Thread.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586
  1. #include <Kernel/FileSystem/FileDescription.h>
  2. #include <Kernel/Process.h>
  3. #include <Kernel/Scheduler.h>
  4. #include <Kernel/Thread.h>
  5. #include <Kernel/VM/MemoryManager.h>
  6. #include <LibC/signal_numbers.h>
  7. //#define SIGNAL_DEBUG
  8. HashTable<Thread*>& thread_table()
  9. {
  10. ASSERT_INTERRUPTS_DISABLED();
  11. static HashTable<Thread*>* table;
  12. if (!table)
  13. table = new HashTable<Thread*>;
  14. return *table;
  15. }
  16. InlineLinkedList<Thread>* g_runnable_threads;
  17. InlineLinkedList<Thread>* g_nonrunnable_threads;
  18. static const dword default_kernel_stack_size = 65536;
  19. static const dword default_userspace_stack_size = 65536;
  20. Thread::Thread(Process& process)
  21. : m_process(process)
  22. , m_tid(process.m_next_tid++)
  23. {
  24. dbgprintf("Thread{%p}: New thread TID=%u in %s(%u)\n", this, m_tid, process.name().characters(), process.pid());
  25. set_default_signal_dispositions();
  26. m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
  27. memset(&m_tss, 0, sizeof(m_tss));
  28. // Only IF is set when a process boots.
  29. m_tss.eflags = 0x0202;
  30. word cs, ds, ss;
  31. if (m_process.is_ring0()) {
  32. cs = 0x08;
  33. ds = 0x10;
  34. ss = 0x10;
  35. } else {
  36. cs = 0x1b;
  37. ds = 0x23;
  38. ss = 0x23;
  39. }
  40. m_tss.ds = ds;
  41. m_tss.es = ds;
  42. m_tss.fs = ds;
  43. m_tss.gs = ds;
  44. m_tss.ss = ss;
  45. m_tss.cs = cs;
  46. m_tss.cr3 = m_process.page_directory().cr3();
  47. if (m_process.is_ring0()) {
  48. // FIXME: This memory is leaked.
  49. // But uh, there's also no kernel process termination, so I guess it's not technically leaked...
  50. m_kernel_stack_base = (dword)kmalloc_eternal(default_kernel_stack_size);
  51. m_tss.esp = (m_kernel_stack_base + default_kernel_stack_size) & 0xfffffff8u;
  52. } else {
  53. // Ring3 processes need a separate stack for Ring0.
  54. m_kernel_stack_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Stack (Thread %d)", m_tid));
  55. m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
  56. m_tss.ss0 = 0x10;
  57. m_tss.esp0 = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & 0xfffffff8u;
  58. }
  59. // HACK: Ring2 SS in the TSS is the current PID.
  60. m_tss.ss2 = m_process.pid();
  61. m_far_ptr.offset = 0x98765432;
  62. if (m_process.pid() != 0) {
  63. InterruptDisabler disabler;
  64. thread_table().set(this);
  65. set_thread_list(g_nonrunnable_threads);
  66. }
  67. }
  68. Thread::~Thread()
  69. {
  70. dbgprintf("~Thread{%p}\n", this);
  71. kfree_aligned(m_fpu_state);
  72. {
  73. InterruptDisabler disabler;
  74. if (m_thread_list)
  75. m_thread_list->remove(this);
  76. thread_table().remove(this);
  77. }
  78. if (g_last_fpu_thread == this)
  79. g_last_fpu_thread = nullptr;
  80. if (selector())
  81. gdt_free_entry(selector());
  82. }
  83. void Thread::unblock()
  84. {
  85. m_blocked_description = nullptr;
  86. if (current == this) {
  87. set_state(Thread::Running);
  88. return;
  89. }
  90. ASSERT(m_state != Thread::Runnable && m_state != Thread::Running);
  91. set_state(Thread::Runnable);
  92. }
  93. void Thread::snooze_until(Alarm& alarm)
  94. {
  95. m_snoozing_alarm = &alarm;
  96. block(Thread::BlockedSnoozing);
  97. Scheduler::yield();
  98. }
  99. void Thread::block(Thread::State new_state)
  100. {
  101. bool did_unlock = process().big_lock().unlock_if_locked();
  102. if (state() != Thread::Running) {
  103. kprintf("Thread::block: %s(%u) block(%u/%s) with state=%u/%s\n", process().name().characters(), process().pid(), new_state, to_string(new_state), state(), to_string(state()));
  104. }
  105. ASSERT(state() == Thread::Running);
  106. m_was_interrupted_while_blocked = false;
  107. set_state(new_state);
  108. Scheduler::yield();
  109. if (did_unlock)
  110. process().big_lock().lock();
  111. }
  112. void Thread::block(Thread::State new_state, FileDescription& description)
  113. {
  114. m_blocked_description = &description;
  115. block(new_state);
  116. }
  117. void Thread::sleep(dword ticks)
  118. {
  119. ASSERT(state() == Thread::Running);
  120. current->set_wakeup_time(g_uptime + ticks);
  121. current->block(Thread::BlockedSleep);
  122. }
  123. const char* to_string(Thread::State state)
  124. {
  125. switch (state) {
  126. case Thread::Invalid:
  127. return "Invalid";
  128. case Thread::Runnable:
  129. return "Runnable";
  130. case Thread::Running:
  131. return "Running";
  132. case Thread::Dying:
  133. return "Dying";
  134. case Thread::Dead:
  135. return "Dead";
  136. case Thread::Stopped:
  137. return "Stopped";
  138. case Thread::Skip1SchedulerPass:
  139. return "Skip1";
  140. case Thread::Skip0SchedulerPasses:
  141. return "Skip0";
  142. case Thread::BlockedSleep:
  143. return "Sleep";
  144. case Thread::BlockedWait:
  145. return "Wait";
  146. case Thread::BlockedRead:
  147. return "Read";
  148. case Thread::BlockedWrite:
  149. return "Write";
  150. case Thread::BlockedSignal:
  151. return "Signal";
  152. case Thread::BlockedSelect:
  153. return "Select";
  154. case Thread::BlockedLurking:
  155. return "Lurking";
  156. case Thread::BlockedConnect:
  157. return "Connect";
  158. case Thread::BlockedReceive:
  159. return "Receive";
  160. case Thread::BlockedSnoozing:
  161. return "Snoozing";
  162. }
  163. kprintf("to_string(Thread::State): Invalid state: %u\n", state);
  164. ASSERT_NOT_REACHED();
  165. return nullptr;
  166. }
  167. void Thread::finalize()
  168. {
  169. dbgprintf("Finalizing Thread %u in %s(%u)\n", tid(), m_process.name().characters(), pid());
  170. set_state(Thread::State::Dead);
  171. m_blocked_description = nullptr;
  172. if (this == &m_process.main_thread())
  173. m_process.finalize();
  174. }
  175. void Thread::finalize_dying_threads()
  176. {
  177. Vector<Thread*, 32> dying_threads;
  178. {
  179. InterruptDisabler disabler;
  180. for_each_in_state(Thread::State::Dying, [&](Thread& thread) {
  181. dying_threads.append(&thread);
  182. });
  183. }
  184. for (auto* thread : dying_threads)
  185. thread->finalize();
  186. }
  187. bool Thread::tick()
  188. {
  189. ++m_ticks;
  190. if (tss().cs & 3)
  191. ++m_process.m_ticks_in_user;
  192. else
  193. ++m_process.m_ticks_in_kernel;
  194. return --m_ticks_left;
  195. }
  196. void Thread::send_signal(byte signal, Process* sender)
  197. {
  198. ASSERT(signal < 32);
  199. if (sender)
  200. dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, process().name().characters(), pid());
  201. else
  202. dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, process().name().characters(), pid());
  203. InterruptDisabler disabler;
  204. m_pending_signals |= 1 << signal;
  205. }
  206. bool Thread::has_unmasked_pending_signals() const
  207. {
  208. return m_pending_signals & ~m_signal_mask;
  209. }
  210. ShouldUnblockThread Thread::dispatch_one_pending_signal()
  211. {
  212. ASSERT_INTERRUPTS_DISABLED();
  213. dword signal_candidates = m_pending_signals & ~m_signal_mask;
  214. ASSERT(signal_candidates);
  215. byte signal = 0;
  216. for (; signal < 32; ++signal) {
  217. if (signal_candidates & (1 << signal)) {
  218. break;
  219. }
  220. }
  221. return dispatch_signal(signal);
  222. }
  223. enum class DefaultSignalAction {
  224. Terminate,
  225. Ignore,
  226. DumpCore,
  227. Stop,
  228. Continue,
  229. };
  230. DefaultSignalAction default_signal_action(byte signal)
  231. {
  232. ASSERT(signal && signal < NSIG);
  233. switch (signal) {
  234. case SIGHUP:
  235. case SIGINT:
  236. case SIGKILL:
  237. case SIGPIPE:
  238. case SIGALRM:
  239. case SIGUSR1:
  240. case SIGUSR2:
  241. case SIGVTALRM:
  242. case SIGSTKFLT:
  243. case SIGIO:
  244. case SIGPROF:
  245. case SIGTERM:
  246. case SIGPWR:
  247. return DefaultSignalAction::Terminate;
  248. case SIGCHLD:
  249. case SIGURG:
  250. case SIGWINCH:
  251. return DefaultSignalAction::Ignore;
  252. case SIGQUIT:
  253. case SIGILL:
  254. case SIGTRAP:
  255. case SIGABRT:
  256. case SIGBUS:
  257. case SIGFPE:
  258. case SIGSEGV:
  259. case SIGXCPU:
  260. case SIGXFSZ:
  261. case SIGSYS:
  262. return DefaultSignalAction::DumpCore;
  263. case SIGCONT:
  264. return DefaultSignalAction::Continue;
  265. case SIGSTOP:
  266. case SIGTSTP:
  267. case SIGTTIN:
  268. case SIGTTOU:
  269. return DefaultSignalAction::Stop;
  270. }
  271. ASSERT_NOT_REACHED();
  272. }
  273. ShouldUnblockThread Thread::dispatch_signal(byte signal)
  274. {
  275. ASSERT_INTERRUPTS_DISABLED();
  276. ASSERT(signal < 32);
  277. #ifdef SIGNAL_DEBUG
  278. kprintf("dispatch_signal %s(%u) <- %u\n", process().name().characters(), pid(), signal);
  279. #endif
  280. auto& action = m_signal_action_data[signal];
  281. // FIXME: Implement SA_SIGINFO signal handlers.
  282. ASSERT(!(action.flags & SA_SIGINFO));
  283. // Mark this signal as handled.
  284. m_pending_signals &= ~(1 << signal);
  285. if (signal == SIGSTOP) {
  286. set_state(Stopped);
  287. return ShouldUnblockThread::No;
  288. }
  289. if (signal == SIGCONT && state() == Stopped)
  290. set_state(Runnable);
  291. auto handler_vaddr = action.handler_or_sigaction;
  292. if (handler_vaddr.is_null()) {
  293. switch (default_signal_action(signal)) {
  294. case DefaultSignalAction::Stop:
  295. set_state(Stopped);
  296. return ShouldUnblockThread::No;
  297. case DefaultSignalAction::DumpCore:
  298. case DefaultSignalAction::Terminate:
  299. m_process.terminate_due_to_signal(signal);
  300. return ShouldUnblockThread::No;
  301. case DefaultSignalAction::Ignore:
  302. if (state() == BlockedSignal)
  303. set_state(Runnable);
  304. return ShouldUnblockThread::No;
  305. case DefaultSignalAction::Continue:
  306. return ShouldUnblockThread::Yes;
  307. }
  308. ASSERT_NOT_REACHED();
  309. }
  310. if (handler_vaddr.as_ptr() == SIG_IGN) {
  311. #ifdef SIGNAL_DEBUG
  312. kprintf("%s(%u) ignored signal %u\n", process().name().characters(), pid(), signal);
  313. #endif
  314. return ShouldUnblockThread::Yes;
  315. }
  316. dword old_signal_mask = m_signal_mask;
  317. dword new_signal_mask = action.mask;
  318. if (action.flags & SA_NODEFER)
  319. new_signal_mask &= ~(1 << signal);
  320. else
  321. new_signal_mask |= 1 << signal;
  322. m_signal_mask |= new_signal_mask;
  323. Scheduler::prepare_to_modify_tss(*this);
  324. word ret_cs = m_tss.cs;
  325. dword ret_eip = m_tss.eip;
  326. dword ret_eflags = m_tss.eflags;
  327. bool interrupting_in_kernel = (ret_cs & 3) == 0;
  328. ProcessPagingScope paging_scope(m_process);
  329. m_process.create_signal_trampolines_if_needed();
  330. if (interrupting_in_kernel) {
  331. #ifdef SIGNAL_DEBUG
  332. kprintf("dispatch_signal to %s(%u) in state=%s with return to %w:%x\n", process().name().characters(), pid(), to_string(state()), ret_cs, ret_eip);
  333. #endif
  334. ASSERT(is_blocked());
  335. m_tss_to_resume_kernel = make<TSS32>(m_tss);
  336. #ifdef SIGNAL_DEBUG
  337. kprintf("resume tss pc: %w:%x stack: %w:%x flags: %x cr3: %x\n", m_tss_to_resume_kernel->cs, m_tss_to_resume_kernel->eip, m_tss_to_resume_kernel->ss, m_tss_to_resume_kernel->esp, m_tss_to_resume_kernel->eflags, m_tss_to_resume_kernel->cr3);
  338. #endif
  339. if (!m_signal_stack_user_region) {
  340. m_signal_stack_user_region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, String::format("User Signal Stack (Thread %d)", m_tid));
  341. ASSERT(m_signal_stack_user_region);
  342. }
  343. if (!m_kernel_stack_for_signal_handler_region)
  344. m_kernel_stack_for_signal_handler_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Signal Stack (Thread %d)", m_tid));
  345. m_tss.ss = 0x23;
  346. m_tss.esp = m_signal_stack_user_region->vaddr().offset(default_userspace_stack_size).get();
  347. m_tss.ss0 = 0x10;
  348. m_tss.esp0 = m_kernel_stack_for_signal_handler_region->vaddr().offset(default_kernel_stack_size).get();
  349. push_value_on_stack(0);
  350. } else {
  351. push_value_on_stack(ret_eip);
  352. push_value_on_stack(ret_eflags);
  353. // PUSHA
  354. dword old_esp = m_tss.esp;
  355. push_value_on_stack(m_tss.eax);
  356. push_value_on_stack(m_tss.ecx);
  357. push_value_on_stack(m_tss.edx);
  358. push_value_on_stack(m_tss.ebx);
  359. push_value_on_stack(old_esp);
  360. push_value_on_stack(m_tss.ebp);
  361. push_value_on_stack(m_tss.esi);
  362. push_value_on_stack(m_tss.edi);
  363. // Align the stack.
  364. m_tss.esp -= 12;
  365. }
  366. // PUSH old_signal_mask
  367. push_value_on_stack(old_signal_mask);
  368. m_tss.cs = 0x1b;
  369. m_tss.ds = 0x23;
  370. m_tss.es = 0x23;
  371. m_tss.fs = 0x23;
  372. m_tss.gs = 0x23;
  373. m_tss.eip = handler_vaddr.get();
  374. // FIXME: Should we worry about the stack being 16 byte aligned when entering a signal handler?
  375. push_value_on_stack(signal);
  376. if (interrupting_in_kernel)
  377. push_value_on_stack(m_process.m_return_to_ring0_from_signal_trampoline.get());
  378. else
  379. push_value_on_stack(m_process.m_return_to_ring3_from_signal_trampoline.get());
  380. ASSERT((m_tss.esp % 16) == 0);
  381. // FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal.
  382. set_state(Skip1SchedulerPass);
  383. #ifdef SIGNAL_DEBUG
  384. kprintf("signal: Okay, %s(%u) {%s} has been primed with signal handler %w:%x\n", process().name().characters(), pid(), to_string(state()), m_tss.cs, m_tss.eip);
  385. #endif
  386. return ShouldUnblockThread::Yes;
  387. }
  388. void Thread::set_default_signal_dispositions()
  389. {
  390. // FIXME: Set up all the right default actions. See signal(7).
  391. memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
  392. m_signal_action_data[SIGCHLD].handler_or_sigaction = VirtualAddress((dword)SIG_IGN);
  393. m_signal_action_data[SIGWINCH].handler_or_sigaction = VirtualAddress((dword)SIG_IGN);
  394. }
  395. void Thread::push_value_on_stack(dword value)
  396. {
  397. m_tss.esp -= 4;
  398. dword* stack_ptr = (dword*)m_tss.esp;
  399. *stack_ptr = value;
  400. }
  401. void Thread::make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment)
  402. {
  403. auto* region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, "Stack (Main thread)");
  404. ASSERT(region);
  405. m_tss.esp = region->vaddr().offset(default_userspace_stack_size).get();
  406. char* stack_base = (char*)region->vaddr().get();
  407. int argc = arguments.size();
  408. char** argv = (char**)stack_base;
  409. char** env = argv + arguments.size() + 1;
  410. char* bufptr = stack_base + (sizeof(char*) * (arguments.size() + 1)) + (sizeof(char*) * (environment.size() + 1));
  411. size_t total_blob_size = 0;
  412. for (auto& a : arguments)
  413. total_blob_size += a.length() + 1;
  414. for (auto& e : environment)
  415. total_blob_size += e.length() + 1;
  416. size_t total_meta_size = sizeof(char*) * (arguments.size() + 1) + sizeof(char*) * (environment.size() + 1);
  417. // FIXME: It would be better if this didn't make us panic.
  418. ASSERT((total_blob_size + total_meta_size) < default_userspace_stack_size);
  419. for (int i = 0; i < arguments.size(); ++i) {
  420. argv[i] = bufptr;
  421. memcpy(bufptr, arguments[i].characters(), arguments[i].length());
  422. bufptr += arguments[i].length();
  423. *(bufptr++) = '\0';
  424. }
  425. argv[arguments.size()] = nullptr;
  426. for (int i = 0; i < environment.size(); ++i) {
  427. env[i] = bufptr;
  428. memcpy(bufptr, environment[i].characters(), environment[i].length());
  429. bufptr += environment[i].length();
  430. *(bufptr++) = '\0';
  431. }
  432. env[environment.size()] = nullptr;
  433. // NOTE: The stack needs to be 16-byte aligned.
  434. push_value_on_stack((dword)env);
  435. push_value_on_stack((dword)argv);
  436. push_value_on_stack((dword)argc);
  437. push_value_on_stack(0);
  438. }
  439. void Thread::make_userspace_stack_for_secondary_thread(void* argument)
  440. {
  441. auto* region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, String::format("Stack (Thread %d)", tid()));
  442. ASSERT(region);
  443. m_tss.esp = region->vaddr().offset(default_userspace_stack_size).get();
  444. // NOTE: The stack needs to be 16-byte aligned.
  445. push_value_on_stack((dword)argument);
  446. push_value_on_stack(0);
  447. }
  448. Thread* Thread::clone(Process& process)
  449. {
  450. auto* clone = new Thread(process);
  451. memcpy(clone->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
  452. clone->m_signal_mask = m_signal_mask;
  453. clone->m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
  454. memcpy(clone->m_fpu_state, m_fpu_state, sizeof(FPUState));
  455. clone->m_has_used_fpu = m_has_used_fpu;
  456. return clone;
  457. }
  458. KResult Thread::wait_for_connect(FileDescription& description)
  459. {
  460. ASSERT(description.is_socket());
  461. auto& socket = *description.socket();
  462. if (socket.is_connected())
  463. return KSuccess;
  464. block(Thread::State::BlockedConnect, description);
  465. Scheduler::yield();
  466. if (!socket.is_connected())
  467. return KResult(-ECONNREFUSED);
  468. return KSuccess;
  469. }
  470. void Thread::initialize()
  471. {
  472. g_runnable_threads = new InlineLinkedList<Thread>;
  473. g_nonrunnable_threads = new InlineLinkedList<Thread>;
  474. Scheduler::initialize();
  475. }
  476. Vector<Thread*> Thread::all_threads()
  477. {
  478. Vector<Thread*> threads;
  479. InterruptDisabler disabler;
  480. threads.ensure_capacity(thread_table().size());
  481. for (auto* thread : thread_table())
  482. threads.unchecked_append(thread);
  483. return threads;
  484. }
  485. bool Thread::is_thread(void* ptr)
  486. {
  487. ASSERT_INTERRUPTS_DISABLED();
  488. return thread_table().contains((Thread*)ptr);
  489. }
  490. void Thread::set_thread_list(InlineLinkedList<Thread>* thread_list)
  491. {
  492. ASSERT(pid() != 0);
  493. if (m_thread_list == thread_list)
  494. return;
  495. if (m_thread_list)
  496. m_thread_list->remove(this);
  497. if (thread_list)
  498. thread_list->append(this);
  499. m_thread_list = thread_list;
  500. }
  501. void Thread::set_state(State new_state)
  502. {
  503. m_state = new_state;
  504. if (m_process.pid() != 0)
  505. set_thread_list(thread_list_for_state(new_state));
  506. }