MemoryManager.cpp 51 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233
  1. /*
  2. * Copyright (c) 2018-2022, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Assertions.h>
  7. #include <AK/Memory.h>
  8. #include <AK/StringView.h>
  9. #include <Kernel/Arch/CPU.h>
  10. #include <Kernel/Arch/PageDirectory.h>
  11. #include <Kernel/Arch/PageFault.h>
  12. #include <Kernel/Arch/RegisterState.h>
  13. #include <Kernel/BootInfo.h>
  14. #include <Kernel/CMOS.h>
  15. #include <Kernel/FileSystem/Inode.h>
  16. #include <Kernel/Heap/kmalloc.h>
  17. #include <Kernel/KSyms.h>
  18. #include <Kernel/Memory/AnonymousVMObject.h>
  19. #include <Kernel/Memory/MemoryManager.h>
  20. #include <Kernel/Memory/PageDirectory.h>
  21. #include <Kernel/Memory/PhysicalRegion.h>
  22. #include <Kernel/Memory/SharedInodeVMObject.h>
  23. #include <Kernel/Multiboot.h>
  24. #include <Kernel/Panic.h>
  25. #include <Kernel/Prekernel/Prekernel.h>
  26. #include <Kernel/Process.h>
  27. #include <Kernel/Sections.h>
  28. #include <Kernel/StdLib.h>
  29. extern u8 start_of_kernel_image[];
  30. extern u8 end_of_kernel_image[];
  31. extern u8 start_of_kernel_text[];
  32. extern u8 start_of_kernel_data[];
  33. extern u8 end_of_kernel_bss[];
  34. extern u8 start_of_ro_after_init[];
  35. extern u8 end_of_ro_after_init[];
  36. extern u8 start_of_unmap_after_init[];
  37. extern u8 end_of_unmap_after_init[];
  38. extern u8 start_of_kernel_ksyms[];
  39. extern u8 end_of_kernel_ksyms[];
  40. extern multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
  41. extern size_t multiboot_copy_boot_modules_count;
  42. namespace Kernel::Memory {
  43. ErrorOr<FlatPtr> page_round_up(FlatPtr x)
  44. {
  45. if (x > (explode_byte(0xFF) & ~0xFFF)) {
  46. return Error::from_errno(EINVAL);
  47. }
  48. return (((FlatPtr)(x)) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1));
  49. }
  50. // NOTE: We can NOT use Singleton for this class, because
  51. // MemoryManager::initialize is called *before* global constructors are
  52. // run. If we do, then Singleton would get re-initialized, causing
  53. // the memory manager to be initialized twice!
  54. static MemoryManager* s_the;
  55. // The MM lock protects:
  56. // - all data members of MemoryManager
  57. // - the quickmap mechanism
  58. // - the PTE/PDE mapping mechanism
  59. RecursiveSpinlock s_mm_lock { LockRank::MemoryManager };
  60. MemoryManager& MemoryManager::the()
  61. {
  62. return *s_the;
  63. }
  64. bool MemoryManager::is_initialized()
  65. {
  66. return s_the != nullptr;
  67. }
  68. static UNMAP_AFTER_INIT VirtualRange kernel_virtual_range()
  69. {
  70. size_t kernel_range_start = kernel_mapping_base + 2 * MiB; // The first 2 MiB are used for mapping the pre-kernel
  71. return VirtualRange { VirtualAddress(kernel_range_start), KERNEL_PD_END - kernel_range_start };
  72. }
  73. UNMAP_AFTER_INIT MemoryManager::MemoryManager()
  74. : m_region_tree(kernel_virtual_range())
  75. {
  76. s_the = this;
  77. SpinlockLocker lock(s_mm_lock);
  78. parse_memory_map();
  79. activate_kernel_page_directory(kernel_page_directory());
  80. protect_kernel_image();
  81. // We're temporarily "committing" to two pages that we need to allocate below
  82. auto committed_pages = commit_physical_pages(2).release_value();
  83. m_shared_zero_page = committed_pages.take_one();
  84. // We're wasting a page here, we just need a special tag (physical
  85. // address) so that we know when we need to lazily allocate a page
  86. // that we should be drawing this page from the committed pool rather
  87. // than potentially failing if no pages are available anymore.
  88. // By using a tag we don't have to query the VMObject for every page
  89. // whether it was committed or not
  90. m_lazy_committed_page = committed_pages.take_one();
  91. }
  92. UNMAP_AFTER_INIT MemoryManager::~MemoryManager() = default;
  93. UNMAP_AFTER_INIT void MemoryManager::protect_kernel_image()
  94. {
  95. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  96. // Disable writing to the kernel text and rodata segments.
  97. for (auto const* i = start_of_kernel_text; i < start_of_kernel_data; i += PAGE_SIZE) {
  98. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  99. pte.set_writable(false);
  100. }
  101. if (Processor::current().has_nx()) {
  102. // Disable execution of the kernel data, bss and heap segments.
  103. for (auto const* i = start_of_kernel_data; i < end_of_kernel_image; i += PAGE_SIZE) {
  104. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  105. pte.set_execute_disabled(true);
  106. }
  107. }
  108. }
  109. UNMAP_AFTER_INIT void MemoryManager::unmap_prekernel()
  110. {
  111. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  112. SpinlockLocker mm_lock(s_mm_lock);
  113. auto start = start_of_prekernel_image.page_base().get();
  114. auto end = end_of_prekernel_image.page_base().get();
  115. for (auto i = start; i <= end; i += PAGE_SIZE)
  116. release_pte(kernel_page_directory(), VirtualAddress(i), i == end ? IsLastPTERelease::Yes : IsLastPTERelease::No);
  117. flush_tlb(&kernel_page_directory(), VirtualAddress(start), (end - start) / PAGE_SIZE);
  118. }
  119. UNMAP_AFTER_INIT void MemoryManager::protect_readonly_after_init_memory()
  120. {
  121. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  122. SpinlockLocker mm_lock(s_mm_lock);
  123. // Disable writing to the .ro_after_init section
  124. for (auto i = (FlatPtr)&start_of_ro_after_init; i < (FlatPtr)&end_of_ro_after_init; i += PAGE_SIZE) {
  125. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  126. pte.set_writable(false);
  127. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  128. }
  129. }
  130. void MemoryManager::unmap_text_after_init()
  131. {
  132. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  133. SpinlockLocker mm_lock(s_mm_lock);
  134. auto start = page_round_down((FlatPtr)&start_of_unmap_after_init);
  135. auto end = page_round_up((FlatPtr)&end_of_unmap_after_init).release_value_but_fixme_should_propagate_errors();
  136. // Unmap the entire .unmap_after_init section
  137. for (auto i = start; i < end; i += PAGE_SIZE) {
  138. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  139. pte.clear();
  140. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  141. }
  142. dmesgln("Unmapped {} KiB of kernel text after init! :^)", (end - start) / KiB);
  143. }
  144. UNMAP_AFTER_INIT void MemoryManager::protect_ksyms_after_init()
  145. {
  146. SpinlockLocker mm_lock(s_mm_lock);
  147. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  148. auto start = page_round_down((FlatPtr)start_of_kernel_ksyms);
  149. auto end = page_round_up((FlatPtr)end_of_kernel_ksyms).release_value_but_fixme_should_propagate_errors();
  150. for (auto i = start; i < end; i += PAGE_SIZE) {
  151. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  152. pte.set_writable(false);
  153. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  154. }
  155. dmesgln("Write-protected kernel symbols after init.");
  156. }
  157. IterationDecision MemoryManager::for_each_physical_memory_range(Function<IterationDecision(PhysicalMemoryRange const&)> callback)
  158. {
  159. VERIFY(!m_physical_memory_ranges.is_empty());
  160. for (auto& current_range : m_physical_memory_ranges) {
  161. IterationDecision decision = callback(current_range);
  162. if (decision != IterationDecision::Continue)
  163. return decision;
  164. }
  165. return IterationDecision::Continue;
  166. }
  167. UNMAP_AFTER_INIT void MemoryManager::register_reserved_ranges()
  168. {
  169. VERIFY(!m_physical_memory_ranges.is_empty());
  170. ContiguousReservedMemoryRange range;
  171. for (auto& current_range : m_physical_memory_ranges) {
  172. if (current_range.type != PhysicalMemoryRangeType::Reserved) {
  173. if (range.start.is_null())
  174. continue;
  175. m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, current_range.start.get() - range.start.get() });
  176. range.start.set((FlatPtr) nullptr);
  177. continue;
  178. }
  179. if (!range.start.is_null()) {
  180. continue;
  181. }
  182. range.start = current_range.start;
  183. }
  184. if (m_physical_memory_ranges.last().type != PhysicalMemoryRangeType::Reserved)
  185. return;
  186. if (range.start.is_null())
  187. return;
  188. m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, m_physical_memory_ranges.last().start.get() + m_physical_memory_ranges.last().length - range.start.get() });
  189. }
  190. bool MemoryManager::is_allowed_to_read_physical_memory_for_userspace(PhysicalAddress start_address, size_t read_length) const
  191. {
  192. // Note: Guard against overflow in case someone tries to mmap on the edge of
  193. // the RAM
  194. if (start_address.offset_addition_would_overflow(read_length))
  195. return false;
  196. auto end_address = start_address.offset(read_length);
  197. for (auto const& current_range : m_reserved_memory_ranges) {
  198. if (current_range.start > start_address)
  199. continue;
  200. if (current_range.start.offset(current_range.length) < end_address)
  201. continue;
  202. return true;
  203. }
  204. return false;
  205. }
  206. UNMAP_AFTER_INIT void MemoryManager::parse_memory_map()
  207. {
  208. // Register used memory regions that we know of.
  209. m_used_memory_ranges.ensure_capacity(4);
  210. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::LowMemory, PhysicalAddress(0x00000000), PhysicalAddress(1 * MiB) });
  211. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Kernel, PhysicalAddress(virtual_to_low_physical((FlatPtr)start_of_kernel_image)), PhysicalAddress(page_round_up(virtual_to_low_physical((FlatPtr)end_of_kernel_image)).release_value_but_fixme_should_propagate_errors()) });
  212. if (multiboot_flags & 0x4) {
  213. auto* bootmods_start = multiboot_copy_boot_modules_array;
  214. auto* bootmods_end = bootmods_start + multiboot_copy_boot_modules_count;
  215. for (auto* bootmod = bootmods_start; bootmod < bootmods_end; bootmod++) {
  216. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::BootModule, PhysicalAddress(bootmod->start), PhysicalAddress(bootmod->end) });
  217. }
  218. }
  219. auto* mmap_begin = multiboot_memory_map;
  220. auto* mmap_end = multiboot_memory_map + multiboot_memory_map_count;
  221. struct ContiguousPhysicalVirtualRange {
  222. PhysicalAddress lower;
  223. PhysicalAddress upper;
  224. };
  225. Vector<ContiguousPhysicalVirtualRange> contiguous_physical_ranges;
  226. for (auto* mmap = mmap_begin; mmap < mmap_end; mmap++) {
  227. // We have to copy these onto the stack, because we take a reference to these when printing them out,
  228. // and doing so on a packed struct field is UB.
  229. auto address = mmap->addr;
  230. auto length = mmap->len;
  231. ArmedScopeGuard write_back_guard = [&]() {
  232. mmap->addr = address;
  233. mmap->len = length;
  234. };
  235. dmesgln("MM: Multiboot mmap: address={:p}, length={}, type={}", address, length, mmap->type);
  236. auto start_address = PhysicalAddress(address);
  237. switch (mmap->type) {
  238. case (MULTIBOOT_MEMORY_AVAILABLE):
  239. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Usable, start_address, length });
  240. break;
  241. case (MULTIBOOT_MEMORY_RESERVED):
  242. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Reserved, start_address, length });
  243. break;
  244. case (MULTIBOOT_MEMORY_ACPI_RECLAIMABLE):
  245. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_Reclaimable, start_address, length });
  246. break;
  247. case (MULTIBOOT_MEMORY_NVS):
  248. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_NVS, start_address, length });
  249. break;
  250. case (MULTIBOOT_MEMORY_BADRAM):
  251. dmesgln("MM: Warning, detected bad memory range!");
  252. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::BadMemory, start_address, length });
  253. break;
  254. default:
  255. dbgln("MM: Unknown range!");
  256. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Unknown, start_address, length });
  257. break;
  258. }
  259. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  260. continue;
  261. // Fix up unaligned memory regions.
  262. auto diff = (FlatPtr)address % PAGE_SIZE;
  263. if (diff != 0) {
  264. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting {:p} by {} bytes", address, diff);
  265. diff = PAGE_SIZE - diff;
  266. address += diff;
  267. length -= diff;
  268. }
  269. if ((length % PAGE_SIZE) != 0) {
  270. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting length {} by {} bytes", length, length % PAGE_SIZE);
  271. length -= length % PAGE_SIZE;
  272. }
  273. if (length < PAGE_SIZE) {
  274. dmesgln("MM: Memory physical_region from bootloader is too small; we want >= {} bytes, but got {} bytes", PAGE_SIZE, length);
  275. continue;
  276. }
  277. for (PhysicalSize page_base = address; page_base <= (address + length); page_base += PAGE_SIZE) {
  278. auto addr = PhysicalAddress(page_base);
  279. // Skip used memory ranges.
  280. bool should_skip = false;
  281. for (auto& used_range : m_used_memory_ranges) {
  282. if (addr.get() >= used_range.start.get() && addr.get() <= used_range.end.get()) {
  283. should_skip = true;
  284. break;
  285. }
  286. }
  287. if (should_skip)
  288. continue;
  289. if (contiguous_physical_ranges.is_empty() || contiguous_physical_ranges.last().upper.offset(PAGE_SIZE) != addr) {
  290. contiguous_physical_ranges.append(ContiguousPhysicalVirtualRange {
  291. .lower = addr,
  292. .upper = addr,
  293. });
  294. } else {
  295. contiguous_physical_ranges.last().upper = addr;
  296. }
  297. }
  298. }
  299. for (auto& range : contiguous_physical_ranges) {
  300. m_physical_regions.append(PhysicalRegion::try_create(range.lower, range.upper).release_nonnull());
  301. }
  302. for (auto& region : m_physical_regions)
  303. m_system_memory_info.physical_pages += region.size();
  304. register_reserved_ranges();
  305. for (auto& range : m_reserved_memory_ranges) {
  306. dmesgln("MM: Contiguous reserved range from {}, length is {}", range.start, range.length);
  307. }
  308. initialize_physical_pages();
  309. VERIFY(m_system_memory_info.physical_pages > 0);
  310. // We start out with no committed pages
  311. m_system_memory_info.physical_pages_uncommitted = m_system_memory_info.physical_pages;
  312. for (auto& used_range : m_used_memory_ranges) {
  313. dmesgln("MM: {} range @ {} - {} (size {:#x})", UserMemoryRangeTypeNames[to_underlying(used_range.type)], used_range.start, used_range.end.offset(-1), used_range.end.as_ptr() - used_range.start.as_ptr());
  314. }
  315. for (auto& region : m_physical_regions) {
  316. dmesgln("MM: User physical region: {} - {} (size {:#x})", region.lower(), region.upper().offset(-1), PAGE_SIZE * region.size());
  317. region.initialize_zones();
  318. }
  319. }
  320. UNMAP_AFTER_INIT void MemoryManager::initialize_physical_pages()
  321. {
  322. // We assume that the physical page range is contiguous and doesn't contain huge gaps!
  323. PhysicalAddress highest_physical_address;
  324. for (auto& range : m_used_memory_ranges) {
  325. if (range.end.get() > highest_physical_address.get())
  326. highest_physical_address = range.end;
  327. }
  328. for (auto& region : m_physical_memory_ranges) {
  329. auto range_end = PhysicalAddress(region.start).offset(region.length);
  330. if (range_end.get() > highest_physical_address.get())
  331. highest_physical_address = range_end;
  332. }
  333. // Calculate how many total physical pages the array will have
  334. m_physical_page_entries_count = PhysicalAddress::physical_page_index(highest_physical_address.get()) + 1;
  335. VERIFY(m_physical_page_entries_count != 0);
  336. VERIFY(!Checked<decltype(m_physical_page_entries_count)>::multiplication_would_overflow(m_physical_page_entries_count, sizeof(PhysicalPageEntry)));
  337. // Calculate how many bytes the array will consume
  338. auto physical_page_array_size = m_physical_page_entries_count * sizeof(PhysicalPageEntry);
  339. auto physical_page_array_pages = page_round_up(physical_page_array_size).release_value_but_fixme_should_propagate_errors() / PAGE_SIZE;
  340. VERIFY(physical_page_array_pages * PAGE_SIZE >= physical_page_array_size);
  341. // Calculate how many page tables we will need to be able to map them all
  342. auto needed_page_table_count = (physical_page_array_pages + 512 - 1) / 512;
  343. auto physical_page_array_pages_and_page_tables_count = physical_page_array_pages + needed_page_table_count;
  344. // Now that we know how much memory we need for a contiguous array of PhysicalPage instances, find a memory region that can fit it
  345. PhysicalRegion* found_region { nullptr };
  346. Optional<size_t> found_region_index;
  347. for (size_t i = 0; i < m_physical_regions.size(); ++i) {
  348. auto& region = m_physical_regions[i];
  349. if (region.size() >= physical_page_array_pages_and_page_tables_count) {
  350. found_region = &region;
  351. found_region_index = i;
  352. break;
  353. }
  354. }
  355. if (!found_region) {
  356. dmesgln("MM: Need {} bytes for physical page management, but no memory region is large enough!", physical_page_array_pages_and_page_tables_count);
  357. VERIFY_NOT_REACHED();
  358. }
  359. VERIFY(m_system_memory_info.physical_pages >= physical_page_array_pages_and_page_tables_count);
  360. m_system_memory_info.physical_pages -= physical_page_array_pages_and_page_tables_count;
  361. if (found_region->size() == physical_page_array_pages_and_page_tables_count) {
  362. // We're stealing the entire region
  363. m_physical_pages_region = m_physical_regions.take(*found_region_index);
  364. } else {
  365. m_physical_pages_region = found_region->try_take_pages_from_beginning(physical_page_array_pages_and_page_tables_count);
  366. }
  367. m_used_memory_ranges.append({ UsedMemoryRangeType::PhysicalPages, m_physical_pages_region->lower(), m_physical_pages_region->upper() });
  368. // Create the bare page directory. This is not a fully constructed page directory and merely contains the allocators!
  369. m_kernel_page_directory = PageDirectory::must_create_kernel_page_directory();
  370. {
  371. // Carve out the whole page directory covering the kernel image to make MemoryManager::initialize_physical_pages() happy
  372. FlatPtr start_of_range = ((FlatPtr)start_of_kernel_image & ~(FlatPtr)0x1fffff);
  373. FlatPtr end_of_range = ((FlatPtr)end_of_kernel_image & ~(FlatPtr)0x1fffff) + 0x200000;
  374. MUST(m_region_tree.place_specifically(*MUST(Region::create_unbacked()).leak_ptr(), VirtualRange { VirtualAddress(start_of_range), end_of_range - start_of_range }));
  375. }
  376. // Allocate a virtual address range for our array
  377. // This looks awkward, but it basically creates a dummy region to occupy the address range permanently.
  378. auto& region = *MUST(Region::create_unbacked()).leak_ptr();
  379. MUST(m_region_tree.place_anywhere(region, RandomizeVirtualAddress::No, physical_page_array_pages * PAGE_SIZE));
  380. auto range = region.range();
  381. // Now that we have our special m_physical_pages_region region with enough pages to hold the entire array
  382. // try to map the entire region into kernel space so we always have it
  383. // We can't use ensure_pte here because it would try to allocate a PhysicalPage and we don't have the array
  384. // mapped yet so we can't create them
  385. SpinlockLocker lock(s_mm_lock);
  386. // Create page tables at the beginning of m_physical_pages_region, followed by the PhysicalPageEntry array
  387. auto page_tables_base = m_physical_pages_region->lower();
  388. auto physical_page_array_base = page_tables_base.offset(needed_page_table_count * PAGE_SIZE);
  389. auto physical_page_array_current_page = physical_page_array_base.get();
  390. auto virtual_page_array_base = range.base().get();
  391. auto virtual_page_array_current_page = virtual_page_array_base;
  392. for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
  393. auto virtual_page_base_for_this_pt = virtual_page_array_current_page;
  394. auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
  395. auto* pt = reinterpret_cast<PageTableEntry*>(quickmap_page(pt_paddr));
  396. __builtin_memset(pt, 0, PAGE_SIZE);
  397. for (size_t pte_index = 0; pte_index < PAGE_SIZE / sizeof(PageTableEntry); pte_index++) {
  398. auto& pte = pt[pte_index];
  399. pte.set_physical_page_base(physical_page_array_current_page);
  400. pte.set_user_allowed(false);
  401. pte.set_writable(true);
  402. if (Processor::current().has_nx())
  403. pte.set_execute_disabled(false);
  404. pte.set_global(true);
  405. pte.set_present(true);
  406. physical_page_array_current_page += PAGE_SIZE;
  407. virtual_page_array_current_page += PAGE_SIZE;
  408. }
  409. unquickmap_page();
  410. // Hook the page table into the kernel page directory
  411. u32 page_directory_index = (virtual_page_base_for_this_pt >> 21) & 0x1ff;
  412. auto* pd = reinterpret_cast<PageDirectoryEntry*>(quickmap_page(boot_pd_kernel));
  413. PageDirectoryEntry& pde = pd[page_directory_index];
  414. VERIFY(!pde.is_present()); // Nothing should be using this PD yet
  415. // We can't use ensure_pte quite yet!
  416. pde.set_page_table_base(pt_paddr.get());
  417. pde.set_user_allowed(false);
  418. pde.set_present(true);
  419. pde.set_writable(true);
  420. pde.set_global(true);
  421. unquickmap_page();
  422. flush_tlb_local(VirtualAddress(virtual_page_base_for_this_pt));
  423. }
  424. // We now have the entire PhysicalPageEntry array mapped!
  425. m_physical_page_entries = (PhysicalPageEntry*)range.base().get();
  426. for (size_t i = 0; i < m_physical_page_entries_count; i++)
  427. new (&m_physical_page_entries[i]) PageTableEntry();
  428. // Now we should be able to allocate PhysicalPage instances,
  429. // so finish setting up the kernel page directory
  430. m_kernel_page_directory->allocate_kernel_directory();
  431. // Now create legit PhysicalPage objects for the page tables we created.
  432. virtual_page_array_current_page = virtual_page_array_base;
  433. for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
  434. VERIFY(virtual_page_array_current_page <= range.end().get());
  435. auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
  436. auto physical_page_index = PhysicalAddress::physical_page_index(pt_paddr.get());
  437. auto& physical_page_entry = m_physical_page_entries[physical_page_index];
  438. auto physical_page = adopt_ref(*new (&physical_page_entry.allocated.physical_page) PhysicalPage(MayReturnToFreeList::No));
  439. // NOTE: This leaked ref is matched by the unref in MemoryManager::release_pte()
  440. (void)physical_page.leak_ref();
  441. virtual_page_array_current_page += (PAGE_SIZE / sizeof(PageTableEntry)) * PAGE_SIZE;
  442. }
  443. dmesgln("MM: Physical page entries: {}", range);
  444. }
  445. PhysicalPageEntry& MemoryManager::get_physical_page_entry(PhysicalAddress physical_address)
  446. {
  447. VERIFY(m_physical_page_entries);
  448. auto physical_page_entry_index = PhysicalAddress::physical_page_index(physical_address.get());
  449. VERIFY(physical_page_entry_index < m_physical_page_entries_count);
  450. return m_physical_page_entries[physical_page_entry_index];
  451. }
  452. PhysicalAddress MemoryManager::get_physical_address(PhysicalPage const& physical_page)
  453. {
  454. PhysicalPageEntry const& physical_page_entry = *reinterpret_cast<PhysicalPageEntry const*>((u8 const*)&physical_page - __builtin_offsetof(PhysicalPageEntry, allocated.physical_page));
  455. VERIFY(m_physical_page_entries);
  456. size_t physical_page_entry_index = &physical_page_entry - m_physical_page_entries;
  457. VERIFY(physical_page_entry_index < m_physical_page_entries_count);
  458. return PhysicalAddress((PhysicalPtr)physical_page_entry_index * PAGE_SIZE);
  459. }
  460. PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr)
  461. {
  462. VERIFY_INTERRUPTS_DISABLED();
  463. VERIFY(s_mm_lock.is_locked_by_current_processor());
  464. VERIFY(page_directory.get_lock().is_locked_by_current_processor());
  465. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  466. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  467. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  468. auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
  469. PageDirectoryEntry const& pde = pd[page_directory_index];
  470. if (!pde.is_present())
  471. return nullptr;
  472. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  473. }
  474. PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  475. {
  476. VERIFY_INTERRUPTS_DISABLED();
  477. VERIFY(s_mm_lock.is_locked_by_current_processor());
  478. VERIFY(page_directory.get_lock().is_locked_by_current_processor());
  479. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  480. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  481. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  482. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  483. auto& pde = pd[page_directory_index];
  484. if (pde.is_present())
  485. return &quickmap_pt(PhysicalAddress(pde.page_table_base()))[page_table_index];
  486. bool did_purge = false;
  487. auto page_table_or_error = allocate_physical_page(ShouldZeroFill::Yes, &did_purge);
  488. if (page_table_or_error.is_error()) {
  489. dbgln("MM: Unable to allocate page table to map {}", vaddr);
  490. return nullptr;
  491. }
  492. auto page_table = page_table_or_error.release_value();
  493. if (did_purge) {
  494. // If any memory had to be purged, ensure_pte may have been called as part
  495. // of the purging process. So we need to re-map the pd in this case to ensure
  496. // we're writing to the correct underlying physical page
  497. pd = quickmap_pd(page_directory, page_directory_table_index);
  498. VERIFY(&pde == &pd[page_directory_index]); // Sanity check
  499. VERIFY(!pde.is_present()); // Should have not changed
  500. }
  501. pde.set_page_table_base(page_table->paddr().get());
  502. pde.set_user_allowed(true);
  503. pde.set_present(true);
  504. pde.set_writable(true);
  505. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  506. // NOTE: This leaked ref is matched by the unref in MemoryManager::release_pte()
  507. (void)page_table.leak_ref();
  508. return &quickmap_pt(PhysicalAddress(pde.page_table_base()))[page_table_index];
  509. }
  510. void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, IsLastPTERelease is_last_pte_release)
  511. {
  512. VERIFY_INTERRUPTS_DISABLED();
  513. VERIFY(s_mm_lock.is_locked_by_current_processor());
  514. VERIFY(page_directory.get_lock().is_locked_by_current_processor());
  515. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  516. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  517. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  518. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  519. PageDirectoryEntry& pde = pd[page_directory_index];
  520. if (pde.is_present()) {
  521. auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()));
  522. auto& pte = page_table[page_table_index];
  523. pte.clear();
  524. if (is_last_pte_release == IsLastPTERelease::Yes || page_table_index == 0x1ff) {
  525. // If this is the last PTE in a region or the last PTE in a page table then
  526. // check if we can also release the page table
  527. bool all_clear = true;
  528. for (u32 i = 0; i <= 0x1ff; i++) {
  529. if (!page_table[i].is_null()) {
  530. all_clear = false;
  531. break;
  532. }
  533. }
  534. if (all_clear) {
  535. get_physical_page_entry(PhysicalAddress { pde.page_table_base() }).allocated.physical_page.unref();
  536. pde.clear();
  537. }
  538. }
  539. }
  540. }
  541. UNMAP_AFTER_INIT void MemoryManager::initialize(u32 cpu)
  542. {
  543. ProcessorSpecific<MemoryManagerData>::initialize();
  544. if (cpu == 0) {
  545. new MemoryManager;
  546. kmalloc_enable_expand();
  547. }
  548. }
  549. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress address)
  550. {
  551. if (is_user_address(address))
  552. return nullptr;
  553. return MM.m_region_tree.find_region_containing(address);
  554. }
  555. Region* MemoryManager::find_user_region_from_vaddr_no_lock(AddressSpace& space, VirtualAddress vaddr)
  556. {
  557. VERIFY(space.get_lock().is_locked_by_current_processor());
  558. return space.find_region_containing({ vaddr, 1 });
  559. }
  560. Region* MemoryManager::find_user_region_from_vaddr(AddressSpace& space, VirtualAddress vaddr)
  561. {
  562. SpinlockLocker lock(space.get_lock());
  563. return find_user_region_from_vaddr_no_lock(space, vaddr);
  564. }
  565. void MemoryManager::validate_syscall_preconditions(AddressSpace& space, RegisterState const& regs)
  566. {
  567. // We take the space lock once here and then use the no_lock variants
  568. // to avoid excessive spinlock recursion in this extremely common path.
  569. SpinlockLocker lock(space.get_lock());
  570. auto unlock_and_handle_crash = [&lock, &regs](char const* description, int signal) {
  571. lock.unlock();
  572. handle_crash(regs, description, signal);
  573. };
  574. {
  575. VirtualAddress userspace_sp = VirtualAddress { regs.userspace_sp() };
  576. if (!MM.validate_user_stack_no_lock(space, userspace_sp)) {
  577. dbgln("Invalid stack pointer: {}", userspace_sp);
  578. return unlock_and_handle_crash("Bad stack on syscall entry", SIGSEGV);
  579. }
  580. }
  581. {
  582. VirtualAddress ip = VirtualAddress { regs.ip() };
  583. auto* calling_region = MM.find_user_region_from_vaddr_no_lock(space, ip);
  584. if (!calling_region) {
  585. dbgln("Syscall from {:p} which has no associated region", ip);
  586. return unlock_and_handle_crash("Syscall from unknown region", SIGSEGV);
  587. }
  588. if (calling_region->is_writable()) {
  589. dbgln("Syscall from writable memory at {:p}", ip);
  590. return unlock_and_handle_crash("Syscall from writable memory", SIGSEGV);
  591. }
  592. if (space.enforces_syscall_regions() && !calling_region->is_syscall_region()) {
  593. dbgln("Syscall from non-syscall region");
  594. return unlock_and_handle_crash("Syscall from non-syscall region", SIGSEGV);
  595. }
  596. }
  597. }
  598. Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr)
  599. {
  600. if (auto* region = kernel_region_from_vaddr(vaddr))
  601. return region;
  602. auto page_directory = PageDirectory::find_current();
  603. if (!page_directory)
  604. return nullptr;
  605. VERIFY(page_directory->address_space());
  606. return find_user_region_from_vaddr(*page_directory->address_space(), vaddr);
  607. }
  608. PageFaultResponse MemoryManager::handle_page_fault(PageFault const& fault)
  609. {
  610. VERIFY_INTERRUPTS_DISABLED();
  611. auto faulted_in_range = [&fault](auto const* start, auto const* end) {
  612. return fault.vaddr() >= VirtualAddress { start } && fault.vaddr() < VirtualAddress { end };
  613. };
  614. if (faulted_in_range(&start_of_ro_after_init, &end_of_ro_after_init))
  615. PANIC("Attempt to write into READONLY_AFTER_INIT section");
  616. if (faulted_in_range(&start_of_unmap_after_init, &end_of_unmap_after_init)) {
  617. auto const* kernel_symbol = symbolicate_kernel_address(fault.vaddr().get());
  618. PANIC("Attempt to access UNMAP_AFTER_INIT section ({:p}: {})", fault.vaddr(), kernel_symbol ? kernel_symbol->name : "(Unknown)");
  619. }
  620. if (faulted_in_range(&start_of_kernel_ksyms, &end_of_kernel_ksyms))
  621. PANIC("Attempt to access KSYMS section");
  622. if (Processor::current_in_irq()) {
  623. dbgln("CPU[{}] BUG! Page fault while handling IRQ! code={}, vaddr={}, irq level: {}",
  624. Processor::current_id(), fault.code(), fault.vaddr(), Processor::current_in_irq());
  625. dump_kernel_regions();
  626. return PageFaultResponse::ShouldCrash;
  627. }
  628. dbgln_if(PAGE_FAULT_DEBUG, "MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::current_id(), fault.code(), fault.vaddr());
  629. auto* region = find_region_from_vaddr(fault.vaddr());
  630. if (!region) {
  631. return PageFaultResponse::ShouldCrash;
  632. }
  633. return region->handle_fault(fault);
  634. }
  635. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_contiguous_kernel_region(size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  636. {
  637. VERIFY(!(size % PAGE_SIZE));
  638. OwnPtr<KString> name_kstring;
  639. if (!name.is_null())
  640. name_kstring = TRY(KString::try_create(name));
  641. auto vmobject = TRY(AnonymousVMObject::try_create_physically_contiguous_with_size(size));
  642. auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
  643. TRY(m_region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size));
  644. TRY(region->map(kernel_page_directory()));
  645. return region;
  646. }
  647. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_page(StringView name, Memory::Region::Access access, RefPtr<Memory::PhysicalPage>& dma_buffer_page)
  648. {
  649. dma_buffer_page = TRY(allocate_physical_page());
  650. // Do not enable Cache for this region as physical memory transfers are performed (Most architectures have this behaviour by default)
  651. return allocate_kernel_region(dma_buffer_page->paddr(), PAGE_SIZE, name, access, Region::Cacheable::No);
  652. }
  653. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_page(StringView name, Memory::Region::Access access)
  654. {
  655. RefPtr<Memory::PhysicalPage> dma_buffer_page;
  656. return allocate_dma_buffer_page(name, access, dma_buffer_page);
  657. }
  658. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_pages(size_t size, StringView name, Memory::Region::Access access, NonnullRefPtrVector<Memory::PhysicalPage>& dma_buffer_pages)
  659. {
  660. VERIFY(!(size % PAGE_SIZE));
  661. dma_buffer_pages = TRY(allocate_contiguous_physical_pages(size));
  662. // Do not enable Cache for this region as physical memory transfers are performed (Most architectures have this behaviour by default)
  663. return allocate_kernel_region(dma_buffer_pages.first().paddr(), size, name, access, Region::Cacheable::No);
  664. }
  665. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_pages(size_t size, StringView name, Memory::Region::Access access)
  666. {
  667. VERIFY(!(size % PAGE_SIZE));
  668. NonnullRefPtrVector<Memory::PhysicalPage> dma_buffer_pages;
  669. return allocate_dma_buffer_pages(size, name, access, dma_buffer_pages);
  670. }
  671. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region(size_t size, StringView name, Region::Access access, AllocationStrategy strategy, Region::Cacheable cacheable)
  672. {
  673. VERIFY(!(size % PAGE_SIZE));
  674. OwnPtr<KString> name_kstring;
  675. if (!name.is_null())
  676. name_kstring = TRY(KString::try_create(name));
  677. auto vmobject = TRY(AnonymousVMObject::try_create_with_size(size, strategy));
  678. auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
  679. TRY(m_region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size));
  680. TRY(region->map(kernel_page_directory()));
  681. return region;
  682. }
  683. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  684. {
  685. VERIFY(!(size % PAGE_SIZE));
  686. auto vmobject = TRY(AnonymousVMObject::try_create_for_physical_range(paddr, size));
  687. OwnPtr<KString> name_kstring;
  688. if (!name.is_null())
  689. name_kstring = TRY(KString::try_create(name));
  690. auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
  691. TRY(m_region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size, PAGE_SIZE));
  692. TRY(region->map(kernel_page_directory()));
  693. return region;
  694. }
  695. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  696. {
  697. VERIFY(!(size % PAGE_SIZE));
  698. OwnPtr<KString> name_kstring;
  699. if (!name.is_null())
  700. name_kstring = TRY(KString::try_create(name));
  701. auto region = TRY(Region::create_unplaced(vmobject, 0, move(name_kstring), access, cacheable));
  702. TRY(m_region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size));
  703. TRY(region->map(kernel_page_directory()));
  704. return region;
  705. }
  706. ErrorOr<CommittedPhysicalPageSet> MemoryManager::commit_physical_pages(size_t page_count)
  707. {
  708. VERIFY(page_count > 0);
  709. SpinlockLocker lock(s_mm_lock);
  710. if (m_system_memory_info.physical_pages_uncommitted < page_count) {
  711. dbgln("MM: Unable to commit {} pages, have only {}", page_count, m_system_memory_info.physical_pages_uncommitted);
  712. Process::for_each([&](Process const& process) {
  713. dbgln("{}({}) resident:{}, shared:{}, virtual:{}",
  714. process.name(),
  715. process.pid(),
  716. process.address_space().amount_resident() / PAGE_SIZE,
  717. process.address_space().amount_shared() / PAGE_SIZE,
  718. process.address_space().amount_virtual() / PAGE_SIZE);
  719. return IterationDecision::Continue;
  720. });
  721. return ENOMEM;
  722. }
  723. m_system_memory_info.physical_pages_uncommitted -= page_count;
  724. m_system_memory_info.physical_pages_committed += page_count;
  725. return CommittedPhysicalPageSet { {}, page_count };
  726. }
  727. void MemoryManager::uncommit_physical_pages(Badge<CommittedPhysicalPageSet>, size_t page_count)
  728. {
  729. VERIFY(page_count > 0);
  730. SpinlockLocker lock(s_mm_lock);
  731. VERIFY(m_system_memory_info.physical_pages_committed >= page_count);
  732. m_system_memory_info.physical_pages_uncommitted += page_count;
  733. m_system_memory_info.physical_pages_committed -= page_count;
  734. }
  735. void MemoryManager::deallocate_physical_page(PhysicalAddress paddr)
  736. {
  737. SpinlockLocker lock(s_mm_lock);
  738. // Are we returning a user page?
  739. for (auto& region : m_physical_regions) {
  740. if (!region.contains(paddr))
  741. continue;
  742. region.return_page(paddr);
  743. --m_system_memory_info.physical_pages_used;
  744. // Always return pages to the uncommitted pool. Pages that were
  745. // committed and allocated are only freed upon request. Once
  746. // returned there is no guarantee being able to get them back.
  747. ++m_system_memory_info.physical_pages_uncommitted;
  748. return;
  749. }
  750. PANIC("MM: deallocate_physical_page couldn't figure out region for page @ {}", paddr);
  751. }
  752. RefPtr<PhysicalPage> MemoryManager::find_free_physical_page(bool committed)
  753. {
  754. VERIFY(s_mm_lock.is_locked());
  755. RefPtr<PhysicalPage> page;
  756. if (committed) {
  757. // Draw from the committed pages pool. We should always have these pages available
  758. VERIFY(m_system_memory_info.physical_pages_committed > 0);
  759. m_system_memory_info.physical_pages_committed--;
  760. } else {
  761. // We need to make sure we don't touch pages that we have committed to
  762. if (m_system_memory_info.physical_pages_uncommitted == 0)
  763. return {};
  764. m_system_memory_info.physical_pages_uncommitted--;
  765. }
  766. for (auto& region : m_physical_regions) {
  767. page = region.take_free_page();
  768. if (!page.is_null()) {
  769. ++m_system_memory_info.physical_pages_used;
  770. break;
  771. }
  772. }
  773. VERIFY(!page.is_null());
  774. return page;
  775. }
  776. NonnullRefPtr<PhysicalPage> MemoryManager::allocate_committed_physical_page(Badge<CommittedPhysicalPageSet>, ShouldZeroFill should_zero_fill)
  777. {
  778. SpinlockLocker lock(s_mm_lock);
  779. auto page = find_free_physical_page(true);
  780. if (should_zero_fill == ShouldZeroFill::Yes) {
  781. auto* ptr = quickmap_page(*page);
  782. memset(ptr, 0, PAGE_SIZE);
  783. unquickmap_page();
  784. }
  785. return page.release_nonnull();
  786. }
  787. ErrorOr<NonnullRefPtr<PhysicalPage>> MemoryManager::allocate_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge)
  788. {
  789. SpinlockLocker lock(s_mm_lock);
  790. auto page = find_free_physical_page(false);
  791. bool purged_pages = false;
  792. if (!page) {
  793. // We didn't have a single free physical page. Let's try to free something up!
  794. // First, we look for a purgeable VMObject in the volatile state.
  795. for_each_vmobject([&](auto& vmobject) {
  796. if (!vmobject.is_anonymous())
  797. return IterationDecision::Continue;
  798. auto& anonymous_vmobject = static_cast<AnonymousVMObject&>(vmobject);
  799. if (!anonymous_vmobject.is_purgeable() || !anonymous_vmobject.is_volatile())
  800. return IterationDecision::Continue;
  801. if (auto purged_page_count = anonymous_vmobject.purge()) {
  802. dbgln("MM: Purge saved the day! Purged {} pages from AnonymousVMObject", purged_page_count);
  803. page = find_free_physical_page(false);
  804. purged_pages = true;
  805. VERIFY(page);
  806. return IterationDecision::Break;
  807. }
  808. return IterationDecision::Continue;
  809. });
  810. }
  811. if (!page) {
  812. // Second, we look for a file-backed VMObject with clean pages.
  813. for_each_vmobject([&](auto& vmobject) {
  814. if (!vmobject.is_inode())
  815. return IterationDecision::Continue;
  816. auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject);
  817. if (auto released_page_count = inode_vmobject.try_release_clean_pages(1)) {
  818. dbgln("MM: Clean inode release saved the day! Released {} pages from InodeVMObject", released_page_count);
  819. page = find_free_physical_page(false);
  820. VERIFY(page);
  821. return IterationDecision::Break;
  822. }
  823. return IterationDecision::Continue;
  824. });
  825. }
  826. if (!page) {
  827. dmesgln("MM: no physical pages available");
  828. return ENOMEM;
  829. }
  830. if (should_zero_fill == ShouldZeroFill::Yes) {
  831. auto* ptr = quickmap_page(*page);
  832. memset(ptr, 0, PAGE_SIZE);
  833. unquickmap_page();
  834. }
  835. if (did_purge)
  836. *did_purge = purged_pages;
  837. return page.release_nonnull();
  838. }
  839. ErrorOr<NonnullRefPtrVector<PhysicalPage>> MemoryManager::allocate_contiguous_physical_pages(size_t size)
  840. {
  841. VERIFY(!(size % PAGE_SIZE));
  842. SpinlockLocker mm_lock(s_mm_lock);
  843. size_t page_count = ceil_div(size, static_cast<size_t>(PAGE_SIZE));
  844. // We need to make sure we don't touch pages that we have committed to
  845. if (m_system_memory_info.physical_pages_uncommitted < page_count)
  846. return ENOMEM;
  847. for (auto& physical_region : m_physical_regions) {
  848. auto physical_pages = physical_region.take_contiguous_free_pages(page_count);
  849. if (!physical_pages.is_empty()) {
  850. // Note: The locking semantics are a bit awkward here, the region destructor can
  851. // deadlock due to invalid lock ordering if we still hold the s_mm_lock when the
  852. // region is constructed or destructed. Since we are now done enumerating anyway,
  853. // it's safe to just unlock here and have MM.allocate_kernel_region do the right thing.
  854. mm_lock.unlock();
  855. {
  856. auto cleanup_region = TRY(MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * page_count, "MemoryManager Allocation Sanitization"sv, Region::Access::Read | Region::Access::Write));
  857. memset(cleanup_region->vaddr().as_ptr(), 0, PAGE_SIZE * page_count);
  858. }
  859. m_system_memory_info.physical_pages_uncommitted -= page_count;
  860. m_system_memory_info.physical_pages_used += page_count;
  861. return physical_pages;
  862. }
  863. }
  864. dmesgln("MM: no contiguous physical pages available");
  865. return ENOMEM;
  866. }
  867. void MemoryManager::enter_process_address_space(Process& process)
  868. {
  869. enter_address_space(process.address_space());
  870. }
  871. void MemoryManager::enter_address_space(AddressSpace& space)
  872. {
  873. auto* current_thread = Thread::current();
  874. VERIFY(current_thread != nullptr);
  875. SpinlockLocker lock(s_mm_lock);
  876. current_thread->regs().cr3 = space.page_directory().cr3();
  877. activate_page_directory(space.page_directory(), current_thread);
  878. }
  879. void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
  880. {
  881. Processor::flush_tlb_local(vaddr, page_count);
  882. }
  883. void MemoryManager::flush_tlb(PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count)
  884. {
  885. Processor::flush_tlb(page_directory, vaddr, page_count);
  886. }
  887. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  888. {
  889. VERIFY(s_mm_lock.is_locked_by_current_processor());
  890. auto& mm_data = get_data();
  891. auto& pte = boot_pd_kernel_pt1023[(KERNEL_QUICKMAP_PD - KERNEL_PT1024_BASE) / PAGE_SIZE];
  892. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  893. if (pte.physical_page_base() != pd_paddr.get()) {
  894. pte.set_physical_page_base(pd_paddr.get());
  895. pte.set_present(true);
  896. pte.set_writable(true);
  897. pte.set_user_allowed(false);
  898. // Because we must continue to hold the MM lock while we use this
  899. // mapping, it is sufficient to only flush on the current CPU. Other
  900. // CPUs trying to use this API must wait on the MM lock anyway
  901. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PD));
  902. } else {
  903. // Even though we don't allow this to be called concurrently, it's
  904. // possible that this PD was mapped on a different CPU and we don't
  905. // broadcast the flush. If so, we still need to flush the TLB.
  906. if (mm_data.m_last_quickmap_pd != pd_paddr)
  907. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PD));
  908. }
  909. mm_data.m_last_quickmap_pd = pd_paddr;
  910. return (PageDirectoryEntry*)KERNEL_QUICKMAP_PD;
  911. }
  912. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  913. {
  914. VERIFY(s_mm_lock.is_locked_by_current_processor());
  915. auto& mm_data = get_data();
  916. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[(KERNEL_QUICKMAP_PT - KERNEL_PT1024_BASE) / PAGE_SIZE];
  917. if (pte.physical_page_base() != pt_paddr.get()) {
  918. pte.set_physical_page_base(pt_paddr.get());
  919. pte.set_present(true);
  920. pte.set_writable(true);
  921. pte.set_user_allowed(false);
  922. // Because we must continue to hold the MM lock while we use this
  923. // mapping, it is sufficient to only flush on the current CPU. Other
  924. // CPUs trying to use this API must wait on the MM lock anyway
  925. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PT));
  926. } else {
  927. // Even though we don't allow this to be called concurrently, it's
  928. // possible that this PT was mapped on a different CPU and we don't
  929. // broadcast the flush. If so, we still need to flush the TLB.
  930. if (mm_data.m_last_quickmap_pt != pt_paddr)
  931. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PT));
  932. }
  933. mm_data.m_last_quickmap_pt = pt_paddr;
  934. return (PageTableEntry*)KERNEL_QUICKMAP_PT;
  935. }
  936. u8* MemoryManager::quickmap_page(PhysicalAddress const& physical_address)
  937. {
  938. VERIFY_INTERRUPTS_DISABLED();
  939. VERIFY(s_mm_lock.is_locked_by_current_processor());
  940. auto& mm_data = get_data();
  941. mm_data.m_quickmap_prev_flags = mm_data.m_quickmap_in_use.lock();
  942. VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
  943. u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  944. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
  945. if (pte.physical_page_base() != physical_address.get()) {
  946. pte.set_physical_page_base(physical_address.get());
  947. pte.set_present(true);
  948. pte.set_writable(true);
  949. pte.set_user_allowed(false);
  950. flush_tlb_local(vaddr);
  951. }
  952. return vaddr.as_ptr();
  953. }
  954. void MemoryManager::unquickmap_page()
  955. {
  956. VERIFY_INTERRUPTS_DISABLED();
  957. VERIFY(s_mm_lock.is_locked_by_current_processor());
  958. auto& mm_data = get_data();
  959. VERIFY(mm_data.m_quickmap_in_use.is_locked());
  960. VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
  961. u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  962. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
  963. pte.clear();
  964. flush_tlb_local(vaddr);
  965. mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_prev_flags);
  966. }
  967. bool MemoryManager::validate_user_stack_no_lock(AddressSpace& space, VirtualAddress vaddr) const
  968. {
  969. VERIFY(space.get_lock().is_locked_by_current_processor());
  970. if (!is_user_address(vaddr))
  971. return false;
  972. auto* region = find_user_region_from_vaddr_no_lock(space, vaddr);
  973. return region && region->is_user() && region->is_stack();
  974. }
  975. bool MemoryManager::validate_user_stack(AddressSpace& space, VirtualAddress vaddr) const
  976. {
  977. SpinlockLocker lock(space.get_lock());
  978. return validate_user_stack_no_lock(space, vaddr);
  979. }
  980. void MemoryManager::unregister_kernel_region(Region& region)
  981. {
  982. VERIFY(region.is_kernel());
  983. m_region_tree.remove(region);
  984. }
  985. void MemoryManager::dump_kernel_regions()
  986. {
  987. dbgln("Kernel regions:");
  988. #if ARCH(I386)
  989. char const* addr_padding = "";
  990. #else
  991. char const* addr_padding = " ";
  992. #endif
  993. dbgln("BEGIN{} END{} SIZE{} ACCESS NAME",
  994. addr_padding, addr_padding, addr_padding);
  995. SpinlockLocker lock(s_mm_lock);
  996. SpinlockLocker tree_locker(m_region_tree.get_lock());
  997. for (auto const& region : m_region_tree.regions()) {
  998. dbgln("{:p} -- {:p} {:p} {:c}{:c}{:c}{:c}{:c}{:c} {}",
  999. region.vaddr().get(),
  1000. region.vaddr().offset(region.size() - 1).get(),
  1001. region.size(),
  1002. region.is_readable() ? 'R' : ' ',
  1003. region.is_writable() ? 'W' : ' ',
  1004. region.is_executable() ? 'X' : ' ',
  1005. region.is_shared() ? 'S' : ' ',
  1006. region.is_stack() ? 'T' : ' ',
  1007. region.is_syscall_region() ? 'C' : ' ',
  1008. region.name());
  1009. }
  1010. }
  1011. void MemoryManager::set_page_writable_direct(VirtualAddress vaddr, bool writable)
  1012. {
  1013. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  1014. SpinlockLocker lock(s_mm_lock);
  1015. auto* pte = ensure_pte(kernel_page_directory(), vaddr);
  1016. VERIFY(pte);
  1017. if (pte->is_writable() == writable)
  1018. return;
  1019. pte->set_writable(writable);
  1020. flush_tlb(&kernel_page_directory(), vaddr);
  1021. }
  1022. CommittedPhysicalPageSet::~CommittedPhysicalPageSet()
  1023. {
  1024. if (m_page_count)
  1025. MM.uncommit_physical_pages({}, m_page_count);
  1026. }
  1027. NonnullRefPtr<PhysicalPage> CommittedPhysicalPageSet::take_one()
  1028. {
  1029. VERIFY(m_page_count > 0);
  1030. --m_page_count;
  1031. return MM.allocate_committed_physical_page({}, MemoryManager::ShouldZeroFill::Yes);
  1032. }
  1033. void CommittedPhysicalPageSet::uncommit_one()
  1034. {
  1035. VERIFY(m_page_count > 0);
  1036. --m_page_count;
  1037. MM.uncommit_physical_pages({}, 1);
  1038. }
  1039. void MemoryManager::copy_physical_page(PhysicalPage& physical_page, u8 page_buffer[PAGE_SIZE])
  1040. {
  1041. SpinlockLocker locker(s_mm_lock);
  1042. auto* quickmapped_page = quickmap_page(physical_page);
  1043. memcpy(page_buffer, quickmapped_page, PAGE_SIZE);
  1044. unquickmap_page();
  1045. }
  1046. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::create_identity_mapped_region(PhysicalAddress address, size_t size)
  1047. {
  1048. auto vmobject = TRY(Memory::AnonymousVMObject::try_create_for_physical_range(address, size));
  1049. auto region = TRY(Memory::Region::create_unplaced(move(vmobject), 0, {}, Memory::Region::Access::ReadWriteExecute));
  1050. Memory::VirtualRange range { VirtualAddress { (FlatPtr)address.get() }, size };
  1051. region->m_range = range;
  1052. TRY(region->map(MM.kernel_page_directory()));
  1053. return region;
  1054. }
  1055. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_unbacked_region_anywhere(size_t size, size_t alignment)
  1056. {
  1057. auto region = TRY(Region::create_unbacked());
  1058. TRY(m_region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size, alignment));
  1059. return region;
  1060. }
  1061. }