123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272 |
- /*
- * Copyright (c) 2020, Matthew Olsson <mattco@serenityos.org>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #include <AK/Debug.h>
- #include <AK/ExtraMathConstants.h>
- #include <LibGfx/Painter.h>
- #include <LibGfx/Path.h>
- #include <LibWeb/DOM/Document.h>
- #include <LibWeb/DOM/Event.h>
- #include <LibWeb/Layout/SVGGeometryBox.h>
- #include <LibWeb/SVG/SVGPathElement.h>
- namespace Web::SVG {
- [[maybe_unused]] static void print_instruction(const PathInstruction& instruction)
- {
- VERIFY(PATH_DEBUG);
- auto& data = instruction.data;
- switch (instruction.type) {
- case PathInstructionType::Move:
- dbgln("Move (absolute={})", instruction.absolute);
- for (size_t i = 0; i < data.size(); i += 2)
- dbgln(" x={}, y={}", data[i], data[i + 1]);
- break;
- case PathInstructionType::ClosePath:
- dbgln("ClosePath (absolute={})", instruction.absolute);
- break;
- case PathInstructionType::Line:
- dbgln("Line (absolute={})", instruction.absolute);
- for (size_t i = 0; i < data.size(); i += 2)
- dbgln(" x={}, y={}", data[i], data[i + 1]);
- break;
- case PathInstructionType::HorizontalLine:
- dbgln("HorizontalLine (absolute={})", instruction.absolute);
- for (size_t i = 0; i < data.size(); ++i)
- dbgln(" x={}", data[i]);
- break;
- case PathInstructionType::VerticalLine:
- dbgln("VerticalLine (absolute={})", instruction.absolute);
- for (size_t i = 0; i < data.size(); ++i)
- dbgln(" y={}", data[i]);
- break;
- case PathInstructionType::Curve:
- dbgln("Curve (absolute={})", instruction.absolute);
- for (size_t i = 0; i < data.size(); i += 6)
- dbgln(" (x1={}, y1={}, x2={}, y2={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3], data[i + 4], data[i + 5]);
- break;
- case PathInstructionType::SmoothCurve:
- dbgln("SmoothCurve (absolute={})", instruction.absolute);
- for (size_t i = 0; i < data.size(); i += 4)
- dbgln(" (x2={}, y2={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3]);
- break;
- case PathInstructionType::QuadraticBezierCurve:
- dbgln("QuadraticBezierCurve (absolute={})", instruction.absolute);
- for (size_t i = 0; i < data.size(); i += 4)
- dbgln(" (x1={}, y1={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3]);
- break;
- case PathInstructionType::SmoothQuadraticBezierCurve:
- dbgln("SmoothQuadraticBezierCurve (absolute={})", instruction.absolute);
- for (size_t i = 0; i < data.size(); i += 2)
- dbgln(" x={}, y={}", data[i], data[i + 1]);
- break;
- case PathInstructionType::EllipticalArc:
- dbgln("EllipticalArc (absolute={})", instruction.absolute);
- for (size_t i = 0; i < data.size(); i += 7)
- dbgln(" (rx={}, ry={}) x-axis-rotation={}, large-arc-flag={}, sweep-flag={}, (x={}, y={})",
- data[i],
- data[i + 1],
- data[i + 2],
- data[i + 3],
- data[i + 4],
- data[i + 5],
- data[i + 6]);
- break;
- case PathInstructionType::Invalid:
- dbgln("Invalid");
- break;
- }
- }
- SVGPathElement::SVGPathElement(DOM::Document& document, DOM::QualifiedName qualified_name)
- : SVGGeometryElement(document, move(qualified_name))
- {
- }
- void SVGPathElement::parse_attribute(FlyString const& name, String const& value)
- {
- SVGGeometryElement::parse_attribute(name, value);
- if (name == "d") {
- m_instructions = AttributeParser::parse_path_data(value);
- m_path.clear();
- }
- }
- Gfx::Path& SVGPathElement::get_path()
- {
- if (m_path.has_value())
- return m_path.value();
- Gfx::Path path;
- PathInstructionType last_instruction = PathInstructionType::Invalid;
- for (auto& instruction : m_instructions) {
- // If the first path element uses relative coordinates, we treat them as absolute by making them relative to (0, 0).
- auto last_point = path.segments().is_empty() ? Gfx::FloatPoint { 0, 0 } : path.segments().last().point();
- auto& absolute = instruction.absolute;
- auto& data = instruction.data;
- if constexpr (PATH_DEBUG) {
- print_instruction(instruction);
- }
- bool clear_last_control_point = true;
- switch (instruction.type) {
- case PathInstructionType::Move: {
- Gfx::FloatPoint point = { data[0], data[1] };
- if (absolute) {
- path.move_to(point);
- } else {
- path.move_to(point + last_point);
- }
- break;
- }
- case PathInstructionType::ClosePath:
- path.close();
- break;
- case PathInstructionType::Line: {
- Gfx::FloatPoint point = { data[0], data[1] };
- if (absolute) {
- path.line_to(point);
- } else {
- path.line_to(point + last_point);
- }
- break;
- }
- case PathInstructionType::HorizontalLine: {
- if (absolute)
- path.line_to(Gfx::FloatPoint { data[0], last_point.y() });
- else
- path.line_to(Gfx::FloatPoint { data[0] + last_point.x(), last_point.y() });
- break;
- }
- case PathInstructionType::VerticalLine: {
- if (absolute)
- path.line_to(Gfx::FloatPoint { last_point.x(), data[0] });
- else
- path.line_to(Gfx::FloatPoint { last_point.x(), data[0] + last_point.y() });
- break;
- }
- case PathInstructionType::EllipticalArc: {
- double rx = data[0];
- double ry = data[1];
- double x_axis_rotation = double { data[2] } * M_DEG2RAD;
- double large_arc_flag = data[3];
- double sweep_flag = data[4];
- Gfx::FloatPoint next_point;
- if (absolute)
- next_point = { data[5], data[6] };
- else
- next_point = { data[5] + last_point.x(), data[6] + last_point.y() };
- path.elliptical_arc_to(next_point, { rx, ry }, x_axis_rotation, large_arc_flag != 0, sweep_flag != 0);
- break;
- }
- case PathInstructionType::QuadraticBezierCurve: {
- clear_last_control_point = false;
- Gfx::FloatPoint through = { data[0], data[1] };
- Gfx::FloatPoint point = { data[2], data[3] };
- if (absolute) {
- path.quadratic_bezier_curve_to(through, point);
- m_previous_control_point = through;
- } else {
- auto control_point = through + last_point;
- path.quadratic_bezier_curve_to(control_point, point + last_point);
- m_previous_control_point = control_point;
- }
- break;
- }
- case PathInstructionType::SmoothQuadraticBezierCurve: {
- clear_last_control_point = false;
- if (m_previous_control_point.is_null()
- || ((last_instruction != PathInstructionType::QuadraticBezierCurve) && (last_instruction != PathInstructionType::SmoothQuadraticBezierCurve))) {
- m_previous_control_point = last_point;
- }
- auto dx_end_control = last_point.dx_relative_to(m_previous_control_point);
- auto dy_end_control = last_point.dy_relative_to(m_previous_control_point);
- auto control_point = Gfx::FloatPoint { last_point.x() + dx_end_control, last_point.y() + dy_end_control };
- Gfx::FloatPoint end_point = { data[0], data[1] };
- if (absolute) {
- path.quadratic_bezier_curve_to(control_point, end_point);
- } else {
- path.quadratic_bezier_curve_to(control_point, end_point + last_point);
- }
- m_previous_control_point = control_point;
- break;
- }
- case PathInstructionType::Curve: {
- clear_last_control_point = false;
- Gfx::FloatPoint c1 = { data[0], data[1] };
- Gfx::FloatPoint c2 = { data[2], data[3] };
- Gfx::FloatPoint p2 = { data[4], data[5] };
- if (!absolute) {
- p2 += last_point;
- c1 += last_point;
- c2 += last_point;
- }
- path.cubic_bezier_curve_to(c1, c2, p2);
- m_previous_control_point = c2;
- break;
- }
- case PathInstructionType::SmoothCurve: {
- clear_last_control_point = false;
- if (m_previous_control_point.is_null()
- || ((last_instruction != PathInstructionType::Curve) && (last_instruction != PathInstructionType::SmoothCurve))) {
- m_previous_control_point = last_point;
- }
- // 9.5.2. Reflected control points https://svgwg.org/svg2-draft/paths.html#ReflectedControlPoints
- // If the current point is (curx, cury) and the final control point of the previous path segment is (oldx2, oldy2),
- // then the reflected point (i.e., (newx1, newy1), the first control point of the current path segment) is:
- // (newx1, newy1) = (curx - (oldx2 - curx), cury - (oldy2 - cury))
- auto reflected_previous_control_x = last_point.x() - m_previous_control_point.dx_relative_to(last_point);
- auto reflected_previous_control_y = last_point.y() - m_previous_control_point.dy_relative_to(last_point);
- Gfx::FloatPoint c1 = Gfx::FloatPoint { reflected_previous_control_x, reflected_previous_control_y };
- Gfx::FloatPoint c2 = { data[0], data[1] };
- Gfx::FloatPoint p2 = { data[2], data[3] };
- if (!absolute) {
- p2 += last_point;
- c2 += last_point;
- }
- path.cubic_bezier_curve_to(c1, c2, p2);
- m_previous_control_point = c2;
- break;
- }
- case PathInstructionType::Invalid:
- VERIFY_NOT_REACHED();
- }
- if (clear_last_control_point) {
- m_previous_control_point = Gfx::FloatPoint {};
- }
- last_instruction = instruction.type;
- }
- m_path = path;
- return m_path.value();
- }
- }
|