Interpreter.h 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141
  1. /*
  2. * Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #pragma once
  7. #include <LibJS/Bytecode/Executable.h>
  8. #include <LibJS/Bytecode/Label.h>
  9. #include <LibJS/Bytecode/Register.h>
  10. #include <LibJS/Forward.h>
  11. #include <LibJS/Heap/Cell.h>
  12. #include <LibJS/Runtime/FunctionKind.h>
  13. #include <LibJS/Runtime/VM.h>
  14. #include <LibJS/Runtime/Value.h>
  15. namespace JS::Bytecode {
  16. class InstructionStreamIterator;
  17. class PassManager;
  18. struct CallFrame {
  19. static NonnullOwnPtr<CallFrame> create(size_t register_count);
  20. void operator delete(void* ptr) { free(ptr); }
  21. void visit_edges(Cell::Visitor& visitor)
  22. {
  23. for (auto const& value : registers())
  24. visitor.visit(value);
  25. for (auto const& environment : saved_lexical_environments)
  26. visitor.visit(environment);
  27. for (auto& context : unwind_contexts) {
  28. visitor.visit(context.lexical_environment);
  29. }
  30. }
  31. Vector<GCPtr<Environment>> saved_lexical_environments;
  32. Vector<UnwindInfo> unwind_contexts;
  33. Vector<BasicBlock const*> previously_scheduled_jumps;
  34. Span<Value> registers() { return { register_values, register_count }; }
  35. ReadonlySpan<Value> registers() const { return { register_values, register_count }; }
  36. size_t register_count { 0 };
  37. Value register_values[];
  38. };
  39. class Interpreter {
  40. public:
  41. explicit Interpreter(VM&);
  42. ~Interpreter();
  43. [[nodiscard]] Realm& realm() { return *m_realm; }
  44. [[nodiscard]] Object& global_object() { return *m_global_object; }
  45. [[nodiscard]] DeclarativeEnvironment& global_declarative_environment() { return *m_global_declarative_environment; }
  46. VM& vm() { return m_vm; }
  47. VM const& vm() const { return m_vm; }
  48. ThrowCompletionOr<Value> run(Script&, JS::GCPtr<Environment> lexical_environment_override = nullptr);
  49. ThrowCompletionOr<Value> run(SourceTextModule&);
  50. ThrowCompletionOr<Value> run(Bytecode::Executable& executable, Bytecode::BasicBlock const* entry_point = nullptr)
  51. {
  52. auto value_and_frame = run_and_return_frame(executable, entry_point);
  53. return move(value_and_frame.value);
  54. }
  55. struct ValueAndFrame {
  56. ThrowCompletionOr<Value> value;
  57. OwnPtr<CallFrame> frame;
  58. };
  59. ValueAndFrame run_and_return_frame(Bytecode::Executable&, Bytecode::BasicBlock const* entry_point, CallFrame* = nullptr);
  60. ALWAYS_INLINE Value& accumulator() { return reg(Register::accumulator()); }
  61. ALWAYS_INLINE Value& saved_return_value() { return reg(Register::saved_return_value()); }
  62. Value& reg(Register const& r) { return registers()[r.index()]; }
  63. Value reg(Register const& r) const { return registers()[r.index()]; }
  64. [[nodiscard]] Value get(Operand) const;
  65. void set(Operand, Value);
  66. auto& saved_lexical_environment_stack() { return call_frame().saved_lexical_environments; }
  67. auto& unwind_contexts() { return call_frame().unwind_contexts; }
  68. void do_return(Value value)
  69. {
  70. reg(Register::return_value()) = value;
  71. reg(Register::exception()) = {};
  72. }
  73. void enter_unwind_context();
  74. void leave_unwind_context();
  75. void catch_exception(Operand dst);
  76. void enter_object_environment(Object&);
  77. Executable& current_executable() { return *m_current_executable; }
  78. Executable const& current_executable() const { return *m_current_executable; }
  79. BasicBlock const& current_block() const { return *m_current_block; }
  80. Optional<InstructionStreamIterator const&> instruction_stream_iterator() const { return m_pc; }
  81. void visit_edges(Cell::Visitor&);
  82. Span<Value> registers() { return m_current_call_frame; }
  83. ReadonlySpan<Value> registers() const { return m_current_call_frame; }
  84. private:
  85. void run_bytecode();
  86. CallFrame& call_frame()
  87. {
  88. return m_call_frames.last().visit([](auto& x) -> CallFrame& { return *x; });
  89. }
  90. CallFrame const& call_frame() const
  91. {
  92. return const_cast<Interpreter*>(this)->call_frame();
  93. }
  94. void push_call_frame(Variant<NonnullOwnPtr<CallFrame>, CallFrame*>);
  95. [[nodiscard]] Variant<NonnullOwnPtr<CallFrame>, CallFrame*> pop_call_frame();
  96. VM& m_vm;
  97. Vector<Variant<NonnullOwnPtr<CallFrame>, CallFrame*>> m_call_frames;
  98. Span<Value> m_current_call_frame;
  99. BasicBlock const* m_scheduled_jump { nullptr };
  100. Executable* m_current_executable { nullptr };
  101. BasicBlock const* m_current_block { nullptr };
  102. Realm* m_realm { nullptr };
  103. Object* m_global_object { nullptr };
  104. DeclarativeEnvironment* m_global_declarative_environment { nullptr };
  105. Optional<InstructionStreamIterator&> m_pc {};
  106. };
  107. extern bool g_dump_bytecode;
  108. ThrowCompletionOr<NonnullGCPtr<Bytecode::Executable>> compile(VM&, ASTNode const&, ReadonlySpan<FunctionParameter>, JS::FunctionKind kind, DeprecatedFlyString const& name);
  109. }