Device.cpp 73 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755
  1. /*
  2. * Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@serenityos.org>
  3. * Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
  4. * Copyright (c) 2022, Jelle Raaijmakers <jelle@gmta.nl>
  5. *
  6. * SPDX-License-Identifier: BSD-2-Clause
  7. */
  8. #include <AK/AnyOf.h>
  9. #include <AK/Error.h>
  10. #include <AK/Math.h>
  11. #include <AK/NumericLimits.h>
  12. #include <AK/SIMDExtras.h>
  13. #include <AK/SIMDMath.h>
  14. #include <LibCore/ElapsedTimer.h>
  15. #include <LibGfx/Painter.h>
  16. #include <LibGfx/Vector2.h>
  17. #include <LibGfx/Vector3.h>
  18. #include <LibSoftGPU/Config.h>
  19. #include <LibSoftGPU/Device.h>
  20. #include <LibSoftGPU/Image.h>
  21. #include <LibSoftGPU/PixelConverter.h>
  22. #include <LibSoftGPU/PixelQuad.h>
  23. #include <LibSoftGPU/SIMD.h>
  24. #include <LibSoftGPU/Shader.h>
  25. #include <LibSoftGPU/ShaderCompiler.h>
  26. #include <math.h>
  27. namespace SoftGPU {
  28. static i64 g_num_rasterized_triangles;
  29. static i64 g_num_pixels;
  30. static i64 g_num_pixels_shaded;
  31. static i64 g_num_pixels_blended;
  32. static i64 g_num_sampler_calls;
  33. static i64 g_num_stencil_writes;
  34. static i64 g_num_quads;
  35. using AK::abs;
  36. using AK::SIMD::any;
  37. using AK::SIMD::exp;
  38. using AK::SIMD::expand4;
  39. using AK::SIMD::f32x4;
  40. using AK::SIMD::i32x4;
  41. using AK::SIMD::load4_masked;
  42. using AK::SIMD::maskbits;
  43. using AK::SIMD::maskcount;
  44. using AK::SIMD::store4_masked;
  45. using AK::SIMD::to_f32x4;
  46. using AK::SIMD::to_u32x4;
  47. using AK::SIMD::u32x4;
  48. static constexpr int subpixel_factor = 1 << SUBPIXEL_BITS;
  49. // Returns positive values for counter-clockwise rotation of vertices. Note that it returns the
  50. // area of a parallelogram with sides {a, b} and {b, c}, so _double_ the area of the triangle {a, b, c}.
  51. constexpr static i32 edge_function(IntVector2 const& a, IntVector2 const& b, IntVector2 const& c)
  52. {
  53. return (c.y() - a.y()) * (b.x() - a.x()) - (c.x() - a.x()) * (b.y() - a.y());
  54. }
  55. constexpr static i32x4 edge_function4(IntVector2 const& a, IntVector2 const& b, Vector2<i32x4> const& c)
  56. {
  57. return (c.y() - a.y()) * (b.x() - a.x()) - (c.x() - a.x()) * (b.y() - a.y());
  58. }
  59. template<typename T, typename U>
  60. constexpr static auto interpolate(T const& v0, T const& v1, T const& v2, Vector3<U> const& barycentric_coords)
  61. {
  62. return v0 * barycentric_coords.x() + v1 * barycentric_coords.y() + v2 * barycentric_coords.z();
  63. }
  64. static GPU::ColorType to_argb32(FloatVector4 const& color)
  65. {
  66. auto clamped = color.clamped(0.0f, 1.0f);
  67. auto r = static_cast<u8>(clamped.x() * 255);
  68. auto g = static_cast<u8>(clamped.y() * 255);
  69. auto b = static_cast<u8>(clamped.z() * 255);
  70. auto a = static_cast<u8>(clamped.w() * 255);
  71. return a << 24 | r << 16 | g << 8 | b;
  72. }
  73. ALWAYS_INLINE static u32x4 to_argb32(Vector4<f32x4> const& color)
  74. {
  75. auto clamped = color.clamped(expand4(0.0f), expand4(1.0f));
  76. auto r = to_u32x4(clamped.x() * 255);
  77. auto g = to_u32x4(clamped.y() * 255);
  78. auto b = to_u32x4(clamped.z() * 255);
  79. auto a = to_u32x4(clamped.w() * 255);
  80. return a << 24 | r << 16 | g << 8 | b;
  81. }
  82. static Vector4<f32x4> to_vec4(u32x4 bgra)
  83. {
  84. auto constexpr one_over_255 = expand4(1.0f / 255);
  85. return {
  86. to_f32x4((bgra >> 16) & 0xff) * one_over_255,
  87. to_f32x4((bgra >> 8) & 0xff) * one_over_255,
  88. to_f32x4(bgra & 0xff) * one_over_255,
  89. to_f32x4((bgra >> 24) & 0xff) * one_over_255,
  90. };
  91. }
  92. void Device::setup_blend_factors()
  93. {
  94. m_alpha_blend_factors = {};
  95. switch (m_options.blend_source_factor) {
  96. case GPU::BlendFactor::Zero:
  97. break;
  98. case GPU::BlendFactor::One:
  99. m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  100. break;
  101. case GPU::BlendFactor::SrcColor:
  102. m_alpha_blend_factors.src_factor_src_color = 1;
  103. break;
  104. case GPU::BlendFactor::OneMinusSrcColor:
  105. m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  106. m_alpha_blend_factors.src_factor_src_color = -1;
  107. break;
  108. case GPU::BlendFactor::SrcAlpha:
  109. m_alpha_blend_factors.src_factor_src_alpha = 1;
  110. break;
  111. case GPU::BlendFactor::OneMinusSrcAlpha:
  112. m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  113. m_alpha_blend_factors.src_factor_src_alpha = -1;
  114. break;
  115. case GPU::BlendFactor::DstAlpha:
  116. m_alpha_blend_factors.src_factor_dst_alpha = 1;
  117. break;
  118. case GPU::BlendFactor::OneMinusDstAlpha:
  119. m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  120. m_alpha_blend_factors.src_factor_dst_alpha = -1;
  121. break;
  122. case GPU::BlendFactor::DstColor:
  123. m_alpha_blend_factors.src_factor_dst_color = 1;
  124. break;
  125. case GPU::BlendFactor::OneMinusDstColor:
  126. m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  127. m_alpha_blend_factors.src_factor_dst_color = -1;
  128. break;
  129. case GPU::BlendFactor::SrcAlphaSaturate:
  130. default:
  131. VERIFY_NOT_REACHED();
  132. }
  133. switch (m_options.blend_destination_factor) {
  134. case GPU::BlendFactor::Zero:
  135. break;
  136. case GPU::BlendFactor::One:
  137. m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  138. break;
  139. case GPU::BlendFactor::SrcColor:
  140. m_alpha_blend_factors.dst_factor_src_color = 1;
  141. break;
  142. case GPU::BlendFactor::OneMinusSrcColor:
  143. m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  144. m_alpha_blend_factors.dst_factor_src_color = -1;
  145. break;
  146. case GPU::BlendFactor::SrcAlpha:
  147. m_alpha_blend_factors.dst_factor_src_alpha = 1;
  148. break;
  149. case GPU::BlendFactor::OneMinusSrcAlpha:
  150. m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  151. m_alpha_blend_factors.dst_factor_src_alpha = -1;
  152. break;
  153. case GPU::BlendFactor::DstAlpha:
  154. m_alpha_blend_factors.dst_factor_dst_alpha = 1;
  155. break;
  156. case GPU::BlendFactor::OneMinusDstAlpha:
  157. m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  158. m_alpha_blend_factors.dst_factor_dst_alpha = -1;
  159. break;
  160. case GPU::BlendFactor::DstColor:
  161. m_alpha_blend_factors.dst_factor_dst_color = 1;
  162. break;
  163. case GPU::BlendFactor::OneMinusDstColor:
  164. m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  165. m_alpha_blend_factors.dst_factor_dst_color = -1;
  166. break;
  167. case GPU::BlendFactor::SrcAlphaSaturate:
  168. default:
  169. VERIFY_NOT_REACHED();
  170. }
  171. }
  172. ALWAYS_INLINE static void test_alpha(PixelQuad& quad, GPU::AlphaTestFunction alpha_test_function, f32x4 const& reference_value)
  173. {
  174. auto const alpha = quad.get_output_float(SHADER_OUTPUT_FIRST_COLOR + 3);
  175. switch (alpha_test_function) {
  176. case GPU::AlphaTestFunction::Always:
  177. quad.mask &= expand4(~0);
  178. break;
  179. case GPU::AlphaTestFunction::Equal:
  180. quad.mask &= alpha == reference_value;
  181. break;
  182. case GPU::AlphaTestFunction::Greater:
  183. quad.mask &= alpha > reference_value;
  184. break;
  185. case GPU::AlphaTestFunction::GreaterOrEqual:
  186. quad.mask &= alpha >= reference_value;
  187. break;
  188. case GPU::AlphaTestFunction::Less:
  189. quad.mask &= alpha < reference_value;
  190. break;
  191. case GPU::AlphaTestFunction::LessOrEqual:
  192. quad.mask &= alpha <= reference_value;
  193. break;
  194. case GPU::AlphaTestFunction::NotEqual:
  195. quad.mask &= alpha != reference_value;
  196. break;
  197. case GPU::AlphaTestFunction::Never:
  198. default:
  199. VERIFY_NOT_REACHED();
  200. }
  201. }
  202. template<typename CB1, typename CB2, typename CB3>
  203. ALWAYS_INLINE void Device::rasterize(Gfx::IntRect& render_bounds, CB1 set_coverage_mask, CB2 set_quad_depth, CB3 set_quad_attributes)
  204. {
  205. // Return if alpha testing is a no-op
  206. if (m_options.enable_alpha_test && m_options.alpha_test_func == GPU::AlphaTestFunction::Never)
  207. return;
  208. auto const alpha_test_ref_value = expand4(m_options.alpha_test_ref_value);
  209. // Buffers
  210. auto color_buffer = m_frame_buffer->color_buffer();
  211. auto depth_buffer = m_frame_buffer->depth_buffer();
  212. auto stencil_buffer = m_frame_buffer->stencil_buffer();
  213. // Stencil configuration and writing
  214. auto const& stencil_configuration = m_stencil_configuration[GPU::Face::Front];
  215. auto const stencil_reference_value = stencil_configuration.reference_value & stencil_configuration.test_mask;
  216. auto write_to_stencil = [](GPU::StencilType* stencil_ptrs[4], i32x4 stencil_value, GPU::StencilOperation op, GPU::StencilType reference_value, GPU::StencilType write_mask, i32x4 pixel_mask) {
  217. if (write_mask == 0 || op == GPU::StencilOperation::Keep)
  218. return;
  219. switch (op) {
  220. case GPU::StencilOperation::Decrement:
  221. stencil_value = (stencil_value & ~write_mask) | (max(stencil_value - 1, expand4(0)) & write_mask);
  222. break;
  223. case GPU::StencilOperation::DecrementWrap:
  224. stencil_value = (stencil_value & ~write_mask) | (((stencil_value - 1) & 0xFF) & write_mask);
  225. break;
  226. case GPU::StencilOperation::Increment:
  227. stencil_value = (stencil_value & ~write_mask) | (min(stencil_value + 1, expand4(0xFF)) & write_mask);
  228. break;
  229. case GPU::StencilOperation::IncrementWrap:
  230. stencil_value = (stencil_value & ~write_mask) | (((stencil_value + 1) & 0xFF) & write_mask);
  231. break;
  232. case GPU::StencilOperation::Invert:
  233. stencil_value ^= write_mask;
  234. break;
  235. case GPU::StencilOperation::Replace:
  236. stencil_value = (stencil_value & ~write_mask) | (reference_value & write_mask);
  237. break;
  238. case GPU::StencilOperation::Zero:
  239. stencil_value &= ~write_mask;
  240. break;
  241. default:
  242. VERIFY_NOT_REACHED();
  243. }
  244. INCREASE_STATISTICS_COUNTER(g_num_stencil_writes, maskcount(pixel_mask));
  245. store4_masked(stencil_value, stencil_ptrs[0], stencil_ptrs[1], stencil_ptrs[2], stencil_ptrs[3], pixel_mask);
  246. };
  247. // Limit rendering to framebuffer and scissor rects
  248. render_bounds.intersect(m_frame_buffer->rect());
  249. if (m_options.scissor_enabled)
  250. render_bounds.intersect(m_options.scissor_box);
  251. // Quad bounds
  252. auto const render_bounds_left = render_bounds.left();
  253. auto const render_bounds_right = render_bounds.right();
  254. auto const render_bounds_top = render_bounds.top();
  255. auto const render_bounds_bottom = render_bounds.bottom();
  256. auto const qx0 = render_bounds_left & ~1;
  257. auto const qx1 = render_bounds_right & ~1;
  258. auto const qy0 = render_bounds_top & ~1;
  259. auto const qy1 = render_bounds_bottom & ~1;
  260. // Rasterize all quads
  261. // FIXME: this could be embarrassingly parallel
  262. for (int qy = qy0; qy <= qy1; qy += 2) {
  263. for (int qx = qx0; qx <= qx1; qx += 2) {
  264. PixelQuad quad;
  265. quad.screen_coordinates = {
  266. i32x4 { qx, qx + 1, qx, qx + 1 },
  267. i32x4 { qy, qy, qy + 1, qy + 1 },
  268. };
  269. // Set coverage mask and test against render bounds
  270. set_coverage_mask(quad);
  271. quad.mask &= quad.screen_coordinates.x() >= render_bounds_left
  272. && quad.screen_coordinates.x() <= render_bounds_right
  273. && quad.screen_coordinates.y() >= render_bounds_top
  274. && quad.screen_coordinates.y() <= render_bounds_bottom;
  275. auto coverage_bits = maskbits(quad.mask);
  276. if (coverage_bits == 0)
  277. continue;
  278. INCREASE_STATISTICS_COUNTER(g_num_quads, 1);
  279. INCREASE_STATISTICS_COUNTER(g_num_pixels, maskcount(quad.mask));
  280. // Stencil testing
  281. GPU::StencilType* stencil_ptrs[4];
  282. i32x4 stencil_value;
  283. if (m_options.enable_stencil_test) {
  284. stencil_ptrs[0] = coverage_bits & 1 ? &stencil_buffer->scanline(qy)[qx] : nullptr;
  285. stencil_ptrs[1] = coverage_bits & 2 ? &stencil_buffer->scanline(qy)[qx + 1] : nullptr;
  286. stencil_ptrs[2] = coverage_bits & 4 ? &stencil_buffer->scanline(qy + 1)[qx] : nullptr;
  287. stencil_ptrs[3] = coverage_bits & 8 ? &stencil_buffer->scanline(qy + 1)[qx + 1] : nullptr;
  288. stencil_value = load4_masked(stencil_ptrs[0], stencil_ptrs[1], stencil_ptrs[2], stencil_ptrs[3], quad.mask);
  289. stencil_value &= stencil_configuration.test_mask;
  290. i32x4 stencil_test_passed;
  291. switch (stencil_configuration.test_function) {
  292. case GPU::StencilTestFunction::Always:
  293. stencil_test_passed = expand4(~0);
  294. break;
  295. case GPU::StencilTestFunction::Equal:
  296. stencil_test_passed = stencil_value == stencil_reference_value;
  297. break;
  298. case GPU::StencilTestFunction::Greater:
  299. stencil_test_passed = stencil_value > stencil_reference_value;
  300. break;
  301. case GPU::StencilTestFunction::GreaterOrEqual:
  302. stencil_test_passed = stencil_value >= stencil_reference_value;
  303. break;
  304. case GPU::StencilTestFunction::Less:
  305. stencil_test_passed = stencil_value < stencil_reference_value;
  306. break;
  307. case GPU::StencilTestFunction::LessOrEqual:
  308. stencil_test_passed = stencil_value <= stencil_reference_value;
  309. break;
  310. case GPU::StencilTestFunction::Never:
  311. stencil_test_passed = expand4(0);
  312. break;
  313. case GPU::StencilTestFunction::NotEqual:
  314. stencil_test_passed = stencil_value != stencil_reference_value;
  315. break;
  316. default:
  317. VERIFY_NOT_REACHED();
  318. }
  319. // Update stencil buffer for pixels that failed the stencil test
  320. write_to_stencil(
  321. stencil_ptrs,
  322. stencil_value,
  323. stencil_configuration.on_stencil_test_fail,
  324. stencil_reference_value,
  325. stencil_configuration.write_mask,
  326. quad.mask & ~stencil_test_passed);
  327. // Update coverage mask + early quad rejection
  328. quad.mask &= stencil_test_passed;
  329. coverage_bits = maskbits(quad.mask);
  330. if (coverage_bits == 0)
  331. continue;
  332. }
  333. // Depth testing
  334. GPU::DepthType* depth_ptrs[4] = {
  335. coverage_bits & 1 ? &depth_buffer->scanline(qy)[qx] : nullptr,
  336. coverage_bits & 2 ? &depth_buffer->scanline(qy)[qx + 1] : nullptr,
  337. coverage_bits & 4 ? &depth_buffer->scanline(qy + 1)[qx] : nullptr,
  338. coverage_bits & 8 ? &depth_buffer->scanline(qy + 1)[qx + 1] : nullptr,
  339. };
  340. if (m_options.enable_depth_test) {
  341. set_quad_depth(quad);
  342. auto depth = load4_masked(depth_ptrs[0], depth_ptrs[1], depth_ptrs[2], depth_ptrs[3], quad.mask);
  343. i32x4 depth_test_passed;
  344. switch (m_options.depth_func) {
  345. case GPU::DepthTestFunction::Always:
  346. depth_test_passed = expand4(~0);
  347. break;
  348. case GPU::DepthTestFunction::Never:
  349. depth_test_passed = expand4(0);
  350. break;
  351. case GPU::DepthTestFunction::Greater:
  352. depth_test_passed = quad.depth > depth;
  353. break;
  354. case GPU::DepthTestFunction::GreaterOrEqual:
  355. depth_test_passed = quad.depth >= depth;
  356. break;
  357. case GPU::DepthTestFunction::NotEqual:
  358. #ifdef __SSE__
  359. depth_test_passed = quad.depth != depth;
  360. #else
  361. depth_test_passed = i32x4 {
  362. bit_cast<u32>(quad.depth[0]) != bit_cast<u32>(depth[0]) ? -1 : 0,
  363. bit_cast<u32>(quad.depth[1]) != bit_cast<u32>(depth[1]) ? -1 : 0,
  364. bit_cast<u32>(quad.depth[2]) != bit_cast<u32>(depth[2]) ? -1 : 0,
  365. bit_cast<u32>(quad.depth[3]) != bit_cast<u32>(depth[3]) ? -1 : 0,
  366. };
  367. #endif
  368. break;
  369. case GPU::DepthTestFunction::Equal:
  370. #ifdef __SSE__
  371. depth_test_passed = quad.depth == depth;
  372. #else
  373. //
  374. // This is an interesting quirk that occurs due to us using the x87 FPU when Serenity is
  375. // compiled for the i686 target. When we calculate our depth value to be stored in the buffer,
  376. // it is an 80-bit x87 floating point number, however, when stored into the depth buffer, this is
  377. // truncated to 32 bits. This 38 bit loss of precision means that when x87 `FCOMP` is eventually
  378. // used here the comparison fails.
  379. // This could be solved by using a `long double` for the depth buffer, however this would take
  380. // up significantly more space and is completely overkill for a depth buffer. As such, comparing
  381. // the first 32-bits of this depth value is "good enough" that if we get a hit on it being
  382. // equal, we can pretty much guarantee that it's actually equal.
  383. //
  384. depth_test_passed = i32x4 {
  385. bit_cast<u32>(quad.depth[0]) == bit_cast<u32>(depth[0]) ? -1 : 0,
  386. bit_cast<u32>(quad.depth[1]) == bit_cast<u32>(depth[1]) ? -1 : 0,
  387. bit_cast<u32>(quad.depth[2]) == bit_cast<u32>(depth[2]) ? -1 : 0,
  388. bit_cast<u32>(quad.depth[3]) == bit_cast<u32>(depth[3]) ? -1 : 0,
  389. };
  390. #endif
  391. break;
  392. case GPU::DepthTestFunction::LessOrEqual:
  393. depth_test_passed = quad.depth <= depth;
  394. break;
  395. case GPU::DepthTestFunction::Less:
  396. depth_test_passed = quad.depth < depth;
  397. break;
  398. default:
  399. VERIFY_NOT_REACHED();
  400. }
  401. // Update stencil buffer for pixels that failed the depth test
  402. if (m_options.enable_stencil_test) {
  403. write_to_stencil(
  404. stencil_ptrs,
  405. stencil_value,
  406. stencil_configuration.on_depth_test_fail,
  407. stencil_reference_value,
  408. stencil_configuration.write_mask,
  409. quad.mask & ~depth_test_passed);
  410. }
  411. // Update coverage mask + early quad rejection
  412. quad.mask &= depth_test_passed;
  413. coverage_bits = maskbits(quad.mask);
  414. if (coverage_bits == 0)
  415. continue;
  416. }
  417. // Update stencil buffer for passed pixels
  418. if (m_options.enable_stencil_test) {
  419. write_to_stencil(
  420. stencil_ptrs,
  421. stencil_value,
  422. stencil_configuration.on_pass,
  423. stencil_reference_value,
  424. stencil_configuration.write_mask,
  425. quad.mask);
  426. }
  427. INCREASE_STATISTICS_COUNTER(g_num_pixels_shaded, maskcount(quad.mask));
  428. set_quad_attributes(quad);
  429. shade_fragments(quad);
  430. // Alpha testing
  431. if (m_options.enable_alpha_test) {
  432. test_alpha(quad, m_options.alpha_test_func, alpha_test_ref_value);
  433. coverage_bits = maskbits(quad.mask);
  434. if (coverage_bits == 0)
  435. continue;
  436. }
  437. // Write to depth buffer
  438. if (m_options.enable_depth_test && m_options.enable_depth_write)
  439. store4_masked(quad.depth, depth_ptrs[0], depth_ptrs[1], depth_ptrs[2], depth_ptrs[3], quad.mask);
  440. // We will not update the color buffer at all
  441. if ((m_options.color_mask == 0) || !m_options.enable_color_write)
  442. continue;
  443. GPU::ColorType* color_ptrs[4] = {
  444. coverage_bits & 1 ? &color_buffer->scanline(qy)[qx] : nullptr,
  445. coverage_bits & 2 ? &color_buffer->scanline(qy)[qx + 1] : nullptr,
  446. coverage_bits & 4 ? &color_buffer->scanline(qy + 1)[qx] : nullptr,
  447. coverage_bits & 8 ? &color_buffer->scanline(qy + 1)[qx + 1] : nullptr,
  448. };
  449. u32x4 dst_u32;
  450. if (m_options.enable_blending || m_options.color_mask != 0xffffffff)
  451. dst_u32 = load4_masked(color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask);
  452. auto out_color = quad.get_output_vector4(SHADER_OUTPUT_FIRST_COLOR);
  453. if (m_options.enable_blending) {
  454. INCREASE_STATISTICS_COUNTER(g_num_pixels_blended, maskcount(quad.mask));
  455. // Blend color values from pixel_staging into color_buffer
  456. auto const& src = out_color;
  457. auto dst = to_vec4(dst_u32);
  458. auto src_factor = expand4(m_alpha_blend_factors.src_constant)
  459. + src * m_alpha_blend_factors.src_factor_src_color
  460. + Vector4<f32x4> { src.w(), src.w(), src.w(), src.w() } * m_alpha_blend_factors.src_factor_src_alpha
  461. + dst * m_alpha_blend_factors.src_factor_dst_color
  462. + Vector4<f32x4> { dst.w(), dst.w(), dst.w(), dst.w() } * m_alpha_blend_factors.src_factor_dst_alpha;
  463. auto dst_factor = expand4(m_alpha_blend_factors.dst_constant)
  464. + src * m_alpha_blend_factors.dst_factor_src_color
  465. + Vector4<f32x4> { src.w(), src.w(), src.w(), src.w() } * m_alpha_blend_factors.dst_factor_src_alpha
  466. + dst * m_alpha_blend_factors.dst_factor_dst_color
  467. + Vector4<f32x4> { dst.w(), dst.w(), dst.w(), dst.w() } * m_alpha_blend_factors.dst_factor_dst_alpha;
  468. out_color = src * src_factor + dst * dst_factor;
  469. }
  470. auto const argb32_color = to_argb32(out_color);
  471. if (m_options.color_mask == 0xffffffff)
  472. store4_masked(argb32_color, color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask);
  473. else
  474. store4_masked((argb32_color & m_options.color_mask) | (dst_u32 & ~m_options.color_mask), color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask);
  475. }
  476. }
  477. }
  478. void Device::rasterize_line_aliased(GPU::Vertex& from, GPU::Vertex& to)
  479. {
  480. // FIXME: implement aliased lines; for now we fall back to anti-aliased logic
  481. rasterize_line_antialiased(from, to);
  482. }
  483. void Device::rasterize_line_antialiased(GPU::Vertex& from, GPU::Vertex& to)
  484. {
  485. auto const from_coords = from.window_coordinates.xy();
  486. auto const to_coords = to.window_coordinates.xy();
  487. auto const line_width = ceilf(m_options.line_width);
  488. auto const line_radius = line_width / 2;
  489. auto render_bounds = Gfx::IntRect {
  490. min(from_coords.x(), to_coords.x()),
  491. min(from_coords.y(), to_coords.y()),
  492. abs(from_coords.x() - to_coords.x()) + 1,
  493. abs(from_coords.y() - to_coords.y()) + 1,
  494. };
  495. render_bounds.inflate(line_width, line_width);
  496. auto const from_coords4 = expand4(from_coords);
  497. auto const line_vector = to_coords - from_coords;
  498. auto const line_vector4 = expand4(line_vector);
  499. auto const line_dot4 = expand4(line_vector.dot(line_vector));
  500. auto const from_depth4 = expand4(from.window_coordinates.z());
  501. auto const to_depth4 = expand4(to.window_coordinates.z());
  502. auto const from_color4 = expand4(from.color);
  503. auto const from_fog_depth4 = expand4(abs(from.eye_coordinates.z()));
  504. // Rasterize using a 2D signed distance field for a line segment
  505. // FIXME: performance-wise, this might be the absolute worst way to draw an anti-aliased line
  506. f32x4 distance_along_line;
  507. rasterize(
  508. render_bounds,
  509. [&from_coords4, &distance_along_line, &line_vector4, &line_dot4, &line_radius](auto& quad) {
  510. auto const screen_coordinates4 = to_vec2_f32x4(quad.screen_coordinates);
  511. auto const pixel_vector = screen_coordinates4 - from_coords4;
  512. distance_along_line = AK::SIMD::clamp(pixel_vector.dot(line_vector4) / line_dot4, 0.f, 1.f);
  513. auto distance_to_line = length(pixel_vector - line_vector4 * distance_along_line) - line_radius;
  514. // Add .5f to the distance so coverage transitions half a pixel before the actual border
  515. quad.coverage = 1.f - AK::SIMD::clamp(distance_to_line + 0.5f, 0.f, 1.f);
  516. quad.mask = quad.coverage > 0.f;
  517. },
  518. [&from_depth4, &to_depth4, &distance_along_line](auto& quad) {
  519. quad.depth = mix(from_depth4, to_depth4, distance_along_line);
  520. },
  521. [&from_color4, &from, &from_fog_depth4](auto& quad) {
  522. // FIXME: interpolate color, tex coords and fog depth along the distance of the line
  523. // in clip space (i.e. NOT distance_from_line)
  524. quad.set_input(SHADER_INPUT_VERTEX_COLOR, from_color4);
  525. for (size_t i = 0; i < GPU::NUM_TEXTURE_UNITS; ++i)
  526. quad.set_input(SHADER_INPUT_FIRST_TEXCOORD + i * 4, expand4(from.tex_coords[i]));
  527. quad.fog_depth = from_fog_depth4;
  528. });
  529. }
  530. void Device::rasterize_line(GPU::Vertex& from, GPU::Vertex& to)
  531. {
  532. if (m_options.line_smooth)
  533. rasterize_line_antialiased(from, to);
  534. else
  535. rasterize_line_aliased(from, to);
  536. }
  537. void Device::rasterize_point_aliased(GPU::Vertex& point)
  538. {
  539. // Determine aliased point width
  540. constexpr size_t maximum_aliased_point_size = 64;
  541. auto point_width = clamp(round_to<int>(m_options.point_size), 1, maximum_aliased_point_size);
  542. // Determine aliased center coordinates
  543. IntVector2 point_center;
  544. if (point_width % 2 == 1)
  545. point_center = point.window_coordinates.xy().to_type<int>();
  546. else
  547. point_center = (point.window_coordinates.xy() + FloatVector2 { .5f, .5f }).to_type<int>();
  548. // Aliased points are rects; calculate boundaries around center
  549. auto point_rect = Gfx::IntRect {
  550. point_center.x() - point_width / 2,
  551. point_center.y() - point_width / 2,
  552. point_width,
  553. point_width,
  554. };
  555. // Rasterize the point as a rect
  556. rasterize(
  557. point_rect,
  558. [](auto& quad) {
  559. // We already passed in point_rect, so this doesn't matter
  560. quad.mask = expand4(~0);
  561. },
  562. [&point](auto& quad) {
  563. quad.depth = expand4(point.window_coordinates.z());
  564. },
  565. [&point](auto& quad) {
  566. quad.set_input(SHADER_INPUT_VERTEX_COLOR, expand4(point.color));
  567. for (size_t i = 0; i < GPU::NUM_TEXTURE_UNITS; ++i)
  568. quad.set_input(SHADER_INPUT_FIRST_TEXCOORD + i * 4, expand4(point.tex_coords[i]));
  569. quad.fog_depth = expand4(abs(point.eye_coordinates.z()));
  570. });
  571. }
  572. void Device::rasterize_point_antialiased(GPU::Vertex& point)
  573. {
  574. auto const center = point.window_coordinates.xy();
  575. auto const center4 = expand4(center);
  576. auto const radius = m_options.point_size / 2;
  577. auto render_bounds = Gfx::IntRect {
  578. center.x() - radius,
  579. center.y() - radius,
  580. radius * 2 + 1,
  581. radius * 2 + 1,
  582. };
  583. // Rasterize using a 2D signed distance field for a circle
  584. rasterize(
  585. render_bounds,
  586. [&center4, &radius](auto& quad) {
  587. auto screen_coords = to_vec2_f32x4(quad.screen_coordinates);
  588. auto distance_to_point = length(center4 - screen_coords) - radius;
  589. // Add .5f to the distance so coverage transitions half a pixel before the actual border
  590. quad.coverage = 1.f - AK::SIMD::clamp(distance_to_point + .5f, 0.f, 1.f);
  591. quad.mask = quad.coverage > 0.f;
  592. },
  593. [&point](auto& quad) {
  594. quad.depth = expand4(point.window_coordinates.z());
  595. },
  596. [&point](auto& quad) {
  597. quad.set_input(SHADER_INPUT_VERTEX_COLOR, expand4(point.color));
  598. for (size_t i = 0; i < GPU::NUM_TEXTURE_UNITS; ++i)
  599. quad.set_input(SHADER_INPUT_FIRST_TEXCOORD + i * 4, expand4(point.tex_coords[i]));
  600. quad.fog_depth = expand4(abs(point.eye_coordinates.z()));
  601. });
  602. }
  603. void Device::rasterize_point(GPU::Vertex& point)
  604. {
  605. if (m_options.point_smooth)
  606. rasterize_point_antialiased(point);
  607. else
  608. rasterize_point_aliased(point);
  609. }
  610. void Device::rasterize_triangle(Triangle& triangle)
  611. {
  612. INCREASE_STATISTICS_COUNTER(g_num_rasterized_triangles, 1);
  613. auto v0 = (triangle.vertices[0].window_coordinates.xy() * subpixel_factor).to_rounded<int>();
  614. auto v1 = (triangle.vertices[1].window_coordinates.xy() * subpixel_factor).to_rounded<int>();
  615. auto v2 = (triangle.vertices[2].window_coordinates.xy() * subpixel_factor).to_rounded<int>();
  616. auto triangle_area = edge_function(v0, v1, v2);
  617. if (triangle_area == 0)
  618. return;
  619. // Perform face culling
  620. if (m_options.enable_culling) {
  621. bool is_front = (m_options.front_face == GPU::WindingOrder::CounterClockwise ? triangle_area > 0 : triangle_area < 0);
  622. if (!is_front && m_options.cull_back)
  623. return;
  624. if (is_front && m_options.cull_front)
  625. return;
  626. }
  627. // Force counter-clockwise ordering of vertices
  628. if (triangle_area < 0) {
  629. swap(triangle.vertices[0], triangle.vertices[1]);
  630. swap(v0, v1);
  631. triangle_area *= -1;
  632. }
  633. auto const& vertex0 = triangle.vertices[0];
  634. auto const& vertex1 = triangle.vertices[1];
  635. auto const& vertex2 = triangle.vertices[2];
  636. auto const one_over_area = 1.0f / triangle_area;
  637. // This function calculates the 3 edge values for the pixel relative to the triangle.
  638. auto calculate_edge_values4 = [v0, v1, v2](Vector2<i32x4> const& p) -> Vector3<i32x4> {
  639. return {
  640. edge_function4(v1, v2, p),
  641. edge_function4(v2, v0, p),
  642. edge_function4(v0, v1, p),
  643. };
  644. };
  645. // Zero is used in testing against edge values below, applying the "top-left rule". If a pixel
  646. // lies exactly on an edge shared by two triangles, we only render that pixel if the edge in
  647. // question is a "top" or "left" edge. By setting either a 1 or 0, we effectively change the
  648. // comparisons against the edge values below from "> 0" into ">= 0".
  649. IntVector3 const zero {
  650. (v2.y() < v1.y() || (v2.y() == v1.y() && v2.x() < v1.x())) ? 0 : 1,
  651. (v0.y() < v2.y() || (v0.y() == v2.y() && v0.x() < v2.x())) ? 0 : 1,
  652. (v1.y() < v0.y() || (v1.y() == v0.y() && v1.x() < v0.x())) ? 0 : 1,
  653. };
  654. // This function tests whether a point as identified by its 3 edge values lies within the triangle
  655. auto test_point4 = [zero](Vector3<i32x4> const& edges) -> i32x4 {
  656. return edges.x() >= zero.x()
  657. && edges.y() >= zero.y()
  658. && edges.z() >= zero.z();
  659. };
  660. // Calculate render bounds based on the triangle's vertices
  661. Gfx::IntRect render_bounds;
  662. render_bounds.set_left(min(min(v0.x(), v1.x()), v2.x()) / subpixel_factor);
  663. render_bounds.set_right(max(max(v0.x(), v1.x()), v2.x()) / subpixel_factor);
  664. render_bounds.set_top(min(min(v0.y(), v1.y()), v2.y()) / subpixel_factor);
  665. render_bounds.set_bottom(max(max(v0.y(), v1.y()), v2.y()) / subpixel_factor);
  666. // Calculate depth of fragment for fog;
  667. // OpenGL 1.5 chapter 3.10: "An implementation may choose to approximate the
  668. // eye-coordinate distance from the eye to each fragment center by |Ze|."
  669. Vector3<f32x4> fog_depth;
  670. if (m_options.fog_enabled) {
  671. fog_depth = {
  672. expand4(abs(vertex0.eye_coordinates.z())),
  673. expand4(abs(vertex1.eye_coordinates.z())),
  674. expand4(abs(vertex2.eye_coordinates.z())),
  675. };
  676. }
  677. auto const half_pixel_offset = Vector2<i32x4> { expand4(subpixel_factor / 2), expand4(subpixel_factor / 2) };
  678. auto const window_w_coordinates = Vector3<f32x4> {
  679. expand4(vertex0.window_coordinates.w()),
  680. expand4(vertex1.window_coordinates.w()),
  681. expand4(vertex2.window_coordinates.w()),
  682. };
  683. // Calculate depth offset to apply
  684. float depth_offset = 0.f;
  685. if (m_options.depth_offset_enabled) {
  686. // OpenGL 2.0 § 3.5.5 allows us to approximate the maximum slope
  687. auto delta_z = max(
  688. max(
  689. abs(vertex0.window_coordinates.z() - vertex1.window_coordinates.z()),
  690. abs(vertex1.window_coordinates.z() - vertex2.window_coordinates.z())),
  691. abs(vertex2.window_coordinates.z() - vertex0.window_coordinates.z()));
  692. auto depth_max_slope = max(delta_z / render_bounds.width(), delta_z / render_bounds.height());
  693. // Calculate total depth offset
  694. depth_offset = depth_max_slope * m_options.depth_offset_factor + NumericLimits<float>::epsilon() * m_options.depth_offset_constant;
  695. }
  696. auto const window_z_coordinates = Vector3<f32x4> {
  697. expand4(vertex0.window_coordinates.z() + depth_offset),
  698. expand4(vertex1.window_coordinates.z() + depth_offset),
  699. expand4(vertex2.window_coordinates.z() + depth_offset),
  700. };
  701. rasterize(
  702. render_bounds,
  703. [&](auto& quad) {
  704. auto edge_values = calculate_edge_values4(quad.screen_coordinates * subpixel_factor + half_pixel_offset);
  705. quad.mask = test_point4(edge_values);
  706. quad.barycentrics = {
  707. to_f32x4(edge_values.x()),
  708. to_f32x4(edge_values.y()),
  709. to_f32x4(edge_values.z()),
  710. };
  711. },
  712. [&](auto& quad) {
  713. // Determine each edge's ratio to the total area
  714. quad.barycentrics = quad.barycentrics * one_over_area;
  715. // Because the Z coordinates were divided by W, we can interpolate between them
  716. quad.depth = AK::SIMD::clamp(window_z_coordinates.dot(quad.barycentrics), 0.f, 1.f);
  717. },
  718. [&](auto& quad) {
  719. auto const interpolated_reciprocal_w = window_w_coordinates.dot(quad.barycentrics);
  720. quad.barycentrics = quad.barycentrics * window_w_coordinates / interpolated_reciprocal_w;
  721. // FIXME: make this more generic. We want to interpolate more than just color and uv
  722. if (m_options.shade_smooth)
  723. quad.set_input(SHADER_INPUT_VERTEX_COLOR, interpolate(expand4(vertex0.color), expand4(vertex1.color), expand4(vertex2.color), quad.barycentrics));
  724. else
  725. quad.set_input(SHADER_INPUT_VERTEX_COLOR, expand4(vertex0.color));
  726. for (GPU::TextureUnitIndex i = 0; i < GPU::NUM_TEXTURE_UNITS; ++i)
  727. quad.set_input(SHADER_INPUT_FIRST_TEXCOORD + i * 4, interpolate(expand4(vertex0.tex_coords[i]), expand4(vertex1.tex_coords[i]), expand4(vertex2.tex_coords[i]), quad.barycentrics));
  728. if (m_options.fog_enabled)
  729. quad.fog_depth = fog_depth.dot(quad.barycentrics);
  730. });
  731. }
  732. Device::Device(Gfx::IntSize size)
  733. : m_frame_buffer(FrameBuffer<GPU::ColorType, GPU::DepthType, GPU::StencilType>::try_create(size).release_value_but_fixme_should_propagate_errors())
  734. , m_shader_processor(m_samplers)
  735. {
  736. m_options.scissor_box = m_frame_buffer->rect();
  737. m_options.viewport = m_frame_buffer->rect();
  738. }
  739. GPU::DeviceInfo Device::info() const
  740. {
  741. return {
  742. .vendor_name = "SerenityOS",
  743. .device_name = "SoftGPU",
  744. .num_texture_units = GPU::NUM_TEXTURE_UNITS,
  745. .num_lights = NUM_LIGHTS,
  746. .max_clip_planes = MAX_CLIP_PLANES,
  747. .max_texture_size = MAX_TEXTURE_SIZE,
  748. .max_texture_lod_bias = MAX_TEXTURE_LOD_BIAS,
  749. .stencil_bits = sizeof(GPU::StencilType) * 8,
  750. .supports_npot_textures = true,
  751. .supports_texture_clamp_to_edge = true,
  752. .supports_texture_env_add = true,
  753. };
  754. }
  755. static void generate_texture_coordinates(GPU::Vertex const& vertex, FloatVector4& tex_coord, GPU::TextureUnitConfiguration const& texture_unit_configuration)
  756. {
  757. auto generate_coordinate = [&](size_t config_index) -> float {
  758. auto const& tex_coord_generation = texture_unit_configuration.tex_coord_generation[config_index];
  759. switch (tex_coord_generation.mode) {
  760. case GPU::TexCoordGenerationMode::ObjectLinear: {
  761. auto coefficients = tex_coord_generation.coefficients;
  762. return coefficients.dot(vertex.position);
  763. }
  764. case GPU::TexCoordGenerationMode::EyeLinear: {
  765. auto coefficients = tex_coord_generation.coefficients;
  766. return coefficients.dot(vertex.eye_coordinates);
  767. }
  768. case GPU::TexCoordGenerationMode::SphereMap: {
  769. auto const eye_unit = vertex.eye_coordinates.normalized();
  770. FloatVector3 const eye_unit_xyz = eye_unit.xyz();
  771. auto const normal = vertex.normal;
  772. auto reflection = eye_unit_xyz - normal * 2 * normal.dot(eye_unit_xyz);
  773. reflection.set_z(reflection.z() + 1);
  774. auto const reflection_value = reflection[config_index];
  775. return reflection_value / (2 * reflection.length()) + 0.5f;
  776. }
  777. case GPU::TexCoordGenerationMode::ReflectionMap: {
  778. auto const eye_unit = vertex.eye_coordinates.normalized();
  779. FloatVector3 const eye_unit_xyz = eye_unit.xyz();
  780. auto const normal = vertex.normal;
  781. auto reflection = eye_unit_xyz - normal * 2 * normal.dot(eye_unit_xyz);
  782. return reflection[config_index];
  783. }
  784. case GPU::TexCoordGenerationMode::NormalMap: {
  785. return vertex.normal[config_index];
  786. }
  787. }
  788. VERIFY_NOT_REACHED();
  789. };
  790. auto const enabled_coords = texture_unit_configuration.tex_coord_generation_enabled;
  791. if (enabled_coords == GPU::TexCoordGenerationCoordinate::None)
  792. return;
  793. tex_coord = {
  794. ((enabled_coords & GPU::TexCoordGenerationCoordinate::S) > 0) ? generate_coordinate(0) : tex_coord.x(),
  795. ((enabled_coords & GPU::TexCoordGenerationCoordinate::T) > 0) ? generate_coordinate(1) : tex_coord.y(),
  796. ((enabled_coords & GPU::TexCoordGenerationCoordinate::R) > 0) ? generate_coordinate(2) : tex_coord.z(),
  797. ((enabled_coords & GPU::TexCoordGenerationCoordinate::Q) > 0) ? generate_coordinate(3) : tex_coord.w(),
  798. };
  799. }
  800. void Device::calculate_vertex_lighting(GPU::Vertex& vertex) const
  801. {
  802. if (!m_options.lighting_enabled)
  803. return;
  804. auto const& material = m_materials.at(0);
  805. auto ambient = material.ambient;
  806. auto diffuse = material.diffuse;
  807. auto emissive = material.emissive;
  808. auto specular = material.specular;
  809. if (m_options.color_material_enabled
  810. && (m_options.color_material_face == GPU::ColorMaterialFace::Front || m_options.color_material_face == GPU::ColorMaterialFace::FrontAndBack)) {
  811. switch (m_options.color_material_mode) {
  812. case GPU::ColorMaterialMode::Ambient:
  813. ambient = vertex.color;
  814. break;
  815. case GPU::ColorMaterialMode::AmbientAndDiffuse:
  816. ambient = vertex.color;
  817. diffuse = vertex.color;
  818. break;
  819. case GPU::ColorMaterialMode::Diffuse:
  820. diffuse = vertex.color;
  821. break;
  822. case GPU::ColorMaterialMode::Emissive:
  823. emissive = vertex.color;
  824. break;
  825. case GPU::ColorMaterialMode::Specular:
  826. specular = vertex.color;
  827. break;
  828. }
  829. }
  830. FloatVector4 result_color = emissive + ambient * m_lighting_model.scene_ambient_color;
  831. for (auto const& light : m_lights) {
  832. if (!light.is_enabled)
  833. continue;
  834. // We need to save the length here because the attenuation factor requires a non-normalized vector!
  835. auto sgi_arrow_operator = [](FloatVector4 const& p1, FloatVector4 const& p2, float& output_length) {
  836. FloatVector3 light_vector;
  837. if ((p1.w() != 0.f) && (p2.w() == 0.f))
  838. light_vector = p2.xyz();
  839. else if ((p1.w() == 0.f) && (p2.w() != 0.f))
  840. light_vector = -p1.xyz();
  841. else
  842. light_vector = p2.xyz() - p1.xyz();
  843. output_length = light_vector.length();
  844. if (output_length == 0.f)
  845. return light_vector;
  846. return light_vector / output_length;
  847. };
  848. auto sgi_dot_operator = [](FloatVector3 const& d1, FloatVector3 const& d2) {
  849. return AK::max(d1.dot(d2), 0.0f);
  850. };
  851. float vertex_to_light_length = 0.f;
  852. FloatVector3 vertex_to_light = sgi_arrow_operator(vertex.eye_coordinates, light.position, vertex_to_light_length);
  853. // Light attenuation value.
  854. float light_attenuation_factor = 1.0f;
  855. if (light.position.w() != 0.0f)
  856. light_attenuation_factor = 1.0f / (light.constant_attenuation + (light.linear_attenuation * vertex_to_light_length) + (light.quadratic_attenuation * vertex_to_light_length * vertex_to_light_length));
  857. // Spotlight factor
  858. float spotlight_factor = 1.0f;
  859. if (light.spotlight_cutoff_angle != 180.0f) {
  860. auto const vertex_to_light_dot_spotlight_direction = sgi_dot_operator(vertex_to_light, light.spotlight_direction.normalized());
  861. auto const cos_spotlight_cutoff = AK::cos<float>(light.spotlight_cutoff_angle * AK::Pi<float> / 180.f);
  862. if (vertex_to_light_dot_spotlight_direction >= cos_spotlight_cutoff)
  863. spotlight_factor = AK::pow<float>(vertex_to_light_dot_spotlight_direction, light.spotlight_exponent);
  864. else
  865. spotlight_factor = 0.0f;
  866. }
  867. // FIXME: The spec allows for splitting the colors calculated here into multiple different colors (primary/secondary color). Investigate what this means.
  868. (void)m_lighting_model.color_control;
  869. // FIXME: Two sided lighting should be implemented eventually (I believe this is where the normals are -ve and then lighting is calculated with the BACK material)
  870. (void)m_lighting_model.two_sided_lighting;
  871. // Ambient
  872. auto const ambient_component = ambient * light.ambient_intensity;
  873. // Diffuse
  874. auto const normal_dot_vertex_to_light = sgi_dot_operator(vertex.normal, vertex_to_light);
  875. auto const diffuse_component = diffuse * light.diffuse_intensity * normal_dot_vertex_to_light;
  876. // Specular
  877. FloatVector4 specular_component = { 0.0f, 0.0f, 0.0f, 0.0f };
  878. if (normal_dot_vertex_to_light > 0.0f) {
  879. FloatVector3 half_vector_normalized;
  880. if (!m_lighting_model.viewer_at_infinity) {
  881. half_vector_normalized = vertex_to_light + FloatVector3(0.0f, 0.0f, 1.0f);
  882. } else {
  883. auto const vertex_to_eye_point = sgi_arrow_operator(vertex.eye_coordinates, { 0.f, 0.f, 0.f, 1.f }, vertex_to_light_length);
  884. half_vector_normalized = vertex_to_light + vertex_to_eye_point;
  885. }
  886. half_vector_normalized.normalize();
  887. auto const normal_dot_half_vector = sgi_dot_operator(vertex.normal, half_vector_normalized);
  888. auto const specular_coefficient = AK::pow(normal_dot_half_vector, material.shininess);
  889. specular_component = specular * light.specular_intensity * specular_coefficient;
  890. }
  891. auto color = ambient_component + diffuse_component + specular_component;
  892. color = color * light_attenuation_factor * spotlight_factor;
  893. result_color += color;
  894. }
  895. vertex.color = result_color;
  896. vertex.color.set_w(diffuse.w()); // OpenGL 1.5 spec, page 59: "The A produced by lighting is the alpha value associated with diffuse color material"
  897. vertex.color.clamp(0.0f, 1.0f);
  898. }
  899. void Device::draw_primitives(GPU::PrimitiveType primitive_type, FloatMatrix4x4 const& model_view_transform, FloatMatrix4x4 const& projection_transform, Vector<GPU::Vertex>& vertices)
  900. {
  901. // At this point, the user has effectively specified that they are done with defining the geometry
  902. // of what they want to draw. We now need to do a few things (https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview):
  903. //
  904. // 1. Transform all of the vertices in the current vertex list into eye space by multiplying the model-view matrix
  905. // 2. Transform all of the vertices from eye space into clip space by multiplying by the projection matrix
  906. // 3. If culling is enabled, we cull the desired faces (https://learnopengl.com/Advanced-OpenGL/Face-culling)
  907. // 4. Each element of the vertex is then divided by w to bring the positions into NDC (Normalized Device Coordinates)
  908. // 5. The triangle's vertices are sorted in a counter-clockwise orientation
  909. // 6. The triangles are then sent off to the rasterizer and drawn to the screen
  910. if (vertices.is_empty())
  911. return;
  912. // Set up normals transform by taking the upper left 3x3 elements from the model view matrix
  913. // See section 2.11.3 of the OpenGL 1.5 spec
  914. auto const normal_transform = model_view_transform.submatrix_from_topleft<3>().transpose().inverse();
  915. // First, transform all vertices
  916. for (auto& vertex : vertices) {
  917. vertex.eye_coordinates = model_view_transform * vertex.position;
  918. vertex.normal = normal_transform * vertex.normal;
  919. if (m_options.normalization_enabled)
  920. vertex.normal.normalize();
  921. calculate_vertex_lighting(vertex);
  922. vertex.clip_coordinates = projection_transform * vertex.eye_coordinates;
  923. for (GPU::TextureUnitIndex i = 0; i < GPU::NUM_TEXTURE_UNITS; ++i) {
  924. auto const& texture_unit_configuration = m_texture_unit_configuration[i];
  925. if (!texture_unit_configuration.enabled)
  926. continue;
  927. generate_texture_coordinates(vertex, vertex.tex_coords[i], texture_unit_configuration);
  928. vertex.tex_coords[i] = texture_unit_configuration.transformation_matrix * vertex.tex_coords[i];
  929. }
  930. }
  931. // Window coordinate calculation
  932. auto const viewport = m_options.viewport;
  933. auto const viewport_half_width = viewport.width() / 2.f;
  934. auto const viewport_half_height = viewport.height() / 2.f;
  935. auto const viewport_center_x = viewport.x() + viewport_half_width;
  936. auto const viewport_center_y = viewport.y() + viewport_half_height;
  937. auto const depth_half_range = (m_options.depth_max - m_options.depth_min) / 2;
  938. auto const depth_halfway = (m_options.depth_min + m_options.depth_max) / 2;
  939. auto calculate_vertex_window_coordinates = [&](GPU::Vertex& vertex) {
  940. auto const one_over_w = 1 / vertex.clip_coordinates.w();
  941. auto const ndc_coordinates = vertex.clip_coordinates.xyz() * one_over_w;
  942. vertex.window_coordinates = {
  943. viewport_center_x + ndc_coordinates.x() * viewport_half_width,
  944. viewport_center_y + ndc_coordinates.y() * viewport_half_height,
  945. depth_halfway + ndc_coordinates.z() * depth_half_range,
  946. one_over_w,
  947. };
  948. };
  949. // Process points
  950. if (primitive_type == GPU::PrimitiveType::Points) {
  951. m_clipper.clip_points_against_frustum(vertices);
  952. for (auto& vertex : vertices) {
  953. calculate_vertex_window_coordinates(vertex);
  954. rasterize_point(vertex);
  955. }
  956. return;
  957. }
  958. // Process lines, line loop and line strips
  959. auto rasterize_line_segment = [&](GPU::Vertex& from, GPU::Vertex& to) {
  960. if (!m_clipper.clip_line_against_frustum(from, to))
  961. return;
  962. calculate_vertex_window_coordinates(from);
  963. calculate_vertex_window_coordinates(to);
  964. rasterize_line(from, to);
  965. };
  966. if (primitive_type == GPU::PrimitiveType::Lines) {
  967. if (vertices.size() < 2)
  968. return;
  969. for (size_t i = 0; i < vertices.size() - 1; i += 2)
  970. rasterize_line_segment(vertices[i], vertices[i + 1]);
  971. return;
  972. } else if (primitive_type == GPU::PrimitiveType::LineLoop) {
  973. if (vertices.size() < 2)
  974. return;
  975. for (size_t i = 0; i < vertices.size(); ++i)
  976. rasterize_line_segment(vertices[i], vertices[(i + 1) % vertices.size()]);
  977. return;
  978. } else if (primitive_type == GPU::PrimitiveType::LineStrip) {
  979. if (vertices.size() < 2)
  980. return;
  981. for (size_t i = 0; i < vertices.size() - 1; ++i)
  982. rasterize_line_segment(vertices[i], vertices[i + 1]);
  983. return;
  984. }
  985. // Let's construct some triangles
  986. m_triangle_list.clear_with_capacity();
  987. m_processed_triangles.clear_with_capacity();
  988. if (primitive_type == GPU::PrimitiveType::Triangles) {
  989. Triangle triangle;
  990. if (vertices.size() < 3)
  991. return;
  992. for (size_t i = 0; i < vertices.size() - 2; i += 3) {
  993. triangle.vertices[0] = vertices.at(i);
  994. triangle.vertices[1] = vertices.at(i + 1);
  995. triangle.vertices[2] = vertices.at(i + 2);
  996. m_triangle_list.append(triangle);
  997. }
  998. } else if (primitive_type == GPU::PrimitiveType::Quads) {
  999. // We need to construct two triangles to form the quad
  1000. Triangle triangle;
  1001. if (vertices.size() < 4)
  1002. return;
  1003. for (size_t i = 0; i < vertices.size() - 3; i += 4) {
  1004. // Triangle 1
  1005. triangle.vertices[0] = vertices.at(i);
  1006. triangle.vertices[1] = vertices.at(i + 1);
  1007. triangle.vertices[2] = vertices.at(i + 2);
  1008. m_triangle_list.append(triangle);
  1009. // Triangle 2
  1010. triangle.vertices[0] = vertices.at(i + 2);
  1011. triangle.vertices[1] = vertices.at(i + 3);
  1012. triangle.vertices[2] = vertices.at(i);
  1013. m_triangle_list.append(triangle);
  1014. }
  1015. } else if (primitive_type == GPU::PrimitiveType::TriangleFan) {
  1016. Triangle triangle;
  1017. triangle.vertices[0] = vertices.at(0); // Root vertex is always the vertex defined first
  1018. // This is technically `n-2` triangles. We start at index 1
  1019. for (size_t i = 1; i < vertices.size() - 1; i++) {
  1020. triangle.vertices[1] = vertices.at(i);
  1021. triangle.vertices[2] = vertices.at(i + 1);
  1022. m_triangle_list.append(triangle);
  1023. }
  1024. } else if (primitive_type == GPU::PrimitiveType::TriangleStrip) {
  1025. Triangle triangle;
  1026. if (vertices.size() < 3)
  1027. return;
  1028. for (size_t i = 0; i < vertices.size() - 2; i++) {
  1029. if (i % 2 == 0) {
  1030. triangle.vertices[0] = vertices.at(i);
  1031. triangle.vertices[1] = vertices.at(i + 1);
  1032. triangle.vertices[2] = vertices.at(i + 2);
  1033. } else {
  1034. triangle.vertices[0] = vertices.at(i + 1);
  1035. triangle.vertices[1] = vertices.at(i);
  1036. triangle.vertices[2] = vertices.at(i + 2);
  1037. }
  1038. m_triangle_list.append(triangle);
  1039. }
  1040. }
  1041. // Clip triangles
  1042. for (auto& triangle : m_triangle_list) {
  1043. m_clipped_vertices.clear_with_capacity();
  1044. m_clipped_vertices.append(triangle.vertices[0]);
  1045. m_clipped_vertices.append(triangle.vertices[1]);
  1046. m_clipped_vertices.append(triangle.vertices[2]);
  1047. m_clipper.clip_triangle_against_frustum(m_clipped_vertices);
  1048. if (m_clip_planes.size() > 0)
  1049. m_clipper.clip_triangle_against_user_defined(m_clipped_vertices, m_clip_planes);
  1050. if (m_clipped_vertices.size() < 3)
  1051. continue;
  1052. for (auto& vertex : m_clipped_vertices)
  1053. calculate_vertex_window_coordinates(vertex);
  1054. Triangle tri;
  1055. tri.vertices[0] = m_clipped_vertices[0];
  1056. for (size_t i = 1; i < m_clipped_vertices.size() - 1; i++) {
  1057. tri.vertices[1] = m_clipped_vertices[i];
  1058. tri.vertices[2] = m_clipped_vertices[i + 1];
  1059. m_processed_triangles.append(tri);
  1060. }
  1061. }
  1062. for (auto& triangle : m_processed_triangles)
  1063. rasterize_triangle(triangle);
  1064. }
  1065. ALWAYS_INLINE void Device::shade_fragments(PixelQuad& quad)
  1066. {
  1067. if (m_current_fragment_shader) {
  1068. m_shader_processor.execute(quad, *m_current_fragment_shader);
  1069. return;
  1070. }
  1071. Array<Vector4<f32x4>, GPU::NUM_TEXTURE_UNITS> texture_stage_texel;
  1072. auto current_color = quad.get_input_vector4(SHADER_INPUT_VERTEX_COLOR);
  1073. for (GPU::TextureUnitIndex i = 0; i < GPU::NUM_TEXTURE_UNITS; ++i) {
  1074. if (!m_texture_unit_configuration[i].enabled)
  1075. continue;
  1076. auto const& sampler = m_samplers[i];
  1077. // OpenGL 2.0 ¶ 3.5.1 states (in a roundabout way) that texture coordinates must be divided by Q
  1078. auto homogeneous_texture_coordinate = quad.get_input_vector4(SHADER_INPUT_FIRST_TEXCOORD + i * 4);
  1079. auto texel = sampler.sample_2d(homogeneous_texture_coordinate.xy() / homogeneous_texture_coordinate.w());
  1080. texture_stage_texel[i] = texel;
  1081. INCREASE_STATISTICS_COUNTER(g_num_sampler_calls, 1);
  1082. // FIXME: implement support for GL_ALPHA, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_INTENSITY and GL_RGB internal formats
  1083. auto& fixed_function_env = sampler.config().fixed_function_texture_environment;
  1084. switch (fixed_function_env.env_mode) {
  1085. case GPU::TextureEnvMode::Add:
  1086. current_color.set_x(current_color.x() + texel.x());
  1087. current_color.set_y(current_color.y() + texel.y());
  1088. current_color.set_z(current_color.z() + texel.z());
  1089. current_color.set_w(current_color.w() * texel.w());
  1090. break;
  1091. case GPU::TextureEnvMode::Blend: {
  1092. auto blend_color = expand4(fixed_function_env.color);
  1093. current_color.set_x(mix(current_color.x(), blend_color.x(), texel.x()));
  1094. current_color.set_y(mix(current_color.y(), blend_color.y(), texel.y()));
  1095. current_color.set_z(mix(current_color.z(), blend_color.z(), texel.z()));
  1096. current_color.set_w(current_color.w() * texel.w());
  1097. break;
  1098. }
  1099. case GPU::TextureEnvMode::Combine: {
  1100. auto get_source_color = [&](GPU::TextureSource source, u8 texture_stage) {
  1101. switch (source) {
  1102. case GPU::TextureSource::Constant:
  1103. return expand4(fixed_function_env.color);
  1104. case GPU::TextureSource::Previous:
  1105. return current_color;
  1106. case GPU::TextureSource::PrimaryColor:
  1107. return quad.get_input_vector4(SHADER_INPUT_VERTEX_COLOR);
  1108. case GPU::TextureSource::Texture:
  1109. return texel;
  1110. case GPU::TextureSource::TextureStage:
  1111. return texture_stage_texel[texture_stage];
  1112. }
  1113. VERIFY_NOT_REACHED();
  1114. };
  1115. auto get_argument_value = [](GPU::TextureOperand operand, auto value) {
  1116. switch (operand) {
  1117. case GPU::TextureOperand::OneMinusSourceAlpha:
  1118. case GPU::TextureOperand::OneMinusSourceColor:
  1119. return expand4(FloatVector4 { 1.f, 1.f, 1.f, 1.f }) - value;
  1120. case GPU::TextureOperand::SourceAlpha:
  1121. case GPU::TextureOperand::SourceColor:
  1122. return value;
  1123. }
  1124. VERIFY_NOT_REACHED();
  1125. };
  1126. auto calculate_combinator = [](GPU::TextureCombinator combinator, auto arg0, auto arg1, auto arg2) {
  1127. switch (combinator) {
  1128. case GPU::TextureCombinator::Add:
  1129. return arg0 + arg1;
  1130. case GPU::TextureCombinator::AddSigned:
  1131. return arg0 + arg1 - expand4(FloatVector4 { .5f, .5f, .5f, .5f });
  1132. case GPU::TextureCombinator::Dot3RGB:
  1133. case GPU::TextureCombinator::Dot3RGBA: {
  1134. auto scalar = 4.f * ((arg0.x() - .5f) * (arg1.x() - .5f) + (arg0.y() - 0.5f) * (arg1.y() - 0.5f) + (arg0.z() - 0.5f) * (arg1.z() - 0.5f));
  1135. return Vector4<f32x4> { scalar, scalar, scalar, scalar };
  1136. }
  1137. case GPU::TextureCombinator::Interpolate:
  1138. return mix(arg0, arg1, arg2);
  1139. case GPU::TextureCombinator::Modulate:
  1140. return arg0 * arg1;
  1141. case GPU::TextureCombinator::Replace:
  1142. return arg0;
  1143. case GPU::TextureCombinator::Subtract:
  1144. return arg0 - arg1;
  1145. }
  1146. VERIFY_NOT_REACHED();
  1147. };
  1148. auto calculate_color = [&](GPU::TextureCombinator combinator, auto& operands, auto& sources, u8 texture_stage) {
  1149. auto arg0 = get_argument_value(operands[0], get_source_color(sources[0], texture_stage));
  1150. auto arg1 = get_argument_value(operands[1], get_source_color(sources[1], texture_stage));
  1151. auto arg2 = get_argument_value(operands[2], get_source_color(sources[2], texture_stage));
  1152. return calculate_combinator(combinator, arg0, arg1, arg2);
  1153. };
  1154. auto rgb_color = calculate_color(
  1155. fixed_function_env.rgb_combinator,
  1156. fixed_function_env.rgb_operand,
  1157. fixed_function_env.rgb_source,
  1158. fixed_function_env.rgb_source_texture_stage);
  1159. auto alpha_color = calculate_color(
  1160. fixed_function_env.alpha_combinator,
  1161. fixed_function_env.alpha_operand,
  1162. fixed_function_env.alpha_source,
  1163. fixed_function_env.alpha_source_texture_stage);
  1164. current_color.set_x(rgb_color.x() * fixed_function_env.rgb_scale);
  1165. current_color.set_y(rgb_color.y() * fixed_function_env.rgb_scale);
  1166. current_color.set_z(rgb_color.z() * fixed_function_env.rgb_scale);
  1167. current_color.set_w(alpha_color.w() * fixed_function_env.alpha_scale);
  1168. current_color.clamp(expand4(0.f), expand4(1.f));
  1169. break;
  1170. }
  1171. case GPU::TextureEnvMode::Decal: {
  1172. auto dst_alpha = texel.w();
  1173. current_color.set_x(mix(current_color.x(), texel.x(), dst_alpha));
  1174. current_color.set_y(mix(current_color.y(), texel.y(), dst_alpha));
  1175. current_color.set_z(mix(current_color.z(), texel.z(), dst_alpha));
  1176. break;
  1177. }
  1178. case GPU::TextureEnvMode::Modulate:
  1179. current_color = current_color * texel;
  1180. break;
  1181. case GPU::TextureEnvMode::Replace:
  1182. current_color = texel;
  1183. break;
  1184. }
  1185. }
  1186. // Calculate fog
  1187. // Math from here: https://opengl-notes.readthedocs.io/en/latest/topics/texturing/aliasing.html
  1188. // FIXME: exponential fog is not vectorized, we should add a SIMD exp function that calculates an approximation.
  1189. if (m_options.fog_enabled) {
  1190. f32x4 factor;
  1191. switch (m_options.fog_mode) {
  1192. case GPU::FogMode::Linear:
  1193. factor = (m_options.fog_end - quad.fog_depth) / (m_options.fog_end - m_options.fog_start);
  1194. break;
  1195. case GPU::FogMode::Exp: {
  1196. auto argument = -m_options.fog_density * quad.fog_depth;
  1197. factor = exp(argument);
  1198. } break;
  1199. case GPU::FogMode::Exp2: {
  1200. auto argument = m_options.fog_density * quad.fog_depth;
  1201. argument *= -argument;
  1202. factor = exp(argument);
  1203. } break;
  1204. default:
  1205. VERIFY_NOT_REACHED();
  1206. }
  1207. // Mix texel's RGB with fog's RBG - leave alpha alone
  1208. auto fog_color = expand4(m_options.fog_color);
  1209. current_color.set_x(mix(fog_color.x(), current_color.x(), factor));
  1210. current_color.set_y(mix(fog_color.y(), current_color.y(), factor));
  1211. current_color.set_z(mix(fog_color.z(), current_color.z(), factor));
  1212. }
  1213. quad.set_output(SHADER_OUTPUT_FIRST_COLOR, current_color.x());
  1214. quad.set_output(SHADER_OUTPUT_FIRST_COLOR + 1, current_color.y());
  1215. quad.set_output(SHADER_OUTPUT_FIRST_COLOR + 2, current_color.z());
  1216. // Multiply coverage with the fragment's alpha to obtain the final alpha value
  1217. quad.set_output(SHADER_OUTPUT_FIRST_COLOR + 3, current_color.w() * quad.coverage);
  1218. }
  1219. void Device::resize(Gfx::IntSize size)
  1220. {
  1221. auto frame_buffer_or_error = FrameBuffer<GPU::ColorType, GPU::DepthType, GPU::StencilType>::try_create(size);
  1222. m_frame_buffer = MUST(frame_buffer_or_error);
  1223. }
  1224. void Device::clear_color(FloatVector4 const& color)
  1225. {
  1226. auto const fill_color = to_argb32(color);
  1227. auto clear_rect = m_frame_buffer->rect();
  1228. if (m_options.scissor_enabled)
  1229. clear_rect.intersect(m_options.scissor_box);
  1230. m_frame_buffer->color_buffer()->fill(fill_color, clear_rect);
  1231. }
  1232. void Device::clear_depth(GPU::DepthType depth)
  1233. {
  1234. auto clear_rect = m_frame_buffer->rect();
  1235. if (m_options.scissor_enabled)
  1236. clear_rect.intersect(m_options.scissor_box);
  1237. m_frame_buffer->depth_buffer()->fill(depth, clear_rect);
  1238. }
  1239. void Device::clear_stencil(GPU::StencilType value)
  1240. {
  1241. auto clear_rect = m_frame_buffer->rect();
  1242. if (m_options.scissor_enabled)
  1243. clear_rect.intersect(m_options.scissor_box);
  1244. m_frame_buffer->stencil_buffer()->fill(value, clear_rect);
  1245. }
  1246. GPU::ImageDataLayout Device::color_buffer_data_layout(Vector2<u32> size, Vector2<i32> offset)
  1247. {
  1248. return {
  1249. .pixel_type = {
  1250. .format = GPU::PixelFormat::BGRA,
  1251. .bits = GPU::PixelComponentBits::B8_8_8_8,
  1252. .data_type = GPU::PixelDataType::UnsignedInt,
  1253. .components_order = GPU::ComponentsOrder::Reversed,
  1254. },
  1255. .dimensions = {
  1256. .width = static_cast<u32>(m_frame_buffer->rect().width()),
  1257. .height = static_cast<u32>(m_frame_buffer->rect().height()),
  1258. .depth = 1,
  1259. },
  1260. .selection = {
  1261. .offset_x = offset.x(),
  1262. .offset_y = offset.y(),
  1263. .offset_z = 0,
  1264. .width = size.x(),
  1265. .height = size.y(),
  1266. .depth = 1,
  1267. },
  1268. };
  1269. }
  1270. GPU::ImageDataLayout Device::depth_buffer_data_layout(Vector2<u32> size, Vector2<i32> offset)
  1271. {
  1272. return {
  1273. .pixel_type = {
  1274. .format = GPU::PixelFormat::DepthComponent,
  1275. .bits = GPU::PixelComponentBits::AllBits,
  1276. .data_type = GPU::PixelDataType::Float,
  1277. },
  1278. .dimensions = {
  1279. .width = static_cast<u32>(m_frame_buffer->rect().width()),
  1280. .height = static_cast<u32>(m_frame_buffer->rect().height()),
  1281. .depth = 1,
  1282. },
  1283. .selection = {
  1284. .offset_x = offset.x(),
  1285. .offset_y = offset.y(),
  1286. .offset_z = 0,
  1287. .width = size.x(),
  1288. .height = size.y(),
  1289. .depth = 1,
  1290. },
  1291. };
  1292. }
  1293. void Device::blit_from_color_buffer(Gfx::Bitmap& target)
  1294. {
  1295. m_frame_buffer->color_buffer()->blit_flipped_to_bitmap(target, m_frame_buffer->rect());
  1296. if constexpr (ENABLE_STATISTICS_OVERLAY)
  1297. draw_statistics_overlay(target);
  1298. }
  1299. void Device::blit_from_color_buffer(NonnullRefPtr<GPU::Image> image, u32 level, Vector2<u32> input_size, Vector2<i32> input_offset, Vector3<i32> output_offset)
  1300. {
  1301. auto input_layout = color_buffer_data_layout(input_size, input_offset);
  1302. auto const* input_data = m_frame_buffer->color_buffer()->scanline(0);
  1303. auto const& softgpu_image = reinterpret_cast<Image*>(image.ptr());
  1304. auto output_layout = softgpu_image->image_data_layout(level, output_offset);
  1305. auto* output_data = softgpu_image->texel_pointer(level, 0, 0, 0);
  1306. PixelConverter converter { input_layout, output_layout };
  1307. auto conversion_result = converter.convert(input_data, output_data, {});
  1308. if (conversion_result.is_error())
  1309. dbgln("Pixel conversion failed: {}", conversion_result.error().string_literal());
  1310. }
  1311. void Device::blit_from_color_buffer(void* output_data, Vector2<i32> input_offset, GPU::ImageDataLayout const& output_layout)
  1312. {
  1313. auto const& output_selection = output_layout.selection;
  1314. auto input_layout = color_buffer_data_layout({ output_selection.width, output_selection.height }, input_offset);
  1315. PixelConverter converter { input_layout, output_layout };
  1316. auto const* input_data = m_frame_buffer->color_buffer()->scanline(0);
  1317. auto conversion_result = converter.convert(input_data, output_data, {});
  1318. if (conversion_result.is_error())
  1319. dbgln("Pixel conversion failed: {}", conversion_result.error().string_literal());
  1320. }
  1321. void Device::blit_from_depth_buffer(void* output_data, Vector2<i32> input_offset, GPU::ImageDataLayout const& output_layout)
  1322. {
  1323. auto const& output_selection = output_layout.selection;
  1324. auto input_layout = depth_buffer_data_layout({ output_selection.width, output_selection.height }, input_offset);
  1325. PixelConverter converter { input_layout, output_layout };
  1326. auto const* input_data = m_frame_buffer->depth_buffer()->scanline(0);
  1327. auto conversion_result = converter.convert(input_data, output_data, {});
  1328. if (conversion_result.is_error())
  1329. dbgln("Pixel conversion failed: {}", conversion_result.error().string_literal());
  1330. }
  1331. void Device::blit_from_depth_buffer(NonnullRefPtr<GPU::Image> image, u32 level, Vector2<u32> input_size, Vector2<i32> input_offset, Vector3<i32> output_offset)
  1332. {
  1333. auto input_layout = depth_buffer_data_layout(input_size, input_offset);
  1334. auto const* input_data = m_frame_buffer->depth_buffer()->scanline(0);
  1335. auto const& softgpu_image = reinterpret_cast<Image*>(image.ptr());
  1336. auto output_layout = softgpu_image->image_data_layout(level, output_offset);
  1337. auto* output_data = softgpu_image->texel_pointer(level, 0, 0, 0);
  1338. PixelConverter converter { input_layout, output_layout };
  1339. auto conversion_result = converter.convert(input_data, output_data, {});
  1340. if (conversion_result.is_error())
  1341. dbgln("Pixel conversion failed: {}", conversion_result.error().string_literal());
  1342. }
  1343. void Device::blit_to_color_buffer_at_raster_position(void const* input_data, GPU::ImageDataLayout const& input_layout)
  1344. {
  1345. if (!m_raster_position.valid)
  1346. return;
  1347. auto input_selection = input_layout.selection;
  1348. INCREASE_STATISTICS_COUNTER(g_num_pixels, input_selection.width * input_selection.height);
  1349. INCREASE_STATISTICS_COUNTER(g_num_pixels_shaded, input_selection.width * input_selection.height);
  1350. auto const rasterization_rect = get_rasterization_rect_of_size({ input_selection.width, input_selection.height });
  1351. auto output_layout = color_buffer_data_layout(
  1352. { static_cast<u32>(rasterization_rect.width()), static_cast<u32>(rasterization_rect.height()) },
  1353. { rasterization_rect.x(), rasterization_rect.y() });
  1354. PixelConverter converter { input_layout, output_layout };
  1355. auto* output_data = m_frame_buffer->color_buffer()->scanline(0);
  1356. auto conversion_result = converter.convert(input_data, output_data, {});
  1357. if (conversion_result.is_error())
  1358. dbgln("Pixel conversion failed: {}", conversion_result.error().string_literal());
  1359. }
  1360. void Device::blit_to_depth_buffer_at_raster_position(void const* input_data, GPU::ImageDataLayout const& input_layout)
  1361. {
  1362. if (!m_raster_position.valid)
  1363. return;
  1364. auto input_selection = input_layout.selection;
  1365. auto const rasterization_rect = get_rasterization_rect_of_size({ input_selection.width, input_selection.height });
  1366. auto output_layout = depth_buffer_data_layout(
  1367. { static_cast<u32>(rasterization_rect.width()), static_cast<u32>(rasterization_rect.height()) },
  1368. { rasterization_rect.x(), rasterization_rect.y() });
  1369. PixelConverter converter { input_layout, output_layout };
  1370. auto* output_data = m_frame_buffer->depth_buffer()->scanline(0);
  1371. auto conversion_result = converter.convert(input_data, output_data, {});
  1372. if (conversion_result.is_error())
  1373. dbgln("Pixel conversion failed: {}", conversion_result.error().string_literal());
  1374. }
  1375. void Device::draw_statistics_overlay(Gfx::Bitmap& target)
  1376. {
  1377. static Core::ElapsedTimer timer;
  1378. static DeprecatedString debug_string;
  1379. static int frame_counter;
  1380. frame_counter++;
  1381. int milliseconds = 0;
  1382. if (timer.is_valid())
  1383. milliseconds = timer.elapsed();
  1384. else
  1385. timer.start();
  1386. Gfx::Painter painter { target };
  1387. if (milliseconds > MILLISECONDS_PER_STATISTICS_PERIOD) {
  1388. int num_rendertarget_pixels = m_frame_buffer->rect().size().area();
  1389. StringBuilder builder;
  1390. builder.append(DeprecatedString::formatted("Timings : {:.1}ms {:.1}FPS\n",
  1391. static_cast<double>(milliseconds) / frame_counter,
  1392. (milliseconds > 0) ? 1000.0 * frame_counter / milliseconds : 9999.0));
  1393. builder.append(DeprecatedString::formatted("Triangles : {}\n", g_num_rasterized_triangles));
  1394. builder.append(DeprecatedString::formatted("SIMD usage : {}%\n", g_num_quads > 0 ? g_num_pixels_shaded * 25 / g_num_quads : 0));
  1395. builder.append(DeprecatedString::formatted("Pixels : {}, Stencil: {}%, Shaded: {}%, Blended: {}%, Overdraw: {}%\n",
  1396. g_num_pixels,
  1397. g_num_pixels > 0 ? g_num_stencil_writes * 100 / g_num_pixels : 0,
  1398. g_num_pixels > 0 ? g_num_pixels_shaded * 100 / g_num_pixels : 0,
  1399. g_num_pixels_shaded > 0 ? g_num_pixels_blended * 100 / g_num_pixels_shaded : 0,
  1400. num_rendertarget_pixels > 0 ? g_num_pixels_shaded * 100 / num_rendertarget_pixels - 100 : 0));
  1401. builder.append(DeprecatedString::formatted("Sampler calls: {}\n", g_num_sampler_calls));
  1402. debug_string = builder.to_deprecated_string();
  1403. frame_counter = 0;
  1404. timer.start();
  1405. }
  1406. g_num_rasterized_triangles = 0;
  1407. g_num_pixels = 0;
  1408. g_num_pixels_shaded = 0;
  1409. g_num_pixels_blended = 0;
  1410. g_num_sampler_calls = 0;
  1411. g_num_stencil_writes = 0;
  1412. g_num_quads = 0;
  1413. auto& font = Gfx::FontDatabase::default_fixed_width_font();
  1414. for (int y = -1; y < 2; y++)
  1415. for (int x = -1; x < 2; x++)
  1416. if (x != 0 && y != 0)
  1417. painter.draw_text(target.rect().translated(x + 2, y + 2), debug_string, font, Gfx::TextAlignment::TopLeft, Gfx::Color::Black);
  1418. painter.draw_text(target.rect().translated(2, 2), debug_string, font, Gfx::TextAlignment::TopLeft, Gfx::Color::White);
  1419. }
  1420. void Device::set_options(GPU::RasterizerOptions const& options)
  1421. {
  1422. m_options = options;
  1423. if (m_options.enable_blending)
  1424. setup_blend_factors();
  1425. }
  1426. void Device::set_light_model_params(GPU::LightModelParameters const& lighting_model)
  1427. {
  1428. m_lighting_model = lighting_model;
  1429. }
  1430. NonnullRefPtr<GPU::Image> Device::create_image(GPU::PixelFormat const& pixel_format, u32 width, u32 height, u32 depth, u32 max_levels)
  1431. {
  1432. VERIFY(width > 0);
  1433. VERIFY(height > 0);
  1434. VERIFY(depth > 0);
  1435. VERIFY(max_levels > 0);
  1436. return adopt_ref(*new Image(this, pixel_format, width, height, depth, max_levels));
  1437. }
  1438. ErrorOr<NonnullRefPtr<GPU::Shader>> Device::create_shader(GPU::IR::Shader const& intermediate_representation)
  1439. {
  1440. ShaderCompiler compiler;
  1441. auto shader = TRY(compiler.compile(this, intermediate_representation));
  1442. return shader;
  1443. }
  1444. void Device::set_sampler_config(unsigned sampler, GPU::SamplerConfig const& config)
  1445. {
  1446. VERIFY(config.bound_image.is_null() || config.bound_image->ownership_token() == this);
  1447. m_samplers[sampler].set_config(config);
  1448. }
  1449. void Device::set_light_state(unsigned int light_id, GPU::Light const& light)
  1450. {
  1451. m_lights.at(light_id) = light;
  1452. }
  1453. void Device::set_material_state(GPU::Face face, GPU::Material const& material)
  1454. {
  1455. m_materials[face] = material;
  1456. }
  1457. void Device::set_stencil_configuration(GPU::Face face, GPU::StencilConfiguration const& stencil_configuration)
  1458. {
  1459. m_stencil_configuration[face] = stencil_configuration;
  1460. }
  1461. void Device::set_texture_unit_configuration(GPU::TextureUnitIndex index, GPU::TextureUnitConfiguration const& configuration)
  1462. {
  1463. m_texture_unit_configuration[index] = configuration;
  1464. }
  1465. void Device::set_raster_position(GPU::RasterPosition const& raster_position)
  1466. {
  1467. m_raster_position = raster_position;
  1468. }
  1469. void Device::set_clip_planes(Vector<FloatVector4> const& clip_planes)
  1470. {
  1471. m_clip_planes = clip_planes;
  1472. }
  1473. void Device::set_raster_position(FloatVector4 const& position, FloatMatrix4x4 const& model_view_transform, FloatMatrix4x4 const& projection_transform)
  1474. {
  1475. auto const eye_coordinates = model_view_transform * position;
  1476. auto const clip_coordinates = projection_transform * eye_coordinates;
  1477. // FIXME: implement clipping
  1478. m_raster_position.valid = true;
  1479. auto ndc_coordinates = clip_coordinates / clip_coordinates.w();
  1480. ndc_coordinates.set_w(clip_coordinates.w());
  1481. auto const viewport = m_options.viewport;
  1482. auto const viewport_half_width = viewport.width() / 2.0f;
  1483. auto const viewport_half_height = viewport.height() / 2.0f;
  1484. auto const viewport_center_x = viewport.x() + viewport_half_width;
  1485. auto const viewport_center_y = viewport.y() + viewport_half_height;
  1486. auto const depth_half_range = (m_options.depth_max - m_options.depth_min) / 2;
  1487. auto const depth_halfway = (m_options.depth_min + m_options.depth_max) / 2;
  1488. // FIXME: implement other raster position properties such as color and texcoords
  1489. m_raster_position.window_coordinates = {
  1490. viewport_center_x + ndc_coordinates.x() * viewport_half_width,
  1491. viewport_center_y + ndc_coordinates.y() * viewport_half_height,
  1492. depth_halfway + ndc_coordinates.z() * depth_half_range,
  1493. ndc_coordinates.w(),
  1494. };
  1495. m_raster_position.eye_coordinate_distance = eye_coordinates.length();
  1496. }
  1497. void Device::bind_fragment_shader(RefPtr<GPU::Shader> shader)
  1498. {
  1499. VERIFY(shader.is_null() || shader->ownership_token() == this);
  1500. if (shader.is_null()) {
  1501. m_current_fragment_shader = nullptr;
  1502. return;
  1503. }
  1504. auto softgpu_shader = static_ptr_cast<Shader>(shader);
  1505. m_current_fragment_shader = softgpu_shader;
  1506. }
  1507. Gfx::IntRect Device::get_rasterization_rect_of_size(Gfx::IntSize size) const
  1508. {
  1509. // Round the X and Y floating point coordinates to the nearest integer; OpenGL 1.5 spec:
  1510. // "Any fragments whose centers lie inside of this rectangle (or on its bottom or left
  1511. // boundaries) are produced in correspondence with this particular group of elements."
  1512. return {
  1513. round_to<int>(m_raster_position.window_coordinates.x()),
  1514. round_to<int>(m_raster_position.window_coordinates.y()),
  1515. size.width(),
  1516. size.height(),
  1517. };
  1518. }
  1519. }
  1520. extern "C" {
  1521. GPU::Device* serenity_gpu_create_device(Gfx::IntSize size)
  1522. {
  1523. return make<SoftGPU::Device>(size).leak_ptr();
  1524. }
  1525. }