case PropertyKind::ProtoSetter:
  73. if (value.is_object() || value.is_null())
  74. MUST(object->internal_set_prototype_of(value.is_object() ? &value.as_object() : nullptr));
  75. break;
  76. }
  77. return {};
  78. }
  79. ThrowCompletionOr<void> Load::execute_impl(Bytecode::Interpreter& interpreter) const
  80. {
  81. interpreter.accumulator() = interpreter.reg(m_src);
  82. return {};
  83. }
  84. ThrowCompletionOr<void> LoadImmediate::execute_impl(Bytecode::Interpreter& interpreter) const
  85. {
  86. interpreter.accumulator() = m_value;
  87. return {};
  88. }
  89. ThrowCompletionOr<void> Store::execute_impl(Bytecode::Interpreter& interpreter) const
  90. {
  91. interpreter.reg(m_dst) = interpreter.accumulator();
  92. return {};
  93. }
  94. static ThrowCompletionOr<Value> abstract_inequals(VM& vm, Value src1, Value src2)
  95. {
  96. return Value(!TRY(is_loosely_equal(vm, src1, src2)));
  97. }
  98. static ThrowCompletionOr<Value> abstract_equals(VM& vm, Value src1, Value src2)
  99. {
  100. return Value(TRY(is_loosely_equal(vm, src1, src2)));
  101. }
  102. static ThrowCompletionOr<Value> typed_inequals(VM&, Value src1, Value src2)
  103. {
  104. return Value(!is_strictly_equal(src1, src2));
  105. }
  106. static ThrowCompletionOr<Value> typed_equals(VM&, Value src1, Value src2)
  107. {
  108. return Value(is_strictly_equal(src1, src2));
  109. }
  110. #define JS_DEFINE_COMMON_BINARY_OP(OpTitleCase, op_snake_case) \
  111. ThrowCompletionOr<void> OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \
  112. { \
  113. auto& vm = interpreter.vm(); \
  114. auto lhs = interpreter.reg(m_lhs_reg); \
  115. auto rhs = interpreter.accumulator(); \
  116. interpreter.accumulator() = TRY(op_snake_case(vm, lhs, rhs)); \
  117. return {}; \
  118. } \
  119. String OpTitleCase::to_string_impl(Bytecode::Executable const&) const \
  120. { \
  121. return String::formatted(#OpTitleCase " {}", m_lhs_reg); \
  122. }
  123. JS_ENUMERATE_COMMON_BINARY_OPS(JS_DEFINE_COMMON_BINARY_OP)
  124. static ThrowCompletionOr<Value> not_(VM&, Value value)
  125. {
  126. return Value(!value.to_boolean());
  127. }
  128. static ThrowCompletionOr<Value> typeof_(VM& vm, Value value)
  129. {
  130. return Value(js_string(vm, value.typeof()));
  131. }
  132. #define JS_DEFINE_COMMON_UNARY_OP(OpTitleCase, op_snake_case) \
  133. ThrowCompletionOr<void> OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \
  134. { \
  135. auto& vm = interpreter.vm(); \
  136. interpreter.accumulator() = TRY(op_snake_case(vm, interpreter.accumulator())); \
  137. return {}; \
  138. } \
  139. String OpTitleCase::to_string_impl(Bytecode::Executable const&) const \
  140. { \
  141. return #OpTitleCase; \
  142. }
  143. JS_ENUMERATE_COMMON_UNARY_OPS(JS_DEFINE_COMMON_UNARY_OP)
  144. ThrowCompletionOr<void> NewBigInt::execute_impl(Bytecode::Interpreter& interpreter) const
  145. {
  146. interpreter.accumulator() = js_bigint(interpreter.vm().heap(), m_bigint);
  147. return {};
  148. }
  149. ThrowCompletionOr<void> NewArray::execute_impl(Bytecode::Interpreter& interpreter) const
  150. {
  151. auto* array = MUST(Array::create(interpreter.realm(), 0));
  152. for (size_t i = 0; i < m_element_count; i++) {
  153. auto& value = interpreter.reg(Register(m_elements[0].index() + i));
  154. array->indexed_properties().put(i, value, default_attributes);
  155. }
  156. interpreter.accumulator() = array;
  157. return {};
  158. }
  159. ThrowCompletionOr<void> Append::execute_impl(Bytecode::Interpreter& interpreter) const
  160. {
  161. // Note: This OpCode is used to construct array literals and argument arrays for calls,
  162. // containing at least one spread element,
  163. // Iterating over such a spread element to unpack it has to be visible by
  164. // the user courtesy of
  165. // (1) https://tc39.es/ecma262/#sec-runtime-semantics-arrayaccumulation
  166. // SpreadElement : ... AssignmentExpression
  167. // 1. Let spreadRef be ? Evaluation of AssignmentExpression.
  168. // 2. Let spreadObj be ? GetValue(spreadRef).
  169. // 3. Let iteratorRecord be ? GetIterator(spreadObj).
  170. // 4. Repeat,
  171. // a. Let next be ? IteratorStep(iteratorRecord).
  172. // b. If next is false, return nextIndex.
  173. // c. Let nextValue be ? IteratorValue(next).
  174. // d. Perform ! CreateDataPropertyOrThrow(array, ! ToString(𝔽(nextIndex)), nextValue).
  175. // e. Set nextIndex to nextIndex + 1.
  176. // (2) https://tc39.es/ecma262/#sec-runtime-semantics-argumentlistevaluation
  177. // ArgumentList : ... AssignmentExpression
  178. // 1. Let list be a new empty List.
  179. // 2. Let spreadRef be ? Evaluation of AssignmentExpression.
  180. // 3. Let spreadObj be ? GetValue(spreadRef).
  181. // 4. Let iteratorRecord be ? GetIterator(spreadObj).
  182. // 5. Repeat,
  183. // a. Let next be ? IteratorStep(iteratorRecord).
  184. // b. If next is false, return list.
  185. // c. Let nextArg be ? IteratorValue(next).
  186. // d. Append nextArg to list.
  187. // ArgumentList : ArgumentList , ... AssignmentExpression
  188. // 1. Let precedingArgs be ? ArgumentListEvaluation of ArgumentList.
  189. // 2. Let spreadRef be ? Evaluation of AssignmentExpression.
  190. // 3. Let iteratorRecord be ? GetIterator(? GetValue(spreadRef)).
  191. // 4. Repeat,
  192. // a. Let next be ? IteratorStep(iteratorRecord).
  193. // b. If next is false, return precedingArgs.
  194. // c. Let nextArg be ? IteratorValue(next).
  195. // d. Append nextArg to precedingArgs.
  196. auto& vm = interpreter.vm();
  197. // Note: We know from codegen, that lhs is a plain array with only indexed properties
  198. auto& lhs = interpreter.reg(m_lhs).as_array();
  199. auto lhs_size = lhs.indexed_properties().array_like_size();
  200. auto rhs = interpreter.accumulator();
  201. if (m_is_spread) {
  202. // ...rhs
  203. size_t i = lhs_size;
  204. TRY(get_iterator_values(vm, rhs, [&i, &lhs](Value iterator_value) -> Optional<Completion> {
  205. lhs.indexed_properties().put(i, iterator_value, default_attributes);
  206. ++i;
  207. return {};
  208. }));
  209. } else {
  210. lhs.indexed_properties().put(lhs_size, rhs, default_attributes);
  211. }
  212. return {};
  213. }
  214. // FIXME: Since the accumulator is a Value, we store an object there and have to convert back and forth between that an Iterator records. Not great.
  215. // Make sure to put this into the accumulator before the iterator object disappears from the stack to prevent the members from being GC'd.
  216. static Object* iterator_to_object(VM& vm, Iterator iterator)
  217. {
  218. auto& realm = *vm.current_realm();
  219. auto* object = Object::create(realm, nullptr);
  220. object->define_direct_property(vm.names.iterator, iterator.iterator, 0);
  221. object->define_direct_property(vm.names.next, iterator.next_method, 0);
  222. object->define_direct_property(vm.names.done, Value(iterator.done), 0);
  223. return object;
  224. }
  225. static Iterator object_to_iterator(VM& vm, Object& object)
  226. {
  227. return Iterator {
  228. .iterator = &MUST(object.get(vm.names.iterator)).as_object(),
  229. .next_method = MUST(object.get(vm.names.next)),
  230. .done = MUST(object.get(vm.names.done)).as_bool()
  231. };
  232. }
  233. ThrowCompletionOr<void> IteratorToArray::execute_impl(Bytecode::Interpreter& interpreter) const
  234. {
  235. auto& vm = interpreter.vm();
  236. auto iterator_object = TRY(interpreter.accumulator().to_object(vm));
  237. auto iterator = object_to_iterator(vm, *iterator_object);
  238. auto* array = MUST(Array::create(interpreter.realm(), 0));
  239. size_t index = 0;
  240. while (true) {
  241. auto* iterator_result = TRY(iterator_next(vm, iterator));
  242. auto complete = TRY(iterator_complete(vm, *iterator_result));
  243. if (complete) {
  244. interpreter.accumulator() = array;
  245. return {};
  246. }
  247. auto value = TRY(iterator_value(vm, *iterator_result));
  248. MUST(array->create_data_property_or_throw(index, value));
  249. index++;
  250. }
  251. return {};
  252. }
  253. ThrowCompletionOr<void> NewString::execute_impl(Bytecode::Interpreter& interpreter) const
  254. {
  255. interpreter.accumulator() = js_string(interpreter.vm(), interpreter.current_executable().get_string(m_string));
  256. return {};
  257. }
  258. ThrowCompletionOr<void> NewObject::execute_impl(Bytecode::Interpreter& interpreter) const
  259. {
  260. auto& vm = interpreter.vm();
  261. auto& realm = *vm.current_realm();
  262. interpreter.accumulator() = Object::create(realm, realm.intrinsics().object_prototype());
  263. return {};
  264. }
  265. ThrowCompletionOr<void> NewRegExp::execute_impl(Bytecode::Interpreter& interpreter) const
  266. {
  267. auto& vm = interpreter.vm();
  268. auto source = interpreter.current_executable().get_string(m_source_index);
  269. auto flags = interpreter.current_executable().get_string(m_flags_index);
  270. interpreter.accumulator() = TRY(regexp_create(vm, js_string(vm, source), js_string(vm, flags)));
  271. return {};
  272. }
  273. ThrowCompletionOr<void> CopyObjectExcludingProperties::execute_impl(Bytecode::Interpreter& interpreter) const
  274. {
  275. auto& vm = interpreter.vm();
  276. auto& realm = *vm.current_realm();
  277. auto* from_object = TRY(interpreter.reg(m_from_object).to_object(vm));
  278. auto* to_object = Object::create(realm, realm.intrinsics().object_prototype());
  279. HashTable<Value, ValueTraits> excluded_names;
  280. for (size_t i = 0; i < m_excluded_names_count; ++i)
  281. excluded_names.set(interpreter.reg(m_excluded_names[i]));
  282. auto own_keys = TRY(from_object->internal_own_property_keys());
  283. for (auto& key : own_keys) {
  284. if (!excluded_names.contains(key)) {
  285. auto property_key = TRY(key.to_property_key(vm));
  286. auto property_value = TRY(from_object->get(property_key));
  287. to_object->define_direct_property(property_key, property_value, JS::default_attributes);
  288. }
  289. }
  290. interpreter.accumulator() = to_object;
  291. return {};
  292. }
  293. ThrowCompletionOr<void> ConcatString::execute_impl(Bytecode::Interpreter& interpreter) const
  294. {
  295. auto& vm = interpreter.vm();
  296. interpreter.reg(m_lhs) = TRY(add(vm, interpreter.reg(m_lhs), interpreter.accumulator()));
  297. return {};
  298. }
  299. ThrowCompletionOr<void> GetVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  300. {
  301. auto& vm = interpreter.vm();
  302. auto get_reference = [&]() -> ThrowCompletionOr<Reference> {
  303. auto const& string = interpreter.current_executable().get_identifier(m_identifier);
  304. if (m_cached_environment_coordinate.has_value()) {
  305. auto* environment = vm.running_execution_context().lexical_environment;
  306. for (size_t i = 0; i < m_cached_environment_coordinate->hops; ++i)
  307. environment = environment->outer_environment();
  308. VERIFY(environment);
  309. VERIFY(environment->is_declarative_environment());
  310. if (!environment->is_permanently_screwed_by_eval()) {
  311. return Reference { *environment, string, vm.in_strict_mode(), m_cached_environment_coordinate };
  312. }
  313. m_cached_environment_coordinate = {};
  314. }
  315. auto reference = TRY(vm.resolve_binding(string));
  316. if (reference.environment_coordinate().has_value())
  317. m_cached_environment_coordinate = reference.environment_coordinate();
  318. return reference;
  319. };
  320. auto reference = TRY(get_reference());
  321. interpreter.accumulator() = TRY(reference.get_value(vm));
  322. return {};
  323. }
  324. ThrowCompletionOr<void> DeleteVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  325. {
  326. auto& vm = interpreter.vm();
  327. auto const& string = interpreter.current_executable().get_identifier(m_identifier);
  328. auto reference = TRY(vm.resolve_binding(string));
  329. interpreter.accumulator() = Value(TRY(reference.delete_(vm)));
  330. return {};
  331. }
  332. ThrowCompletionOr<void> CreateEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
  333. {
  334. auto make_and_swap_envs = [&](auto*& old_environment) {
  335. Environment* environment = new_declarative_environment(*old_environment);
  336. swap(old_environment, environment);
  337. return environment;
  338. };
  339. if (m_mode == EnvironmentMode::Lexical)
  340. interpreter.saved_lexical_environment_stack().append(make_and_swap_envs(interpreter.vm().running_execution_context().lexical_environment));
  341. else if (m_mode == EnvironmentMode::Var)
  342. interpreter.saved_variable_environment_stack().append(make_and_swap_envs(interpreter.vm().running_execution_context().variable_environment));
  343. return {};
  344. }
  345. ThrowCompletionOr<void> EnterObjectEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
  346. {
  347. auto& vm = interpreter.vm();
  348. auto& old_environment = vm.running_execution_context().lexical_environment;
  349. interpreter.saved_lexical_environment_stack().append(old_environment);
  350. auto object = TRY(interpreter.accumulator().to_object(vm));
  351. vm.running_execution_context().lexical_environment = new_object_environment(*object, true, old_environment);
  352. return {};
  353. }
  354. ThrowCompletionOr<void> CreateVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  355. {
  356. auto& vm = interpreter.vm();
  357. auto const& name = interpreter.current_executable().get_identifier(m_identifier);
  358. if (m_mode == EnvironmentMode::Lexical) {
  359. VERIFY(!m_is_global);
  360. // Note: This is papering over an issue where "FunctionDeclarationInstantiation" creates these bindings for us.
  361. // Instead of crashing in there, we'll just raise an exception here.
  362. if (TRY(vm.lexical_environment()->has_binding(name)))
  363. return vm.throw_completion<InternalError>(String::formatted("Lexical environment already has binding '{}'", name));
  364. if (m_is_immutable)
  365. vm.lexical_environment()->create_immutable_binding(vm, name, vm.in_strict_mode());
  366. else
  367. vm.lexical_environment()->create_mutable_binding(vm, name, vm.in_strict_mode());
  368. } else {
  369. if (!m_is_global) {
  370. if (m_is_immutable)
  371. vm.variable_environment()->create_immutable_binding(vm, name, vm.in_strict_mode());
  372. else
  373. vm.variable_environment()->create_mutable_binding(vm, name, vm.in_strict_mode());
  374. } else {
  375. // NOTE: CreateVariable with m_is_global set to true is expected to only be used in GlobalDeclarationInstantiation currently, which only uses "false" for "can_be_deleted".
  376. // The only area that sets "can_be_deleted" to true is EvalDeclarationInstantiation, which is currently fully implemented in C++ and not in Bytecode.
  377. verify_cast<GlobalEnvironment>(vm.variable_environment())->create_global_var_binding(name, false);
  378. }
  379. }
  380. return {};
  381. }
  382. ThrowCompletionOr<void> SetVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  383. {
  384. auto& vm = interpreter.vm();
  385. auto const& name = interpreter.current_executable().get_identifier(m_identifier);
  386. auto environment = m_mode == EnvironmentMode::Lexical ? vm.running_execution_context().lexical_environment : vm.running_execution_context().variable_environment;
  387. auto reference = TRY(vm.resolve_binding(name, environment));
  388. switch (m_initialization_mode) {
  389. case InitializationMode::Initialize:
  390. TRY(reference.initialize_referenced_binding(vm, interpreter.accumulator()));
  391. break;
  392. case InitializationMode::Set:
  393. TRY(reference.put_value(vm, interpreter.accumulator()));
  394. break;
  395. case InitializationMode::InitializeOrSet:
  396. VERIFY(reference.is_environment_reference());
  397. VERIFY(reference.base_environment().is_declarative_environment());
  398. TRY(static_cast<DeclarativeEnvironment&>(reference.base_environment()).initialize_or_set_mutable_binding(vm, name, interpreter.accumulator()));
  399. break;
  400. }
  401. return {};
  402. }
  403. ThrowCompletionOr<void> GetById::execute_impl(Bytecode::Interpreter& interpreter) const
  404. {
  405. auto& vm = interpreter.vm();
  406. auto* object = TRY(interpreter.accumulator().to_object(vm));
  407. interpreter.accumulator() = TRY(object->get(interpreter.current_executable().get_identifier(m_property)));
  408. return {};
  409. }
  410. ThrowCompletionOr<void> PutById::execute_impl(Bytecode::Interpreter& interpreter) const
  411. {
  412. auto& vm = interpreter.vm();
  413. auto* object = TRY(interpreter.reg(m_base).to_object(vm));
  414. PropertyKey name = interpreter.current_executable().get_identifier(m_property);
  415. auto value = interpreter.accumulator();
  416. return put_by_property_key(object, value, name, interpreter, m_kind);
  417. }
  418. ThrowCompletionOr<void> DeleteById::execute_impl(Bytecode::Interpreter& interpreter) const
  419. {
  420. auto& vm = interpreter.vm();
  421. auto* object = TRY(interpreter.accumulator().to_object(vm));
  422. auto const& identifier = interpreter.current_executable().get_identifier(m_property);
  423. bool strict = vm.in_strict_mode();
  424. auto reference = Reference { object, identifier, {}, strict };
  425. interpreter.accumulator() = Value(TRY(reference.delete_(vm)));
  426. return {};
  427. };
  428. ThrowCompletionOr<void> Jump::execute_impl(Bytecode::Interpreter& interpreter) const
  429. {
  430. interpreter.jump(*m_true_target);
  431. return {};
  432. }
  433. ThrowCompletionOr<void> ResolveThisBinding::execute_impl(Bytecode::Interpreter& interpreter) const
  434. {
  435. auto& vm = interpreter.vm();
  436. interpreter.accumulator() = TRY(vm.resolve_this_binding());
  437. return {};
  438. }
  439. ThrowCompletionOr<void> GetNewTarget::execute_impl(Bytecode::Interpreter& interpreter) const
  440. {
  441. interpreter.accumulator() = interpreter.vm().get_new_target();
  442. return {};
  443. }
  444. void Jump::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  445. {
  446. if (m_true_target.has_value() && &m_true_target->block() == &from)
  447. m_true_target = Label { to };
  448. if (m_false_target.has_value() && &m_false_target->block() == &from)
  449. m_false_target = Label { to };
  450. }
  451. ThrowCompletionOr<void> JumpConditional::execute_impl(Bytecode::Interpreter& interpreter) const
  452. {
  453. VERIFY(m_true_target.has_value());
  454. VERIFY(m_false_target.has_value());
  455. auto result = interpreter.accumulator();
  456. if (result.to_boolean())
  457. interpreter.jump(m_true_target.value());
  458. else
  459. interpreter.jump(m_false_target.value());
  460. return {};
  461. }
  462. ThrowCompletionOr<void> JumpNullish::execute_impl(Bytecode::Interpreter& interpreter) const
  463. {
  464. VERIFY(m_true_target.has_value());
  465. VERIFY(m_false_target.has_value());
  466. auto result = interpreter.accumulator();
  467. if (result.is_nullish())
  468. interpreter.jump(m_true_target.value());
  469. else
  470. interpreter.jump(m_false_target.value());
  471. return {};
  472. }
  473. ThrowCompletionOr<void> JumpUndefined::execute_impl(Bytecode::Interpreter& interpreter) const
  474. {
  475. VERIFY(m_true_target.has_value());
  476. VERIFY(m_false_target.has_value());
  477. auto result = interpreter.accumulator();
  478. if (result.is_undefined())
  479. interpreter.jump(m_true_target.value());
  480. else
  481. interpreter.jump(m_false_target.value());
  482. return {};
  483. }
  484. // 13.3.8.1 https://tc39.es/ecma262/#sec-runtime-semantics-argumentlistevaluation
  485. static MarkedVector<Value> argument_list_evaluation(Bytecode::Interpreter& interpreter)
  486. {
  487. // Note: Any spreading and actual evaluation is handled in preceding opcodes
  488. // Note: The spec uses the concept of a list, while we create a temporary array
  489. // in the preceding opcodes, so we have to convert in a manner that is not
  490. // visible to the user
  491. auto& vm = interpreter.vm();
  492. MarkedVector<Value> argument_values { vm.heap() };
  493. auto arguments = interpreter.accumulator();
  494. if (!(arguments.is_object() && is<Array>(arguments.as_object()))) {
  495. dbgln("Call arguments are not an array, but: {}", arguments.to_string_without_side_effects());
  496. dbgln("PC: {}[{:4x}]", interpreter.current_block().name(), interpreter.pc());
  497. interpreter.current_executable().dump();
  498. VERIFY_NOT_REACHED();
  499. }
  500. auto& argument_array = arguments.as_array();
  501. auto array_length = argument_array.indexed_properties().array_like_size();
  502. argument_values.ensure_capacity(array_length);
  503. for (size_t i = 0; i < array_length; ++i) {
  504. if (auto maybe_value = argument_array.indexed_properties().get(i); maybe_value.has_value())
  505. argument_values.append(maybe_value.release_value().value);
  506. else
  507. argument_values.append(js_undefined());
  508. }
  509. return argument_values;
  510. }
  511. Completion Call::throw_type_error_for_callee(Bytecode::Interpreter& interpreter, StringView callee_type) const
  512. {
  513. auto callee = interpreter.reg(m_callee);
  514. if (m_expression_string.has_value())
  515. return interpreter.vm().throw_completion<TypeError>(ErrorType::IsNotAEvaluatedFrom, callee.to_string_without_side_effects(), callee_type, interpreter.current_executable().get_string(m_expression_string->value()));
  516. return interpreter.vm().throw_completion<TypeError>(ErrorType::IsNotA, callee.to_string_without_side_effects(), callee_type);
  517. }
  518. ThrowCompletionOr<void> Call::execute_impl(Bytecode::Interpreter& interpreter) const
  519. {
  520. auto& vm = interpreter.vm();
  521. auto callee = interpreter.reg(m_callee);
  522. if (m_type == CallType::Call && !callee.is_function())
  523. return throw_type_error_for_callee(interpreter, "function"sv);
  524. if (m_type == CallType::Construct && !callee.is_constructor())
  525. return throw_type_error_for_callee(interpreter, "constructor"sv);
  526. auto& function = callee.as_function();
  527. auto this_value = interpreter.reg(m_this_value);
  528. auto argument_values = argument_list_evaluation(interpreter);
  529. Value return_value;
  530. if (m_type == CallType::Call)
  531. return_value = TRY(call(vm, function, this_value, move(argument_values)));
  532. else
  533. return_value = TRY(construct(vm, function, move(argument_values)));
  534. interpreter.accumulator() = return_value;
  535. return {};
  536. }
  537. // 13.3.7.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
  538. ThrowCompletionOr<void> SuperCall::execute_impl(Bytecode::Interpreter& interpreter) const
  539. {
  540. auto& vm = interpreter.vm();
  541. // 1. Let newTarget be GetNewTarget().
  542. auto new_target = vm.get_new_target();
  543. // 2. Assert: Type(newTarget) is Object.
  544. VERIFY(new_target.is_object());
  545. // 3. Let func be GetSuperConstructor().
  546. auto* func = get_super_constructor(vm);
  547. // 4. Let argList be ? ArgumentListEvaluation of Arguments.
  548. MarkedVector<Value> arg_list { vm.heap() };
  549. if (m_is_synthetic) {
  550. auto const& value = interpreter.accumulator();
  551. VERIFY(value.is_object() && is<Array>(value.as_object()));
  552. auto const& array_value = static_cast<Array const&>(value.as_object());
  553. auto length = MUST(length_of_array_like(vm, array_value));
  554. for (size_t i = 0; i < length; ++i)
  555. arg_list.append(array_value.get_without_side_effects(PropertyKey { i }));
  556. } else {
  557. arg_list = argument_list_evaluation(interpreter);
  558. }
  559. // 5. If IsConstructor(func) is false, throw a TypeError exception.
  560. if (!Value(func).is_constructor())
  561. return vm.throw_completion<TypeError>(ErrorType::NotAConstructor, "Super constructor");
  562. // 6. Let result be ? Construct(func, argList, newTarget).
  563. auto* result = TRY(construct(vm, static_cast<FunctionObject&>(*func), move(arg_list), &new_target.as_function()));
  564. // 7. Let thisER be GetThisEnvironment().
  565. auto& this_environment = verify_cast<FunctionEnvironment>(get_this_environment(vm));
  566. // 8. Perform ? thisER.BindThisValue(result).
  567. TRY(this_environment.bind_this_value(vm, result));
  568. // 9. Let F be thisER.[[FunctionObject]].
  569. auto& f = this_environment.function_object();
  570. // 10. Assert: F is an ECMAScript function object.
  571. // NOTE: This is implied by the strong C++ type.
  572. // 11. Perform ? InitializeInstanceElements(result, F).
  573. TRY(vm.initialize_instance_elements(*result, f));
  574. // 12. Return result.
  575. interpreter.accumulator() = result;
  576. return {};
  577. }
  578. ThrowCompletionOr<void> NewFunction::execute_impl(Bytecode::Interpreter& interpreter) const
  579. {
  580. auto& vm = interpreter.vm();
  581. interpreter.accumulator() = ECMAScriptFunctionObject::create(interpreter.realm(), m_function_node.name(), m_function_node.source_text(), m_function_node.body(), m_function_node.parameters(), m_function_node.function_length(), vm.lexical_environment(), vm.running_execution_context().private_environment, m_function_node.kind(), m_function_node.is_strict_mode(), m_function_node.might_need_arguments_object(), m_function_node.contains_direct_call_to_eval(), m_function_node.is_arrow_function());
  582. return {};
  583. }
  584. ThrowCompletionOr<void> Return::execute_impl(Bytecode::Interpreter& interpreter) const
  585. {
  586. interpreter.do_return(interpreter.accumulator().value_or(js_undefined()));
  587. return {};
  588. }
  589. ThrowCompletionOr<void> Increment::execute_impl(Bytecode::Interpreter& interpreter) const
  590. {
  591. auto& vm = interpreter.vm();
  592. auto old_value = TRY(interpreter.accumulator().to_numeric(vm));
  593. if (old_value.is_number())
  594. interpreter.accumulator() = Value(old_value.as_double() + 1);
  595. else
  596. interpreter.accumulator() = js_bigint(vm, old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 }));
  597. return {};
  598. }
  599. ThrowCompletionOr<void> Decrement::execute_impl(Bytecode::Interpreter& interpreter) const
  600. {
  601. auto& vm = interpreter.vm();
  602. auto old_value = TRY(interpreter.accumulator().to_numeric(vm));
  603. if (old_value.is_number())
  604. interpreter.accumulator() = Value(old_value.as_double() - 1);
  605. else
  606. interpreter.accumulator() = js_bigint(vm, old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 }));
  607. return {};
  608. }
  609. ThrowCompletionOr<void> Throw::execute_impl(Bytecode::Interpreter& interpreter) const
  610. {
  611. return throw_completion(interpreter.accumulator());
  612. }
  613. ThrowCompletionOr<void> EnterUnwindContext::execute_impl(Bytecode::Interpreter& interpreter) const
  614. {
  615. interpreter.enter_unwind_context(m_handler_target, m_finalizer_target);
  616. interpreter.jump(m_entry_point);
  617. return {};
  618. }
  619. void EnterUnwindContext::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  620. {
  621. if (&m_entry_point.block() == &from)
  622. m_entry_point = Label { to };
  623. if (m_handler_target.has_value() && &m_handler_target->block() == &from)
  624. m_handler_target = Label { to };
  625. if (m_finalizer_target.has_value() && &m_finalizer_target->block() == &from)
  626. m_finalizer_target = Label { to };
  627. }
  628. ThrowCompletionOr<void> FinishUnwind::execute_impl(Bytecode::Interpreter& interpreter) const
  629. {
  630. interpreter.leave_unwind_context();
  631. interpreter.jump(m_next_target);
  632. return {};
  633. }
  634. void FinishUnwind::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  635. {
  636. if (&m_next_target.block() == &from)
  637. m_next_target = Label { to };
  638. }
  639. ThrowCompletionOr<void> LeaveEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
  640. {
  641. if (m_mode == EnvironmentMode::Lexical)
  642. interpreter.vm().running_execution_context().lexical_environment = interpreter.saved_lexical_environment_stack().take_last();
  643. if (m_mode == EnvironmentMode::Var)
  644. interpreter.vm().running_execution_context().variable_environment = interpreter.saved_variable_environment_stack().take_last();
  645. return {};
  646. }
  647. ThrowCompletionOr<void> LeaveUnwindContext::execute_impl(Bytecode::Interpreter& interpreter) const
  648. {
  649. interpreter.leave_unwind_context();
  650. return {};
  651. }
  652. ThrowCompletionOr<void> ContinuePendingUnwind::execute_impl(Bytecode::Interpreter& interpreter) const
  653. {
  654. return interpreter.continue_pending_unwind(m_resume_target);
  655. }
  656. void ContinuePendingUnwind::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  657. {
  658. if (&m_resume_target.block() == &from)
  659. m_resume_target = Label { to };
  660. }
  661. ThrowCompletionOr<void> PushDeclarativeEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
  662. {
  663. auto* environment = interpreter.vm().heap().allocate_without_realm<DeclarativeEnvironment>(interpreter.vm().lexical_environment());
  664. interpreter.vm().running_execution_context().lexical_environment = environment;
  665. interpreter.vm().running_execution_context().variable_environment = environment;
  666. return {};
  667. }
  668. ThrowCompletionOr<void> Yield::execute_impl(Bytecode::Interpreter& interpreter) const
  669. {
  670. auto yielded_value = interpreter.accumulator().value_or(js_undefined());
  671. auto object = Object::create(interpreter.realm(), nullptr);
  672. object->define_direct_property("result", yielded_value, JS::default_attributes);
  673. if (m_continuation_label.has_value())
  674. object->define_direct_property("continuation", Value(static_cast<double>(reinterpret_cast<u64>(&m_continuation_label->block()))), JS::default_attributes);
  675. else
  676. object->define_direct_property("continuation", Value(0), JS::default_attributes);
  677. interpreter.do_return(object);
  678. return {};
  679. }
  680. void Yield::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  681. {
  682. if (m_continuation_label.has_value() && &m_continuation_label->block() == &from)
  683. m_continuation_label = Label { to };
  684. }
  685. ThrowCompletionOr<void> GetByValue::execute_impl(Bytecode::Interpreter& interpreter) const
  686. {
  687. auto& vm = interpreter.vm();
  688. auto* object = TRY(interpreter.reg(m_base).to_object(vm));
  689. auto property_key = TRY(interpreter.accumulator().to_property_key(vm));
  690. interpreter.accumulator() = TRY(object->get(property_key));
  691. return {};
  692. }
  693. ThrowCompletionOr<void> PutByValue::execute_impl(Bytecode::Interpreter& interpreter) const
  694. {
  695. auto& vm = interpreter.vm();
  696. auto* object = TRY(interpreter.reg(m_base).to_object(vm));
  697. auto property_key = TRY(interpreter.reg(m_property).to_property_key(vm));
  698. return put_by_property_key(object, interpreter.accumulator(), property_key, interpreter, m_kind);
  699. }
  700. ThrowCompletionOr<void> DeleteByValue::execute_impl(Bytecode::Interpreter& interpreter) const
  701. {
  702. auto& vm = interpreter.vm();
  703. auto* object = TRY(interpreter.reg(m_base).to_object(vm));
  704. auto property_key = TRY(interpreter.accumulator().to_property_key(vm));
  705. bool strict = vm.in_strict_mode();
  706. auto reference = Reference { object, property_key, {}, strict };
  707. interpreter.accumulator() = Value(TRY(reference.delete_(vm)));
  708. return {};
  709. }
  710. ThrowCompletionOr<void> GetIterator::execute_impl(Bytecode::Interpreter& interpreter) const
  711. {
  712. auto& vm = interpreter.vm();
  713. auto iterator = TRY(get_iterator(vm, interpreter.accumulator()));
  714. interpreter.accumulator() = iterator_to_object(vm, iterator);
  715. return {};
  716. }
  717. // 14.7.5.9 EnumerateObjectProperties ( O ), https://tc39.es/ecma262/#sec-enumerate-object-properties
  718. ThrowCompletionOr<void> GetObjectPropertyIterator::execute_impl(Bytecode::Interpreter& interpreter) const
  719. {
  720. // While the spec does provide an algorithm, it allows us to implement it ourselves so long as we meet the following invariants:
  721. // 1- Returned property keys do not include keys that are Symbols
  722. // 2- Properties of the target object may be deleted during enumeration. A property that is deleted before it is processed by the iterator's next method is ignored
  723. // 3- If new properties are added to the target object during enumeration, the newly added properties are not guaranteed to be processed in the active enumeration
  724. // 4- A property name will be returned by the iterator's next method at most once in any enumeration.
  725. // 5- Enumerating the properties of the target object includes enumerating properties of its prototype, and the prototype of the prototype, and so on, recursively;
  726. // but a property of a prototype is not processed if it has the same name as a property that has already been processed by the iterator's next method.
  727. // 6- The values of [[Enumerable]] attributes are not considered when determining if a property of a prototype object has already been processed.
  728. // 7- The enumerable property names of prototype objects must be obtained by invoking EnumerateObjectProperties passing the prototype object as the argument.
  729. // 8- EnumerateObjectProperties must obtain the own property keys of the target object by calling its [[OwnPropertyKeys]] internal method.
  730. // 9- Property attributes of the target object must be obtained by calling its [[GetOwnProperty]] internal method
  731. // Invariant 3 effectively allows the implementation to ignore newly added keys, and we do so (similar to other implementations).
  732. // Invariants 1 and 6 through 9 are implemented in `enumerable_own_property_names`, which implements the EnumerableOwnPropertyNames AO.
  733. auto& vm = interpreter.vm();
  734. auto* object = TRY(interpreter.accumulator().to_object(vm));
  735. // Note: While the spec doesn't explicitly require these to be ordered, it says that the values should be retrieved via OwnPropertyKeys,
  736. // so we just keep the order consistent anyway.
  737. OrderedHashTable<PropertyKey> properties;
  738. HashTable<Object*> seen_objects;
  739. // Collect all keys immediately (invariant no. 5)
  740. for (auto* object_to_check = object; object_to_check && !seen_objects.contains(object_to_check); object_to_check = TRY(object_to_check->internal_get_prototype_of())) {
  741. seen_objects.set(object_to_check);
  742. for (auto& key : TRY(object_to_check->enumerable_own_property_names(Object::PropertyKind::Key))) {
  743. properties.set(TRY(PropertyKey::from_value(vm, key)));
  744. }
  745. }
  746. Iterator iterator {
  747. .iterator = object,
  748. .next_method = NativeFunction::create(
  749. interpreter.realm(),
  750. [seen_items = HashTable<PropertyKey>(), items = move(properties)](VM& vm) mutable -> ThrowCompletionOr<Value> {
  751. auto& realm = *vm.current_realm();
  752. auto iterated_object_value = vm.this_value();
  753. if (!iterated_object_value.is_object())
  754. return vm.throw_completion<InternalError>("Invalid state for GetObjectPropertyIterator.next");
  755. auto& iterated_object = iterated_object_value.as_object();
  756. auto* result_object = Object::create(realm, nullptr);
  757. while (true) {
  758. if (items.is_empty()) {
  759. result_object->define_direct_property(vm.names.done, JS::Value(true), default_attributes);
  760. return result_object;
  761. }
  762. auto it = items.begin();
  763. auto key = *it;
  764. items.remove(it);
  765. // If the key was already seen, skip over it (invariant no. 4)
  766. auto result = seen_items.set(key);
  767. if (result != AK::HashSetResult::InsertedNewEntry)
  768. continue;
  769. // If the property is deleted, don't include it (invariant no. 2)
  770. if (!TRY(iterated_object.has_property(key)))
  771. continue;
  772. result_object->define_direct_property(vm.names.done, JS::Value(false), default_attributes);
  773. if (key.is_number())
  774. result_object->define_direct_property(vm.names.value, JS::Value(key.as_number()), default_attributes);
  775. else if (key.is_string())
  776. result_object->define_direct_property(vm.names.value, js_string(vm, key.as_string()), default_attributes);
  777. else
  778. VERIFY_NOT_REACHED(); // We should not have non-string/number keys.
  779. return result_object;
  780. }
  781. },
  782. 1,
  783. vm.names.next),
  784. .done = false,
  785. };
  786. interpreter.accumulator() = iterator_to_object(vm, move(iterator));
  787. return {};
  788. }
  789. ThrowCompletionOr<void> IteratorNext::execute_impl(Bytecode::Interpreter& interpreter) const
  790. {
  791. auto& vm = interpreter.vm();
  792. auto* iterator_object = TRY(interpreter.accumulator().to_object(vm));
  793. auto iterator = object_to_iterator(vm, *iterator_object);
  794. interpreter.accumulator() = TRY(iterator_next(vm, iterator));
  795. return {};
  796. }
  797. ThrowCompletionOr<void> IteratorResultDone::execute_impl(Bytecode::Interpreter& interpreter) const
  798. {
  799. auto& vm = interpreter.vm();
  800. auto* iterator_result = TRY(interpreter.accumulator().to_object(vm));
  801. auto complete = TRY(iterator_complete(vm, *iterator_result));
  802. interpreter.accumulator() = Value(complete);
  803. return {};
  804. }
  805. ThrowCompletionOr<void> IteratorResultValue::execute_impl(Bytecode::Interpreter& interpreter) const
  806. {
  807. auto& vm = interpreter.vm();
  808. auto* iterator_result = TRY(interpreter.accumulator().to_object(vm));
  809. interpreter.accumulator() = TRY(iterator_value(vm, *iterator_result));
  810. return {};
  811. }
  812. ThrowCompletionOr<void> NewClass::execute_impl(Bytecode::Interpreter& interpreter) const
  813. {
  814. auto name = m_class_expression.name();
  815. auto scope = interpreter.ast_interpreter_scope();
  816. auto& ast_interpreter = scope.interpreter();
  817. auto* class_object = TRY(m_class_expression.class_definition_evaluation(ast_interpreter, name, name.is_null() ? ""sv : name));
  818. class_object->set_source_text(m_class_expression.source_text());
  819. interpreter.accumulator() = class_object;
  820. return {};
  821. }
  822. // 13.5.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-typeof-operator-runtime-semantics-evaluation
  823. ThrowCompletionOr<void> TypeofVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  824. {
  825. auto& vm = interpreter.vm();
  826. // 1. Let val be the result of evaluating UnaryExpression.
  827. auto const& string = interpreter.current_executable().get_identifier(m_identifier);
  828. auto reference = TRY(vm.resolve_binding(string));
  829. // 2. If val is a Reference Record, then
  830. // a. If IsUnresolvableReference(val) is true, return "undefined".
  831. if (reference.is_unresolvable()) {
  832. interpreter.accumulator() = js_string(vm, "undefined"sv);
  833. return {};
  834. }
  835. // 3. Set val to ? GetValue(val).
  836. auto value = TRY(reference.get_value(vm));
  837. // 4. NOTE: This step is replaced in section B.3.6.3.
  838. // 5. Return a String according to Table 41.
  839. interpreter.accumulator() = js_string(vm, value.typeof());
  840. return {};
  841. }
  842. String Load::to_string_impl(Bytecode::Executable const&) const
  843. {
  844. return String::formatted("Load {}", m_src);
  845. }
  846. String LoadImmediate::to_string_impl(Bytecode::Executable const&) const
  847. {
  848. return String::formatted("LoadImmediate {}", m_value);
  849. }
  850. String Store::to_string_impl(Bytecode::Executable const&) const
  851. {
  852. return String::formatted("Store {}", m_dst);
  853. }
  854. String NewBigInt::to_string_impl(Bytecode::Executable const&) const
  855. {
  856. return String::formatted("NewBigInt \"{}\"", m_bigint.to_base(10));
  857. }
  858. String NewArray::to_string_impl(Bytecode::Executable const&) const
  859. {
  860. StringBuilder builder;
  861. builder.append("NewArray"sv);
  862. if (m_element_count != 0) {
  863. builder.appendff(" [{}-{}]", m_elements[0], m_elements[1]);
  864. }
  865. return builder.to_string();
  866. }
  867. String Append::to_string_impl(Bytecode::Executable const&) const
  868. {
  869. if (m_is_spread)
  870. return String::formatted("Append lhs: **{}", m_lhs);
  871. return String::formatted("Append lhs: {}", m_lhs);
  872. }
  873. String IteratorToArray::to_string_impl(Bytecode::Executable const&) const
  874. {
  875. return "IteratorToArray";
  876. }
  877. String NewString::to_string_impl(Bytecode::Executable const& executable) const
  878. {
  879. return String::formatted("NewString {} (\"{}\")", m_string, executable.string_table->get(m_string));
  880. }
  881. String NewObject::to_string_impl(Bytecode::Executable const&) const
  882. {
  883. return "NewObject";
  884. }
  885. String NewRegExp::to_string_impl(Bytecode::Executable const& executable) const
  886. {
  887. return String::formatted("NewRegExp source:{} (\"{}\") flags:{} (\"{}\")", m_source_index, executable.get_string(m_source_index), m_flags_index, executable.get_string(m_flags_index));
  888. }
  889. String CopyObjectExcludingProperties::to_string_impl(Bytecode::Executable const&) const
  890. {
  891. StringBuilder builder;
  892. builder.appendff("CopyObjectExcludingProperties from:{}", m_from_object);
  893. if (m_excluded_names_count != 0) {
  894. builder.append(" excluding:["sv);
  895. builder.join(", "sv, Span<Register const>(m_excluded_names, m_excluded_names_count));
  896. builder.append(']');
  897. }
  898. return builder.to_string();
  899. }
  900. String ConcatString::to_string_impl(Bytecode::Executable const&) const
  901. {
  902. return String::formatted("ConcatString {}", m_lhs);
  903. }
  904. String GetVariable::to_string_impl(Bytecode::Executable const& executable) const
  905. {
  906. return String::formatted("GetVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier));
  907. }
  908. String DeleteVariable::to_string_impl(Bytecode::Executable const& executable) const
  909. {
  910. return String::formatted("DeleteVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier));
  911. }
  912. String CreateEnvironment::to_string_impl(Bytecode::Executable const&) const
  913. {
  914. auto mode_string = m_mode == EnvironmentMode::Lexical
  915. ? "Lexical"
  916. : "Variable";
  917. return String::formatted("CreateEnvironment mode:{}", mode_string);
  918. }
  919. String CreateVariable::to_string_impl(Bytecode::Executable const& executable) const
  920. {
  921. auto mode_string = m_mode == EnvironmentMode::Lexical ? "Lexical" : "Variable";
  922. return String::formatted("CreateVariable env:{} immutable:{} global:{} {} ({})", mode_string, m_is_immutable, m_is_global, m_identifier, executable.identifier_table->get(m_identifier));
  923. }
  924. String EnterObjectEnvironment::to_string_impl(Executable const&) const
  925. {
  926. return String::formatted("EnterObjectEnvironment");
  927. }
  928. String SetVariable::to_string_impl(Bytecode::Executable const& executable) const
  929. {
  930. auto initialization_mode_name = m_initialization_mode == InitializationMode ::Initialize ? "Initialize"
  931. : m_initialization_mode == InitializationMode::Set ? "Set"
  932. : "InitializeOrSet";
  933. auto mode_string = m_mode == EnvironmentMode::Lexical ? "Lexical" : "Variable";
  934. return String::formatted("SetVariable env:{} init:{} {} ({})", mode_string, initialization_mode_name, m_identifier, executable.identifier_table->get(m_identifier));
  935. }
  936. String PutById::to_string_impl(Bytecode::Executable const& executable) const
  937. {
  938. auto kind = m_kind == PropertyKind::Getter
  939. ? "getter"
  940. : m_kind == PropertyKind::Setter
  941. ? "setter"
  942. : "property";
  943. return String::formatted("PutById kind:{} base:{}, property:{} ({})", kind, m_base, m_property, executable.identifier_table->get(m_property));
  944. }
  945. String GetById::to_string_impl(Bytecode::Executable const& executable) const
  946. {
  947. return String::formatted("GetById {} ({})", m_property, executable.identifier_table->get(m_property));
  948. }
  949. String DeleteById::to_string_impl(Bytecode::Executable const& executable) const
  950. {
  951. return String::formatted("DeleteById {} ({})", m_property, executable.identifier_table->get(m_property));
  952. }
  953. String Jump::to_string_impl(Bytecode::Executable const&) const
  954. {
  955. if (m_true_target.has_value())
  956. return String::formatted("Jump {}", *m_true_target);
  957. return String::formatted("Jump <empty>");
  958. }
  959. String JumpConditional::to_string_impl(Bytecode::Executable const&) const
  960. {
  961. auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
  962. auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
  963. return String::formatted("JumpConditional true:{} false:{}", true_string, false_string);
  964. }
  965. String JumpNullish::to_string_impl(Bytecode::Executable const&) const
  966. {
  967. auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
  968. auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
  969. return String::formatted("JumpNullish null:{} nonnull:{}", true_string, false_string);
  970. }
  971. String JumpUndefined::to_string_impl(Bytecode::Executable const&) const
  972. {
  973. auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
  974. auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
  975. return String::formatted("JumpUndefined undefined:{} not undefined:{}", true_string, false_string);
  976. }
  977. String Call::to_string_impl(Bytecode::Executable const& executable) const
  978. {
  979. if (m_expression_string.has_value())
  980. return String::formatted("Call callee:{}, this:{}, arguments:[...acc] ({})", m_callee, m_this_value, executable.get_string(m_expression_string.value()));
  981. return String::formatted("Call callee:{}, this:{}, arguments:[...acc]", m_callee, m_this_value);
  982. }
  983. String SuperCall::to_string_impl(Bytecode::Executable const&) const
  984. {
  985. return "SuperCall arguments:[...acc]"sv;
  986. }
  987. String NewFunction::to_string_impl(Bytecode::Executable const&) const
  988. {
  989. return "NewFunction";
  990. }
  991. String NewClass::to_string_impl(Bytecode::Executable const&) const
  992. {
  993. auto name = m_class_expression.name();
  994. return String::formatted("NewClass '{}'", name.is_null() ? ""sv : name);
  995. }
  996. String Return::to_string_impl(Bytecode::Executable const&) const
  997. {
  998. return "Return";
  999. }
  1000. String Increment::to_string_impl(Bytecode::Executable const&) const
  1001. {
  1002. return "Increment";
  1003. }
  1004. String Decrement::to_string_impl(Bytecode::Executable const&) const
  1005. {
  1006. return "Decrement";
  1007. }
  1008. String Throw::to_string_impl(Bytecode::Executable const&) const
  1009. {
  1010. return "Throw";
  1011. }
  1012. String EnterUnwindContext::to_string_impl(Bytecode::Executable const&) const
  1013. {
  1014. auto handler_string = m_handler_target.has_value() ? String::formatted("{}", *m_handler_target) : "<empty>";
  1015. auto finalizer_string = m_finalizer_target.has_value() ? String::formatted("{}", *m_finalizer_target) : "<empty>";
  1016. return String::formatted("EnterUnwindContext handler:{} finalizer:{} entry:{}", handler_string, finalizer_string, m_entry_point);
  1017. }
  1018. String FinishUnwind::to_string_impl(Bytecode::Executable const&) const
  1019. {
  1020. return String::formatted("FinishUnwind next:{}", m_next_target);
  1021. }
  1022. String LeaveEnvironment::to_string_impl(Bytecode::Executable const&) const
  1023. {
  1024. auto mode_string = m_mode == EnvironmentMode::Lexical
  1025. ? "Lexical"
  1026. : "Variable";
  1027. return String::formatted("LeaveEnvironment env:{}", mode_string);
  1028. }
  1029. String LeaveUnwindContext::to_string_impl(Bytecode::Executable const&) const
  1030. {
  1031. return "LeaveUnwindContext";
  1032. }
  1033. String ContinuePendingUnwind::to_string_impl(Bytecode::Executable const&) const
  1034. {
  1035. return String::formatted("ContinuePendingUnwind resume:{}", m_resume_target);
  1036. }
  1037. String PushDeclarativeEnvironment::to_string_impl(Bytecode::Executable const& executable) const
  1038. {
  1039. StringBuilder builder;
  1040. builder.append("PushDeclarativeEnvironment"sv);
  1041. if (!m_variables.is_empty()) {
  1042. builder.append(" {"sv);
  1043. Vector<String> names;
  1044. for (auto& it : m_variables)
  1045. names.append(executable.get_string(it.key));
  1046. builder.append('}');
  1047. builder.join(", "sv, names);
  1048. }
  1049. return builder.to_string();
  1050. }
  1051. String Yield::to_string_impl(Bytecode::Executable const&) const
  1052. {
  1053. if (m_continuation_label.has_value())
  1054. return String::formatted("Yield continuation:@{}", m_continuation_label->block().name());
  1055. return String::formatted("Yield return");
  1056. }
  1057. String GetByValue::to_string_impl(Bytecode::Executable const&) const
  1058. {
  1059. return String::formatted("GetByValue base:{}", m_base);
  1060. }
  1061. String PutByValue::to_string_impl(Bytecode::Executable const&) const
  1062. {
  1063. auto kind = m_kind == PropertyKind::Getter
  1064. ? "getter"
  1065. : m_kind == PropertyKind::Setter
  1066. ? "setter"
  1067. : "property";
  1068. return String::formatted("PutByValue kind:{} base:{}, property:{}", kind, m_base, m_property);
  1069. }
  1070. String DeleteByValue::to_string_impl(Bytecode::Executable const&) const
  1071. {
  1072. return String::formatted("DeleteByValue base:{}", m_base);
  1073. }
  1074. String GetIterator::to_string_impl(Executable const&) const
  1075. {
  1076. return "GetIterator";
  1077. }
  1078. String GetObjectPropertyIterator::to_string_impl(Bytecode::Executable const&) const
  1079. {
  1080. return "GetObjectPropertyIterator";
  1081. }
  1082. String IteratorNext::to_string_impl(Executable const&) const
  1083. {
  1084. return "IteratorNext";
  1085. }
  1086. String IteratorResultDone::to_string_impl(Executable const&) const
  1087. {
  1088. return "IteratorResultDone";
  1089. }
  1090. String IteratorResultValue::to_string_impl(Executable const&) const
  1091. {
  1092. return "IteratorResultValue";
  1093. }
  1094. String ResolveThisBinding::to_string_impl(Bytecode::Executable const&) const
  1095. {
  1096. return "ResolveThisBinding"sv;
  1097. }
  1098. String GetNewTarget::to_string_impl(Bytecode::Executable const&) const
  1099. {
  1100. return "GetNewTarget"sv;
  1101. }
  1102. String TypeofVariable::to_string_impl(Bytecode::Executable const& executable) const
  1103. {
  1104. return String::formatted("TypeofVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier));
  1105. }
  1106. }