Process.cpp 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991
  1. /*
  2. * Copyright (c) 2018-2022, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Singleton.h>
  7. #include <AK/StdLibExtras.h>
  8. #include <AK/Time.h>
  9. #include <AK/Types.h>
  10. #include <Kernel/API/Syscall.h>
  11. #include <Kernel/Arch/InterruptDisabler.h>
  12. #include <Kernel/Coredump.h>
  13. #include <Kernel/Credentials.h>
  14. #include <Kernel/Debug.h>
  15. #include <Kernel/Devices/DeviceManagement.h>
  16. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  17. # include <Kernel/Devices/KCOVDevice.h>
  18. #endif
  19. #include <Kernel/API/POSIX/errno.h>
  20. #include <Kernel/Devices/NullDevice.h>
  21. #include <Kernel/FileSystem/Custody.h>
  22. #include <Kernel/FileSystem/OpenFileDescription.h>
  23. #include <Kernel/FileSystem/VirtualFileSystem.h>
  24. #include <Kernel/KBufferBuilder.h>
  25. #include <Kernel/KSyms.h>
  26. #include <Kernel/Memory/AnonymousVMObject.h>
  27. #include <Kernel/Memory/PageDirectory.h>
  28. #include <Kernel/Memory/SharedInodeVMObject.h>
  29. #include <Kernel/Panic.h>
  30. #include <Kernel/PerformanceEventBuffer.h>
  31. #include <Kernel/PerformanceManager.h>
  32. #include <Kernel/Process.h>
  33. #include <Kernel/Scheduler.h>
  34. #include <Kernel/Sections.h>
  35. #include <Kernel/StdLib.h>
  36. #include <Kernel/TTY/TTY.h>
  37. #include <Kernel/Thread.h>
  38. #include <Kernel/ThreadTracer.h>
  39. #include <Kernel/TimerQueue.h>
  40. #include <LibC/limits.h>
  41. namespace Kernel {
  42. static void create_signal_trampoline();
  43. extern ProcessID g_init_pid;
  44. RecursiveSpinlock g_profiling_lock { LockRank::None };
  45. static Atomic<pid_t> next_pid;
  46. static Singleton<SpinlockProtected<Process::List>> s_all_instances;
  47. READONLY_AFTER_INIT Memory::Region* g_signal_trampoline_region;
  48. static Singleton<MutexProtected<OwnPtr<KString>>> s_hostname;
  49. MutexProtected<OwnPtr<KString>>& hostname()
  50. {
  51. return *s_hostname;
  52. }
  53. SpinlockProtected<Process::List>& Process::all_instances()
  54. {
  55. return *s_all_instances;
  56. }
  57. ProcessID Process::allocate_pid()
  58. {
  59. // Overflow is UB, and negative PIDs wreck havoc.
  60. // TODO: Handle PID overflow
  61. // For example: Use an Atomic<u32>, mask the most significant bit,
  62. // retry if PID is already taken as a PID, taken as a TID,
  63. // takes as a PGID, taken as a SID, or zero.
  64. return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
  65. }
  66. UNMAP_AFTER_INIT void Process::initialize()
  67. {
  68. next_pid.store(0, AK::MemoryOrder::memory_order_release);
  69. // Note: This is called before scheduling is initialized, and before APs are booted.
  70. // So we can "safely" bypass the lock here.
  71. reinterpret_cast<OwnPtr<KString>&>(hostname()) = KString::must_create("courage"sv);
  72. create_signal_trampoline();
  73. }
  74. bool Process::in_group(GroupID gid) const
  75. {
  76. auto credentials = this->credentials();
  77. return credentials->gid() == gid || credentials->extra_gids().contains_slow(gid);
  78. }
  79. void Process::kill_threads_except_self()
  80. {
  81. InterruptDisabler disabler;
  82. if (thread_count() <= 1)
  83. return;
  84. auto* current_thread = Thread::current();
  85. for_each_thread([&](Thread& thread) {
  86. if (&thread == current_thread)
  87. return;
  88. if (auto state = thread.state(); state == Thread::State::Dead
  89. || state == Thread::State::Dying)
  90. return;
  91. // We need to detach this thread in case it hasn't been joined
  92. thread.detach();
  93. thread.set_should_die();
  94. });
  95. u32 dropped_lock_count = 0;
  96. if (big_lock().force_unlock_exclusive_if_locked(dropped_lock_count) != LockMode::Unlocked)
  97. dbgln("Process {} big lock had {} locks", *this, dropped_lock_count);
  98. }
  99. void Process::kill_all_threads()
  100. {
  101. for_each_thread([&](Thread& thread) {
  102. // We need to detach this thread in case it hasn't been joined
  103. thread.detach();
  104. thread.set_should_die();
  105. });
  106. }
  107. void Process::register_new(Process& process)
  108. {
  109. // Note: this is essentially the same like process->ref()
  110. LockRefPtr<Process> new_process = process;
  111. all_instances().with([&](auto& list) {
  112. list.prepend(process);
  113. });
  114. }
  115. ErrorOr<NonnullLockRefPtr<Process>> Process::try_create_user_process(LockRefPtr<Thread>& first_thread, StringView path, UserID uid, GroupID gid, NonnullOwnPtrVector<KString> arguments, NonnullOwnPtrVector<KString> environment, TTY* tty)
  116. {
  117. auto parts = path.split_view('/');
  118. if (arguments.is_empty()) {
  119. auto last_part = TRY(KString::try_create(parts.last()));
  120. TRY(arguments.try_append(move(last_part)));
  121. }
  122. auto path_string = TRY(KString::try_create(path));
  123. auto name = TRY(KString::try_create(parts.last()));
  124. auto process = TRY(Process::try_create(first_thread, move(name), uid, gid, ProcessID(0), false, VirtualFileSystem::the().root_custody(), nullptr, tty));
  125. TRY(process->m_fds.with_exclusive([&](auto& fds) -> ErrorOr<void> {
  126. TRY(fds.try_resize(Process::OpenFileDescriptions::max_open()));
  127. auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : DeviceManagement::the().null_device();
  128. auto description = TRY(device_to_use_as_tty.open(O_RDWR));
  129. auto setup_description = [&](int fd) {
  130. fds.m_fds_metadatas[fd].allocate();
  131. fds[fd].set(*description);
  132. };
  133. setup_description(0);
  134. setup_description(1);
  135. setup_description(2);
  136. return {};
  137. }));
  138. Thread* new_main_thread = nullptr;
  139. u32 prev_flags = 0;
  140. if (auto result = process->exec(move(path_string), move(arguments), move(environment), new_main_thread, prev_flags); result.is_error()) {
  141. dbgln("Failed to exec {}: {}", path, result.error());
  142. first_thread = nullptr;
  143. return result.release_error();
  144. }
  145. register_new(*process);
  146. // NOTE: All user processes have a leaked ref on them. It's balanced by Thread::WaitBlockerSet::finalize().
  147. process->ref();
  148. {
  149. SpinlockLocker lock(g_scheduler_lock);
  150. new_main_thread->set_state(Thread::State::Runnable);
  151. }
  152. return process;
  153. }
  154. LockRefPtr<Process> Process::create_kernel_process(LockRefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, void (*entry)(void*), void* entry_data, u32 affinity, RegisterProcess do_register)
  155. {
  156. auto process_or_error = Process::try_create(first_thread, move(name), UserID(0), GroupID(0), ProcessID(0), true);
  157. if (process_or_error.is_error())
  158. return {};
  159. auto process = process_or_error.release_value();
  160. first_thread->regs().set_ip((FlatPtr)entry);
  161. #if ARCH(I386)
  162. first_thread->regs().esp = FlatPtr(entry_data); // entry function argument is expected to be in regs.esp
  163. #elif ARCH(X86_64)
  164. first_thread->regs().rdi = FlatPtr(entry_data); // entry function argument is expected to be in regs.rdi
  165. #else
  166. # error Unknown architecture
  167. #endif
  168. if (do_register == RegisterProcess::Yes)
  169. register_new(*process);
  170. SpinlockLocker lock(g_scheduler_lock);
  171. first_thread->set_affinity(affinity);
  172. first_thread->set_state(Thread::State::Runnable);
  173. return process;
  174. }
  175. void Process::protect_data()
  176. {
  177. m_protected_data_refs.unref([&]() {
  178. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values_do_not_access_directly }, false);
  179. });
  180. }
  181. void Process::unprotect_data()
  182. {
  183. m_protected_data_refs.ref([&]() {
  184. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values_do_not_access_directly }, true);
  185. });
  186. }
  187. ErrorOr<NonnullLockRefPtr<Process>> Process::try_create(LockRefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> current_directory, RefPtr<Custody> executable, TTY* tty, Process* fork_parent)
  188. {
  189. auto space = TRY(Memory::AddressSpace::try_create(fork_parent ? &fork_parent->address_space() : nullptr));
  190. auto unveil_tree = UnveilNode { TRY(KString::try_create("/"sv)), UnveilMetadata(TRY(KString::try_create("/"sv))) };
  191. auto credentials = TRY(Credentials::create(uid, gid, uid, gid, uid, gid, {}));
  192. auto process = TRY(adopt_nonnull_lock_ref_or_enomem(new (nothrow) Process(move(name), move(credentials), ppid, is_kernel_process, move(current_directory), move(executable), tty, move(unveil_tree))));
  193. TRY(process->attach_resources(move(space), first_thread, fork_parent));
  194. return process;
  195. }
  196. Process::Process(NonnullOwnPtr<KString> name, NonnullRefPtr<Credentials> credentials, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> current_directory, RefPtr<Custody> executable, TTY* tty, UnveilNode unveil_tree)
  197. : m_name(move(name))
  198. , m_protected_data_lock(LockRank::None)
  199. , m_is_kernel_process(is_kernel_process)
  200. , m_executable(LockRank::None, move(executable))
  201. , m_current_directory(LockRank::None, move(current_directory))
  202. , m_tty(tty)
  203. , m_unveil_data(LockRank::None, move(unveil_tree))
  204. , m_wait_blocker_set(*this)
  205. {
  206. // Ensure that we protect the process data when exiting the constructor.
  207. with_mutable_protected_data([&](auto& protected_data) {
  208. protected_data.pid = allocate_pid();
  209. protected_data.ppid = ppid;
  210. protected_data.credentials = move(credentials);
  211. });
  212. dbgln_if(PROCESS_DEBUG, "Created new process {}({})", m_name, this->pid().value());
  213. }
  214. ErrorOr<void> Process::attach_resources(NonnullOwnPtr<Memory::AddressSpace>&& preallocated_space, LockRefPtr<Thread>& first_thread, Process* fork_parent)
  215. {
  216. m_space = move(preallocated_space);
  217. auto create_first_thread = [&] {
  218. if (fork_parent) {
  219. // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process.
  220. return Thread::current()->try_clone(*this);
  221. }
  222. // NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.)
  223. return Thread::try_create(*this);
  224. };
  225. first_thread = TRY(create_first_thread());
  226. if (!fork_parent) {
  227. // FIXME: Figure out if this is really necessary.
  228. first_thread->detach();
  229. }
  230. auto weak_ptr = TRY(this->try_make_weak_ptr());
  231. m_procfs_traits = TRY(ProcessProcFSTraits::try_create({}, move(weak_ptr)));
  232. // This is not actually explicitly verified by any official documentation,
  233. // but it's not listed anywhere as being cleared, and rsync expects it to work like this.
  234. if (fork_parent)
  235. m_signal_action_data = fork_parent->m_signal_action_data;
  236. return {};
  237. }
  238. Process::~Process()
  239. {
  240. unprotect_data();
  241. VERIFY(thread_count() == 0); // all threads should have been finalized
  242. VERIFY(!m_alarm_timer);
  243. PerformanceManager::add_process_exit_event(*this);
  244. }
  245. // Make sure the compiler doesn't "optimize away" this function:
  246. extern void signal_trampoline_dummy() __attribute__((used));
  247. void signal_trampoline_dummy()
  248. {
  249. #if ARCH(I386)
  250. // The trampoline preserves the current eax, pushes the signal code and
  251. // then calls the signal handler. We do this because, when interrupting a
  252. // blocking syscall, that syscall may return some special error code in eax;
  253. // This error code would likely be overwritten by the signal handler, so it's
  254. // necessary to preserve it here.
  255. constexpr static auto offset_to_first_register_slot = sizeof(__ucontext) + sizeof(siginfo) + sizeof(FPUState) + 4 * sizeof(FlatPtr);
  256. asm(
  257. ".intel_syntax noprefix\n"
  258. ".globl asm_signal_trampoline\n"
  259. "asm_signal_trampoline:\n"
  260. // stack state: 0, ucontext, signal_info, (alignment = 16), fpu_state (alignment = 16), 0, ucontext*, siginfo*, signal, (alignment = 16), handler
  261. // Pop the handler into ecx
  262. "pop ecx\n" // save handler
  263. // we have to save eax 'cause it might be the return value from a syscall
  264. "mov [esp+%P1], eax\n"
  265. // Note that the stack is currently aligned to 16 bytes as we popped the extra entries above.
  266. // and it's already setup to call the handler with the expected values on the stack.
  267. // call the signal handler
  268. "call ecx\n"
  269. // drop the 4 arguments
  270. "add esp, 16\n"
  271. // Current stack state is just saved_eax, ucontext, signal_info, fpu_state?.
  272. // syscall SC_sigreturn
  273. "mov eax, %P0\n"
  274. "int 0x82\n"
  275. ".globl asm_signal_trampoline_end\n"
  276. "asm_signal_trampoline_end:\n"
  277. ".att_syntax"
  278. :
  279. : "i"(Syscall::SC_sigreturn),
  280. "i"(offset_to_first_register_slot));
  281. #elif ARCH(X86_64)
  282. // The trampoline preserves the current rax, pushes the signal code and
  283. // then calls the signal handler. We do this because, when interrupting a
  284. // blocking syscall, that syscall may return some special error code in eax;
  285. // This error code would likely be overwritten by the signal handler, so it's
  286. // necessary to preserve it here.
  287. constexpr static auto offset_to_first_register_slot = sizeof(__ucontext) + sizeof(siginfo) + sizeof(FPUState) + 3 * sizeof(FlatPtr);
  288. asm(
  289. ".intel_syntax noprefix\n"
  290. ".globl asm_signal_trampoline\n"
  291. "asm_signal_trampoline:\n"
  292. // stack state: 0, ucontext, signal_info (alignment = 16), fpu_state (alignment = 16), ucontext*, siginfo*, signal, handler
  293. // Pop the handler into rcx
  294. "pop rcx\n" // save handler
  295. // we have to save rax 'cause it might be the return value from a syscall
  296. "mov [rsp+%P1], rax\n"
  297. // pop signal number into rdi (first param)
  298. "pop rdi\n"
  299. // pop siginfo* into rsi (second param)
  300. "pop rsi\n"
  301. // pop ucontext* into rdx (third param)
  302. "pop rdx\n"
  303. // Note that the stack is currently aligned to 16 bytes as we popped the extra entries above.
  304. // call the signal handler
  305. "call rcx\n"
  306. // Current stack state is just saved_rax, ucontext, signal_info, fpu_state.
  307. // syscall SC_sigreturn
  308. "mov rax, %P0\n"
  309. "int 0x82\n"
  310. ".globl asm_signal_trampoline_end\n"
  311. "asm_signal_trampoline_end:\n"
  312. ".att_syntax"
  313. :
  314. : "i"(Syscall::SC_sigreturn),
  315. "i"(offset_to_first_register_slot));
  316. #endif
  317. }
  318. extern "C" char const asm_signal_trampoline[];
  319. extern "C" char const asm_signal_trampoline_end[];
  320. void create_signal_trampoline()
  321. {
  322. // NOTE: We leak this region.
  323. g_signal_trampoline_region = MM.allocate_kernel_region(PAGE_SIZE, "Signal trampolines"sv, Memory::Region::Access::ReadWrite).release_value().leak_ptr();
  324. g_signal_trampoline_region->set_syscall_region(true);
  325. size_t trampoline_size = asm_signal_trampoline_end - asm_signal_trampoline;
  326. u8* code_ptr = (u8*)g_signal_trampoline_region->vaddr().as_ptr();
  327. memcpy(code_ptr, asm_signal_trampoline, trampoline_size);
  328. g_signal_trampoline_region->set_writable(false);
  329. g_signal_trampoline_region->remap();
  330. }
  331. void Process::crash(int signal, FlatPtr ip, bool out_of_memory)
  332. {
  333. VERIFY(!is_dead());
  334. VERIFY(&Process::current() == this);
  335. if (out_of_memory) {
  336. dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this);
  337. } else {
  338. if (ip >= kernel_load_base && g_kernel_symbols_available) {
  339. auto const* symbol = symbolicate_kernel_address(ip);
  340. dbgln("\033[31;1m{:p} {} +{}\033[0m\n", ip, (symbol ? symbol->name : "(k?)"), (symbol ? ip - symbol->address : 0));
  341. } else {
  342. dbgln("\033[31;1m{:p} (?)\033[0m\n", ip);
  343. }
  344. dump_backtrace();
  345. }
  346. with_mutable_protected_data([&](auto& protected_data) {
  347. protected_data.termination_signal = signal;
  348. });
  349. set_should_generate_coredump(!out_of_memory);
  350. address_space().dump_regions();
  351. VERIFY(is_user_process());
  352. die();
  353. // We can not return from here, as there is nowhere
  354. // to unwind to, so die right away.
  355. Thread::current()->die_if_needed();
  356. VERIFY_NOT_REACHED();
  357. }
  358. LockRefPtr<Process> Process::from_pid(ProcessID pid)
  359. {
  360. return all_instances().with([&](auto const& list) -> LockRefPtr<Process> {
  361. for (auto const& process : list) {
  362. if (process.pid() == pid)
  363. return &process;
  364. }
  365. return {};
  366. });
  367. }
  368. Process::OpenFileDescriptionAndFlags const* Process::OpenFileDescriptions::get_if_valid(size_t i) const
  369. {
  370. if (m_fds_metadatas.size() <= i)
  371. return nullptr;
  372. if (auto const& metadata = m_fds_metadatas[i]; metadata.is_valid())
  373. return &metadata;
  374. return nullptr;
  375. }
  376. Process::OpenFileDescriptionAndFlags* Process::OpenFileDescriptions::get_if_valid(size_t i)
  377. {
  378. if (m_fds_metadatas.size() <= i)
  379. return nullptr;
  380. if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
  381. return &metadata;
  382. return nullptr;
  383. }
  384. Process::OpenFileDescriptionAndFlags const& Process::OpenFileDescriptions::at(size_t i) const
  385. {
  386. VERIFY(m_fds_metadatas[i].is_allocated());
  387. return m_fds_metadatas[i];
  388. }
  389. Process::OpenFileDescriptionAndFlags& Process::OpenFileDescriptions::at(size_t i)
  390. {
  391. VERIFY(m_fds_metadatas[i].is_allocated());
  392. return m_fds_metadatas[i];
  393. }
  394. ErrorOr<NonnullLockRefPtr<OpenFileDescription>> Process::OpenFileDescriptions::open_file_description(int fd) const
  395. {
  396. if (fd < 0)
  397. return EBADF;
  398. if (static_cast<size_t>(fd) >= m_fds_metadatas.size())
  399. return EBADF;
  400. LockRefPtr description = m_fds_metadatas[fd].description();
  401. if (!description)
  402. return EBADF;
  403. return description.release_nonnull();
  404. }
  405. void Process::OpenFileDescriptions::enumerate(Function<void(OpenFileDescriptionAndFlags const&)> callback) const
  406. {
  407. for (auto const& file_description_metadata : m_fds_metadatas) {
  408. callback(file_description_metadata);
  409. }
  410. }
  411. ErrorOr<void> Process::OpenFileDescriptions::try_enumerate(Function<ErrorOr<void>(OpenFileDescriptionAndFlags const&)> callback) const
  412. {
  413. for (auto const& file_description_metadata : m_fds_metadatas) {
  414. TRY(callback(file_description_metadata));
  415. }
  416. return {};
  417. }
  418. void Process::OpenFileDescriptions::change_each(Function<void(OpenFileDescriptionAndFlags&)> callback)
  419. {
  420. for (auto& file_description_metadata : m_fds_metadatas) {
  421. callback(file_description_metadata);
  422. }
  423. }
  424. size_t Process::OpenFileDescriptions::open_count() const
  425. {
  426. size_t count = 0;
  427. enumerate([&](auto& file_description_metadata) {
  428. if (file_description_metadata.is_valid())
  429. ++count;
  430. });
  431. return count;
  432. }
  433. ErrorOr<Process::ScopedDescriptionAllocation> Process::OpenFileDescriptions::allocate(int first_candidate_fd)
  434. {
  435. for (size_t i = first_candidate_fd; i < max_open(); ++i) {
  436. if (!m_fds_metadatas[i].is_allocated()) {
  437. m_fds_metadatas[i].allocate();
  438. return Process::ScopedDescriptionAllocation { static_cast<int>(i), &m_fds_metadatas[i] };
  439. }
  440. }
  441. return EMFILE;
  442. }
  443. Time kgettimeofday()
  444. {
  445. return TimeManagement::now();
  446. }
  447. siginfo_t Process::wait_info() const
  448. {
  449. siginfo_t siginfo {};
  450. siginfo.si_signo = SIGCHLD;
  451. siginfo.si_pid = pid().value();
  452. siginfo.si_uid = uid().value();
  453. with_protected_data([&](auto& protected_data) {
  454. if (protected_data.termination_signal != 0) {
  455. siginfo.si_status = protected_data.termination_signal;
  456. siginfo.si_code = CLD_KILLED;
  457. } else {
  458. siginfo.si_status = protected_data.termination_status;
  459. siginfo.si_code = CLD_EXITED;
  460. }
  461. });
  462. return siginfo;
  463. }
  464. NonnullRefPtr<Custody> Process::current_directory()
  465. {
  466. return m_current_directory.with([&](auto& current_directory) -> NonnullRefPtr<Custody> {
  467. if (!current_directory)
  468. current_directory = VirtualFileSystem::the().root_custody();
  469. return *current_directory;
  470. });
  471. }
  472. ErrorOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Userspace<char const*> user_path, size_t path_length)
  473. {
  474. if (path_length == 0)
  475. return EINVAL;
  476. if (path_length > PATH_MAX)
  477. return ENAMETOOLONG;
  478. return try_copy_kstring_from_user(user_path, path_length);
  479. }
  480. ErrorOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Syscall::StringArgument const& path)
  481. {
  482. Userspace<char const*> path_characters((FlatPtr)path.characters);
  483. return get_syscall_path_argument(path_characters, path.length);
  484. }
  485. ErrorOr<void> Process::dump_core()
  486. {
  487. VERIFY(is_dumpable());
  488. VERIFY(should_generate_coredump());
  489. dbgln("Generating coredump for pid: {}", pid().value());
  490. auto coredump_path = TRY(KString::formatted("/tmp/coredump/{}_{}_{}", name(), pid().value(), kgettimeofday().to_truncated_seconds()));
  491. auto coredump = TRY(Coredump::try_create(*this, coredump_path->view()));
  492. return coredump->write();
  493. }
  494. ErrorOr<void> Process::dump_perfcore()
  495. {
  496. VERIFY(is_dumpable());
  497. VERIFY(m_perf_event_buffer);
  498. dbgln("Generating perfcore for pid: {}", pid().value());
  499. // Try to generate a filename which isn't already used.
  500. auto base_filename = TRY(KString::formatted("{}_{}", name(), pid().value()));
  501. auto perfcore_filename = TRY(KString::formatted("{}.profile", base_filename));
  502. LockRefPtr<OpenFileDescription> description;
  503. auto credentials = this->credentials();
  504. for (size_t attempt = 1; attempt <= 10; ++attempt) {
  505. auto description_or_error = VirtualFileSystem::the().open(credentials, perfcore_filename->view(), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { 0, 0 });
  506. if (!description_or_error.is_error()) {
  507. description = description_or_error.release_value();
  508. break;
  509. }
  510. perfcore_filename = TRY(KString::formatted("{}.{}.profile", base_filename, attempt));
  511. }
  512. if (!description) {
  513. dbgln("Failed to generate perfcore for pid {}: Could not generate filename for the perfcore file.", pid().value());
  514. return EEXIST;
  515. }
  516. auto builder = TRY(KBufferBuilder::try_create());
  517. TRY(m_perf_event_buffer->to_json(builder));
  518. auto json = builder.build();
  519. if (!json) {
  520. dbgln("Failed to generate perfcore for pid {}: Could not allocate buffer.", pid().value());
  521. return ENOMEM;
  522. }
  523. auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data());
  524. TRY(description->write(json_buffer, json->size()));
  525. dbgln("Wrote perfcore for pid {} to {}", pid().value(), perfcore_filename);
  526. return {};
  527. }
  528. void Process::finalize()
  529. {
  530. VERIFY(Thread::current() == g_finalizer);
  531. dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this);
  532. if (veil_state() == VeilState::Dropped)
  533. dbgln("\x1b[01;31mProcess '{}' exited with the veil left open\x1b[0m", name());
  534. if (g_init_pid != 0 && pid() == g_init_pid)
  535. PANIC("Init process quit unexpectedly. Exit code: {}", termination_status());
  536. if (is_dumpable()) {
  537. if (m_should_generate_coredump) {
  538. auto result = dump_core();
  539. if (result.is_error()) {
  540. dmesgln("Failed to write coredump for pid {}: {}", pid(), result.error());
  541. }
  542. }
  543. if (m_perf_event_buffer) {
  544. auto result = dump_perfcore();
  545. if (result.is_error())
  546. dmesgln("Failed to write perfcore for pid {}: {}", pid(), result.error());
  547. TimeManagement::the().disable_profile_timer();
  548. }
  549. }
  550. m_threads_for_coredump.clear();
  551. if (m_alarm_timer)
  552. TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull());
  553. m_fds.with_exclusive([](auto& fds) { fds.clear(); });
  554. m_tty = nullptr;
  555. m_executable.with([](auto& executable) { executable = nullptr; });
  556. m_arguments.clear();
  557. m_environment.clear();
  558. m_state.store(State::Dead, AK::MemoryOrder::memory_order_release);
  559. {
  560. if (auto parent_process = Process::from_pid(ppid())) {
  561. if (parent_process->is_user_process() && (parent_process->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT) != SA_NOCLDWAIT)
  562. (void)parent_process->send_signal(SIGCHLD, this);
  563. }
  564. }
  565. if (!!ppid()) {
  566. if (auto parent = Process::from_pid(ppid())) {
  567. parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children;
  568. parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children;
  569. }
  570. }
  571. unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated);
  572. m_space->remove_all_regions({});
  573. VERIFY(ref_count() > 0);
  574. // WaitBlockerSet::finalize will be in charge of dropping the last
  575. // reference if there are still waiters around, or whenever the last
  576. // waitable states are consumed. Unless there is no parent around
  577. // anymore, in which case we'll just drop it right away.
  578. m_wait_blocker_set.finalize();
  579. }
  580. void Process::disowned_by_waiter(Process& process)
  581. {
  582. m_wait_blocker_set.disowned_by_waiter(process);
  583. }
  584. void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal)
  585. {
  586. LockRefPtr<Process> waiter_process;
  587. if (auto* my_tracer = tracer())
  588. waiter_process = Process::from_pid(my_tracer->tracer_pid());
  589. else
  590. waiter_process = Process::from_pid(ppid());
  591. if (waiter_process)
  592. waiter_process->m_wait_blocker_set.unblock(*this, flags, signal);
  593. }
  594. void Process::die()
  595. {
  596. auto expected = State::Running;
  597. if (!m_state.compare_exchange_strong(expected, State::Dying, AK::memory_order_acquire)) {
  598. // It's possible that another thread calls this at almost the same time
  599. // as we can't always instantly kill other threads (they may be blocked)
  600. // So if we already were called then other threads should stop running
  601. // momentarily and we only really need to service the first thread
  602. return;
  603. }
  604. // Let go of the TTY, otherwise a slave PTY may keep the master PTY from
  605. // getting an EOF when the last process using the slave PTY dies.
  606. // If the master PTY owner relies on an EOF to know when to wait() on a
  607. // slave owner, we have to allow the PTY pair to be torn down.
  608. m_tty = nullptr;
  609. VERIFY(m_threads_for_coredump.is_empty());
  610. for_each_thread([&](auto& thread) {
  611. auto result = m_threads_for_coredump.try_append(thread);
  612. if (result.is_error())
  613. dbgln("Failed to add thread {} to coredump due to OOM", thread.tid());
  614. });
  615. all_instances().with([&](auto const& list) {
  616. for (auto it = list.begin(); it != list.end();) {
  617. auto& process = *it;
  618. ++it;
  619. if (process.has_tracee_thread(pid())) {
  620. dbgln_if(PROCESS_DEBUG, "Process {} ({}) is attached by {} ({}) which will exit", process.name(), process.pid(), name(), pid());
  621. process.stop_tracing();
  622. auto err = process.send_signal(SIGSTOP, this);
  623. if (err.is_error())
  624. dbgln("Failed to send the SIGSTOP signal to {} ({})", process.name(), process.pid());
  625. }
  626. }
  627. });
  628. kill_all_threads();
  629. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  630. KCOVDevice::free_process();
  631. #endif
  632. }
  633. void Process::terminate_due_to_signal(u8 signal)
  634. {
  635. VERIFY_INTERRUPTS_DISABLED();
  636. VERIFY(signal < NSIG);
  637. VERIFY(&Process::current() == this);
  638. dbgln("Terminating {} due to signal {}", *this, signal);
  639. with_mutable_protected_data([&](auto& protected_data) {
  640. protected_data.termination_status = 0;
  641. protected_data.termination_signal = signal;
  642. });
  643. die();
  644. }
  645. ErrorOr<void> Process::send_signal(u8 signal, Process* sender)
  646. {
  647. VERIFY(is_user_process());
  648. // Try to send it to the "obvious" main thread:
  649. auto receiver_thread = Thread::from_tid(pid().value());
  650. // If the main thread has died, there may still be other threads:
  651. if (!receiver_thread) {
  652. // The first one should be good enough.
  653. // Neither kill(2) nor kill(3) specify any selection procedure.
  654. for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision {
  655. receiver_thread = &thread;
  656. return IterationDecision::Break;
  657. });
  658. }
  659. if (receiver_thread) {
  660. receiver_thread->send_signal(signal, sender);
  661. return {};
  662. }
  663. return ESRCH;
  664. }
  665. LockRefPtr<Thread> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, NonnullOwnPtr<KString> name, u32 affinity, bool joinable)
  666. {
  667. VERIFY((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX));
  668. // FIXME: Do something with guard pages?
  669. auto thread_or_error = Thread::try_create(*this);
  670. if (thread_or_error.is_error())
  671. return {};
  672. auto thread = thread_or_error.release_value();
  673. thread->set_name(move(name));
  674. thread->set_affinity(affinity);
  675. thread->set_priority(priority);
  676. if (!joinable)
  677. thread->detach();
  678. auto& regs = thread->regs();
  679. regs.set_ip((FlatPtr)entry);
  680. regs.set_sp((FlatPtr)entry_data); // entry function argument is expected to be in the SP register
  681. SpinlockLocker lock(g_scheduler_lock);
  682. thread->set_state(Thread::State::Runnable);
  683. return thread;
  684. }
  685. void Process::OpenFileDescriptionAndFlags::clear()
  686. {
  687. // FIXME: Verify Process::m_fds_lock is locked!
  688. m_description = nullptr;
  689. m_flags = 0;
  690. }
  691. void Process::OpenFileDescriptionAndFlags::set(NonnullLockRefPtr<OpenFileDescription>&& description, u32 flags)
  692. {
  693. // FIXME: Verify Process::m_fds_lock is locked!
  694. m_description = move(description);
  695. m_flags = flags;
  696. }
  697. void Process::set_tty(TTY* tty)
  698. {
  699. m_tty = tty;
  700. }
  701. ErrorOr<void> Process::start_tracing_from(ProcessID tracer)
  702. {
  703. m_tracer = TRY(ThreadTracer::try_create(tracer));
  704. return {};
  705. }
  706. void Process::stop_tracing()
  707. {
  708. m_tracer = nullptr;
  709. }
  710. void Process::tracer_trap(Thread& thread, RegisterState const& regs)
  711. {
  712. VERIFY(m_tracer.ptr());
  713. m_tracer->set_regs(regs);
  714. thread.send_urgent_signal_to_self(SIGTRAP);
  715. }
  716. bool Process::create_perf_events_buffer_if_needed()
  717. {
  718. if (m_perf_event_buffer)
  719. return true;
  720. m_perf_event_buffer = PerformanceEventBuffer::try_create_with_size(4 * MiB);
  721. if (!m_perf_event_buffer)
  722. return false;
  723. return !m_perf_event_buffer->add_process(*this, ProcessEventType::Create).is_error();
  724. }
  725. void Process::delete_perf_events_buffer()
  726. {
  727. if (m_perf_event_buffer)
  728. m_perf_event_buffer = nullptr;
  729. }
  730. bool Process::remove_thread(Thread& thread)
  731. {
  732. u32 thread_count_before = 0;
  733. thread_list().with([&](auto& thread_list) {
  734. thread_list.remove(thread);
  735. with_mutable_protected_data([&](auto& protected_data) {
  736. thread_count_before = protected_data.thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
  737. VERIFY(thread_count_before != 0);
  738. });
  739. });
  740. return thread_count_before == 1;
  741. }
  742. bool Process::add_thread(Thread& thread)
  743. {
  744. bool is_first = false;
  745. thread_list().with([&](auto& thread_list) {
  746. thread_list.append(thread);
  747. with_mutable_protected_data([&](auto& protected_data) {
  748. is_first = protected_data.thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0;
  749. });
  750. });
  751. return is_first;
  752. }
  753. void Process::set_dumpable(bool dumpable)
  754. {
  755. with_mutable_protected_data([&](auto& protected_data) {
  756. protected_data.dumpable = dumpable;
  757. });
  758. }
  759. ErrorOr<void> Process::set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value)
  760. {
  761. return m_coredump_properties.with([&](auto& coredump_properties) -> ErrorOr<void> {
  762. // Write it into the first available property slot.
  763. for (auto& slot : coredump_properties) {
  764. if (slot.key)
  765. continue;
  766. slot.key = move(key);
  767. slot.value = move(value);
  768. return {};
  769. }
  770. return ENOBUFS;
  771. });
  772. }
  773. ErrorOr<void> Process::try_set_coredump_property(StringView key, StringView value)
  774. {
  775. auto key_kstring = TRY(KString::try_create(key));
  776. auto value_kstring = TRY(KString::try_create(value));
  777. return set_coredump_property(move(key_kstring), move(value_kstring));
  778. };
  779. static constexpr StringView to_string(Pledge promise)
  780. {
  781. #define __ENUMERATE_PLEDGE_PROMISE(x) \
  782. case Pledge::x: \
  783. return #x##sv;
  784. switch (promise) {
  785. ENUMERATE_PLEDGE_PROMISES
  786. }
  787. #undef __ENUMERATE_PLEDGE_PROMISE
  788. VERIFY_NOT_REACHED();
  789. }
  790. ErrorOr<void> Process::require_no_promises() const
  791. {
  792. if (!has_promises())
  793. return {};
  794. dbgln("Has made a promise");
  795. Thread::current()->set_promise_violation_pending(true);
  796. return EPROMISEVIOLATION;
  797. }
  798. ErrorOr<void> Process::require_promise(Pledge promise)
  799. {
  800. if (!has_promises())
  801. return {};
  802. if (has_promised(promise))
  803. return {};
  804. dbgln("Has not pledged {}", to_string(promise));
  805. Thread::current()->set_promise_violation_pending(true);
  806. (void)try_set_coredump_property("pledge_violation"sv, to_string(promise));
  807. return EPROMISEVIOLATION;
  808. }
  809. UserID Process::uid() const
  810. {
  811. return credentials()->uid();
  812. }
  813. GroupID Process::gid() const
  814. {
  815. return credentials()->gid();
  816. }
  817. UserID Process::euid() const
  818. {
  819. return credentials()->euid();
  820. }
  821. GroupID Process::egid() const
  822. {
  823. return credentials()->egid();
  824. }
  825. UserID Process::suid() const
  826. {
  827. return credentials()->suid();
  828. }
  829. GroupID Process::sgid() const
  830. {
  831. return credentials()->sgid();
  832. }
  833. NonnullRefPtr<Credentials> Process::credentials() const
  834. {
  835. return with_protected_data([&](auto& protected_data) -> NonnullRefPtr<Credentials> {
  836. return *protected_data.credentials;
  837. });
  838. }
  839. RefPtr<Custody> Process::executable()
  840. {
  841. return m_executable.with([](auto& executable) { return executable; });
  842. }
  843. RefPtr<Custody const> Process::executable() const
  844. {
  845. return m_executable.with([](auto& executable) { return executable; });
  846. }
  847. }