Decoder.cpp 98 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827
  1. /*
  2. * Copyright (c) 2021, Hunter Salyer <thefalsehonesty@gmail.com>
  3. * Copyright (c) 2022, Gregory Bertilson <zaggy1024@gmail.com>
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #include <AK/IntegralMath.h>
  8. #include <LibGfx/Size.h>
  9. #include <LibVideo/Color/CodingIndependentCodePoints.h>
  10. #include "Decoder.h"
  11. #include "Utilities.h"
  12. #if defined(AK_COMPILER_GCC)
  13. # pragma GCC optimize("O3")
  14. #endif
  15. namespace Video::VP9 {
  16. Decoder::Decoder()
  17. : m_parser(make<Parser>(*this))
  18. {
  19. }
  20. DecoderErrorOr<void> Decoder::receive_sample(ReadonlyBytes chunk_data)
  21. {
  22. auto superframe_sizes = m_parser->parse_superframe_sizes(chunk_data);
  23. if (superframe_sizes.is_empty()) {
  24. return decode_frame(chunk_data);
  25. }
  26. size_t offset = 0;
  27. for (auto superframe_size : superframe_sizes) {
  28. auto checked_size = Checked<size_t>(superframe_size);
  29. checked_size += offset;
  30. if (checked_size.has_overflow() || checked_size.value() > chunk_data.size())
  31. return DecoderError::with_description(DecoderErrorCategory::Corrupted, "Superframe size invalid"sv);
  32. auto frame_data = chunk_data.slice(offset, superframe_size);
  33. TRY(decode_frame(frame_data));
  34. offset = checked_size.value();
  35. }
  36. return {};
  37. }
  38. inline size_t index_from_row_and_column(u32 row, u32 column, u32 stride)
  39. {
  40. return row * stride + column;
  41. }
  42. DecoderErrorOr<void> Decoder::decode_frame(ReadonlyBytes frame_data)
  43. {
  44. // 1. The syntax elements for the coded frame are extracted as specified in sections 6 and 7. The syntax
  45. // tables include function calls indicating when the block decode processes should be triggered.
  46. auto frame_context = TRY(m_parser->parse_frame(frame_data));
  47. // 2. If loop_filter_level is not equal to 0, the loop filter process as specified in section 8.8 is invoked once the
  48. // coded frame has been decoded.
  49. // FIXME: Implement loop filtering.
  50. // 3. If all of the following conditions are true, PrevSegmentIds[ row ][ col ] is set equal to
  51. // SegmentIds[ row ][ col ] for row = 0..MiRows-1, for col = 0..MiCols-1:
  52. // − show_existing_frame is equal to 0,
  53. // − segmentation_enabled is equal to 1,
  54. // − segmentation_update_map is equal to 1.
  55. // This is handled by update_reference_frames.
  56. // 4. The output process as specified in section 8.9 is invoked.
  57. if (m_parser->m_show_frame)
  58. TRY(create_video_frame(frame_context));
  59. // 5. The reference frame update process as specified in section 8.10 is invoked.
  60. TRY(update_reference_frames(frame_context));
  61. return {};
  62. }
  63. DecoderErrorOr<void> Decoder::create_video_frame(FrameContext const& frame_context)
  64. {
  65. u32 decoded_y_width = frame_context.columns() * 8;
  66. Gfx::Size<u32> output_y_size = frame_context.size();
  67. auto decoded_uv_width = decoded_y_width >> m_parser->m_subsampling_x;
  68. Gfx::Size<u32> output_uv_size = {
  69. output_y_size.width() >> m_parser->m_subsampling_x,
  70. output_y_size.height() >> m_parser->m_subsampling_y,
  71. };
  72. Array<FixedArray<u16>, 3> output_buffers = {
  73. DECODER_TRY_ALLOC(FixedArray<u16>::try_create(output_y_size.width() * output_y_size.height())),
  74. DECODER_TRY_ALLOC(FixedArray<u16>::try_create(output_uv_size.width() * output_uv_size.height())),
  75. DECODER_TRY_ALLOC(FixedArray<u16>::try_create(output_uv_size.width() * output_uv_size.height())),
  76. };
  77. for (u8 plane = 0; plane < 3; plane++) {
  78. auto& buffer = output_buffers[plane];
  79. auto decoded_width = plane == 0 ? decoded_y_width : decoded_uv_width;
  80. auto output_size = plane == 0 ? output_y_size : output_uv_size;
  81. auto const& decoded_buffer = get_output_buffer(plane);
  82. for (u32 row = 0; row < output_size.height(); row++) {
  83. memcpy(
  84. buffer.data() + row * output_size.width(),
  85. decoded_buffer.data() + row * decoded_width,
  86. output_size.width() * sizeof(*buffer.data()));
  87. }
  88. }
  89. auto frame = DECODER_TRY_ALLOC(adopt_nonnull_own_or_enomem(new (nothrow) SubsampledYUVFrame(
  90. { output_y_size.width(), output_y_size.height() },
  91. m_parser->m_bit_depth, get_cicp_color_space(),
  92. m_parser->m_subsampling_x, m_parser->m_subsampling_y,
  93. output_buffers[0], output_buffers[1], output_buffers[2])));
  94. m_video_frame_queue.enqueue(move(frame));
  95. return {};
  96. }
  97. inline size_t buffer_size(size_t width, size_t height)
  98. {
  99. return width * height;
  100. }
  101. inline size_t buffer_size(Gfx::Size<size_t> size)
  102. {
  103. return buffer_size(size.width(), size.height());
  104. }
  105. DecoderErrorOr<void> Decoder::allocate_buffers(FrameContext const& frame_context)
  106. {
  107. for (size_t plane = 0; plane < 3; plane++) {
  108. auto size = m_parser->get_decoded_size_for_plane(frame_context, plane);
  109. auto& output_buffer = get_output_buffer(plane);
  110. output_buffer.clear_with_capacity();
  111. DECODER_TRY_ALLOC(output_buffer.try_resize_and_keep_capacity(buffer_size(size)));
  112. }
  113. return {};
  114. }
  115. Vector<u16>& Decoder::get_output_buffer(u8 plane)
  116. {
  117. return m_output_buffers[plane];
  118. }
  119. inline CodingIndependentCodePoints Decoder::get_cicp_color_space()
  120. {
  121. ColorPrimaries color_primaries;
  122. TransferCharacteristics transfer_characteristics;
  123. MatrixCoefficients matrix_coefficients;
  124. switch (m_parser->m_color_space) {
  125. case ColorSpace::Unknown:
  126. color_primaries = ColorPrimaries::Unspecified;
  127. transfer_characteristics = TransferCharacteristics::Unspecified;
  128. matrix_coefficients = MatrixCoefficients::Unspecified;
  129. break;
  130. case ColorSpace::Bt601:
  131. color_primaries = ColorPrimaries::BT601;
  132. transfer_characteristics = TransferCharacteristics::BT601;
  133. matrix_coefficients = MatrixCoefficients::BT601;
  134. break;
  135. case ColorSpace::Bt709:
  136. color_primaries = ColorPrimaries::BT709;
  137. transfer_characteristics = TransferCharacteristics::BT709;
  138. matrix_coefficients = MatrixCoefficients::BT709;
  139. break;
  140. case ColorSpace::Smpte170:
  141. // https://www.kernel.org/doc/html/v4.9/media/uapi/v4l/pixfmt-007.html#colorspace-smpte-170m-v4l2-colorspace-smpte170m
  142. color_primaries = ColorPrimaries::BT601;
  143. transfer_characteristics = TransferCharacteristics::BT709;
  144. matrix_coefficients = MatrixCoefficients::BT601;
  145. break;
  146. case ColorSpace::Smpte240:
  147. color_primaries = ColorPrimaries::SMPTE240;
  148. transfer_characteristics = TransferCharacteristics::SMPTE240;
  149. matrix_coefficients = MatrixCoefficients::SMPTE240;
  150. break;
  151. case ColorSpace::Bt2020:
  152. color_primaries = ColorPrimaries::BT2020;
  153. // Bit depth doesn't actually matter to our transfer functions since we
  154. // convert in floats of range 0-1 (for now?), but just for correctness set
  155. // the TC to match the bit depth here.
  156. if (m_parser->m_bit_depth == 12)
  157. transfer_characteristics = TransferCharacteristics::BT2020BitDepth12;
  158. else if (m_parser->m_bit_depth == 10)
  159. transfer_characteristics = TransferCharacteristics::BT2020BitDepth10;
  160. else
  161. transfer_characteristics = TransferCharacteristics::BT709;
  162. matrix_coefficients = MatrixCoefficients::BT2020NonConstantLuminance;
  163. break;
  164. case ColorSpace::RGB:
  165. color_primaries = ColorPrimaries::BT709;
  166. transfer_characteristics = TransferCharacteristics::Linear;
  167. matrix_coefficients = MatrixCoefficients::Identity;
  168. break;
  169. case ColorSpace::Reserved:
  170. VERIFY_NOT_REACHED();
  171. break;
  172. }
  173. return { color_primaries, transfer_characteristics, matrix_coefficients, m_parser->m_color_range };
  174. }
  175. DecoderErrorOr<NonnullOwnPtr<VideoFrame>> Decoder::get_decoded_frame()
  176. {
  177. if (m_video_frame_queue.is_empty())
  178. return DecoderError::format(DecoderErrorCategory::NeedsMoreInput, "No video frame in queue.");
  179. return m_video_frame_queue.dequeue();
  180. }
  181. u8 Decoder::merge_prob(u8 pre_prob, u8 count_0, u8 count_1, u8 count_sat, u8 max_update_factor)
  182. {
  183. auto total_decode_count = count_0 + count_1;
  184. auto prob = (total_decode_count == 0) ? 128 : clip_3(1, 255, (count_0 * 256 + (total_decode_count >> 1)) / total_decode_count);
  185. auto count = min(total_decode_count, count_sat);
  186. auto factor = (max_update_factor * count) / count_sat;
  187. return round_2(pre_prob * (256 - factor) + (prob * factor), 8);
  188. }
  189. u8 Decoder::merge_probs(int const* tree, int index, u8* probs, u8* counts, u8 count_sat, u8 max_update_factor)
  190. {
  191. auto s = tree[index];
  192. auto left_count = (s <= 0) ? counts[-s] : merge_probs(tree, s, probs, counts, count_sat, max_update_factor);
  193. auto r = tree[index + 1];
  194. auto right_count = (r <= 0) ? counts[-r] : merge_probs(tree, r, probs, counts, count_sat, max_update_factor);
  195. probs[index >> 1] = merge_prob(probs[index >> 1], left_count, right_count, count_sat, max_update_factor);
  196. return left_count + right_count;
  197. }
  198. DecoderErrorOr<void> Decoder::adapt_coef_probs()
  199. {
  200. u8 update_factor;
  201. if (m_parser->m_frame_is_intra || m_parser->m_last_frame_type != KeyFrame)
  202. update_factor = 112;
  203. else
  204. update_factor = 128;
  205. for (size_t t = 0; t < 4; t++) {
  206. for (size_t i = 0; i < 2; i++) {
  207. for (size_t j = 0; j < 2; j++) {
  208. for (size_t k = 0; k < 6; k++) {
  209. size_t max_l = (k == 0) ? 3 : 6;
  210. for (size_t l = 0; l < max_l; l++) {
  211. auto& coef_probs = m_parser->m_probability_tables->coef_probs()[t][i][j][k][l];
  212. merge_probs(small_token_tree, 2, coef_probs,
  213. m_parser->m_syntax_element_counter->m_counts_token[t][i][j][k][l],
  214. 24, update_factor);
  215. merge_probs(binary_tree, 0, coef_probs,
  216. m_parser->m_syntax_element_counter->m_counts_more_coefs[t][i][j][k][l],
  217. 24, update_factor);
  218. }
  219. }
  220. }
  221. }
  222. }
  223. return {};
  224. }
  225. #define ADAPT_PROB_TABLE(name, size) \
  226. do { \
  227. for (size_t i = 0; i < (size); i++) { \
  228. auto table = probs.name##_prob(); \
  229. table[i] = adapt_prob(table[i], counter.m_counts_##name[i]); \
  230. } \
  231. } while (0)
  232. #define ADAPT_TREE(tree_name, prob_name, count_name, size) \
  233. do { \
  234. for (size_t i = 0; i < (size); i++) { \
  235. adapt_probs(tree_name##_tree, probs.prob_name##_probs()[i], counter.m_counts_##count_name[i]); \
  236. } \
  237. } while (0)
  238. DecoderErrorOr<void> Decoder::adapt_non_coef_probs()
  239. {
  240. auto& probs = *m_parser->m_probability_tables;
  241. auto& counter = *m_parser->m_syntax_element_counter;
  242. ADAPT_PROB_TABLE(is_inter, IS_INTER_CONTEXTS);
  243. ADAPT_PROB_TABLE(comp_mode, COMP_MODE_CONTEXTS);
  244. ADAPT_PROB_TABLE(comp_ref, REF_CONTEXTS);
  245. for (size_t i = 0; i < REF_CONTEXTS; i++) {
  246. for (size_t j = 0; j < 2; j++)
  247. probs.single_ref_prob()[i][j] = adapt_prob(probs.single_ref_prob()[i][j], counter.m_counts_single_ref[i][j]);
  248. }
  249. ADAPT_TREE(inter_mode, inter_mode, inter_mode, INTER_MODE_CONTEXTS);
  250. ADAPT_TREE(intra_mode, y_mode, intra_mode, INTER_MODE_CONTEXTS);
  251. ADAPT_TREE(intra_mode, uv_mode, uv_mode, INTER_MODE_CONTEXTS);
  252. ADAPT_TREE(partition, partition, partition, INTER_MODE_CONTEXTS);
  253. ADAPT_PROB_TABLE(skip, SKIP_CONTEXTS);
  254. if (m_parser->m_interpolation_filter == Switchable) {
  255. ADAPT_TREE(interp_filter, interp_filter, interp_filter, INTERP_FILTER_CONTEXTS);
  256. }
  257. if (m_parser->m_tx_mode == TXModeSelect) {
  258. for (size_t i = 0; i < TX_SIZE_CONTEXTS; i++) {
  259. auto& tx_probs = probs.tx_probs();
  260. auto& tx_counts = counter.m_counts_tx_size;
  261. adapt_probs(tx_size_8_tree, tx_probs[TX_8x8][i], tx_counts[TX_8x8][i]);
  262. adapt_probs(tx_size_16_tree, tx_probs[TX_16x16][i], tx_counts[TX_16x16][i]);
  263. adapt_probs(tx_size_32_tree, tx_probs[TX_32x32][i], tx_counts[TX_32x32][i]);
  264. }
  265. }
  266. adapt_probs(mv_joint_tree, probs.mv_joint_probs(), counter.m_counts_mv_joint);
  267. for (size_t i = 0; i < 2; i++) {
  268. probs.mv_sign_prob()[i] = adapt_prob(probs.mv_sign_prob()[i], counter.m_counts_mv_sign[i]);
  269. adapt_probs(mv_class_tree, probs.mv_class_probs()[i], counter.m_counts_mv_class[i]);
  270. probs.mv_class0_bit_prob()[i] = adapt_prob(probs.mv_class0_bit_prob()[i], counter.m_counts_mv_class0_bit[i]);
  271. for (size_t j = 0; j < MV_OFFSET_BITS; j++)
  272. probs.mv_bits_prob()[i][j] = adapt_prob(probs.mv_bits_prob()[i][j], counter.m_counts_mv_bits[i][j]);
  273. for (size_t j = 0; j < CLASS0_SIZE; j++)
  274. adapt_probs(mv_fr_tree, probs.mv_class0_fr_probs()[i][j], counter.m_counts_mv_class0_fr[i][j]);
  275. adapt_probs(mv_fr_tree, probs.mv_fr_probs()[i], counter.m_counts_mv_fr[i]);
  276. if (m_parser->m_allow_high_precision_mv) {
  277. probs.mv_class0_hp_prob()[i] = adapt_prob(probs.mv_class0_hp_prob()[i], counter.m_counts_mv_class0_hp[i]);
  278. probs.mv_hp_prob()[i] = adapt_prob(probs.mv_hp_prob()[i], counter.m_counts_mv_hp[i]);
  279. }
  280. }
  281. return {};
  282. }
  283. void Decoder::adapt_probs(int const* tree, u8* probs, u8* counts)
  284. {
  285. merge_probs(tree, 0, probs, counts, COUNT_SAT, MAX_UPDATE_FACTOR);
  286. }
  287. u8 Decoder::adapt_prob(u8 prob, u8 counts[2])
  288. {
  289. return merge_prob(prob, counts[0], counts[1], COUNT_SAT, MAX_UPDATE_FACTOR);
  290. }
  291. DecoderErrorOr<void> Decoder::predict_intra(u8 plane, BlockContext const& block_context, u32 x, u32 y, bool have_left, bool have_above, bool not_on_right, TXSize tx_size, u32 block_index)
  292. {
  293. auto& frame_buffer = get_output_buffer(plane);
  294. // 8.5.1 Intra prediction process
  295. // The intra prediction process is invoked for intra coded blocks to predict a part of the block corresponding to a
  296. // transform block. When the transform size is smaller than the block size, this process can be invoked multiple
  297. // times within a single block for the same plane, and the invocations are in raster order within the block.
  298. // The variable mode is specified by:
  299. // 1. If plane is greater than 0, mode is set equal to uv_mode.
  300. // 2. Otherwise, if MiSize is greater than or equal to BLOCK_8X8, mode is set equal to y_mode.
  301. // 3. Otherwise, mode is set equal to sub_modes[ blockIdx ].
  302. PredictionMode mode;
  303. if (plane > 0)
  304. mode = m_parser->m_uv_mode;
  305. else if (block_context.size >= Block_8x8)
  306. mode = m_parser->m_y_mode;
  307. else
  308. mode = m_parser->m_block_sub_modes[block_index];
  309. // The variable log2Size specifying the base 2 logarithm of the width of the transform block is set equal to txSz + 2.
  310. u8 log2_of_block_size = tx_size + 2;
  311. // The variable size is set equal to 1 << log2Size.
  312. u8 block_size = 1 << log2_of_block_size;
  313. // The variable maxX is set equal to (MiCols * 8) - 1.
  314. // The variable maxY is set equal to (MiRows * 8) - 1.
  315. // If plane is greater than 0, then:
  316. // − maxX is set equal to ((MiCols * 8) >> subsampling_x) - 1.
  317. // − maxY is set equal to ((MiRows * 8) >> subsampling_y) - 1.
  318. auto subsampling_x = plane > 0 ? m_parser->m_subsampling_x : false;
  319. auto subsampling_y = plane > 0 ? m_parser->m_subsampling_y : false;
  320. auto max_x = ((block_context.frame_context.columns() * 8u) >> subsampling_x) - 1u;
  321. auto max_y = ((block_context.frame_context.rows() * 8u) >> subsampling_y) - 1u;
  322. auto const frame_buffer_at = [&](u32 row, u32 column) -> u16& {
  323. const auto frame_stride = max_x + 1u;
  324. return frame_buffer[index_from_row_and_column(row, column, frame_stride)];
  325. };
  326. // The array aboveRow[ i ] for i = 0..size-1 is specified by:
  327. // ..
  328. // The array aboveRow[ i ] for i = size..2*size-1 is specified by:
  329. // ..
  330. // The array aboveRow[ i ] for i = -1 is specified by:
  331. // ..
  332. // NOTE: above_row is an array ranging from 0 to (2*block_size).
  333. // There are three sections to the array:
  334. // - [0]
  335. // - [1 .. block_size]
  336. // - [block_size + 1 .. block_size * 2]
  337. // The array indices must be offset by 1 to accommodate index -1.
  338. Array<Intermediate, maximum_block_dimensions * 2 + 1> above_row;
  339. auto above_row_at = [&](i32 index) -> Intermediate& {
  340. return above_row[index + 1];
  341. };
  342. // NOTE: This value is pre-calculated since it is reused in spec below.
  343. // Use this to replace spec text "(1<<(BitDepth-1))".
  344. Intermediate half_sample_value = (1 << (m_parser->m_bit_depth - 1));
  345. // The array aboveRow[ i ] for i = 0..size-1 is specified by:
  346. if (!have_above) {
  347. // 1. If haveAbove is equal to 0, aboveRow[ i ] is set equal to (1<<(BitDepth-1)) - 1.
  348. // FIXME: Use memset?
  349. for (auto i = 0u; i < block_size; i++)
  350. above_row_at(i) = half_sample_value - 1;
  351. } else {
  352. // 2. Otherwise, aboveRow[ i ] is set equal to CurrFrame[ plane ][ y-1 ][ Min(maxX, x+i) ].
  353. for (auto i = 0u; i < block_size; i++)
  354. above_row_at(i) = frame_buffer_at(y - 1, min(max_x, x + i));
  355. }
  356. // The array aboveRow[ i ] for i = size..2*size-1 is specified by:
  357. if (have_above && not_on_right && tx_size == TXSize::TX_4x4) {
  358. // 1. If haveAbove is equal to 1 and notOnRight is equal to 1 and txSz is equal to 0,
  359. // aboveRow[ i ] is set equal to CurrFrame[ plane ][ y-1 ][ Min(maxX, x+i) ].
  360. for (auto i = block_size; i < block_size * 2; i++)
  361. above_row_at(i) = frame_buffer_at(y - 1, min(max_x, x + i));
  362. } else {
  363. // 2. Otherwise, aboveRow[ i ] is set equal to aboveRow[ size-1 ].
  364. for (auto i = block_size; i < block_size * 2; i++)
  365. above_row_at(i) = above_row_at(block_size - 1);
  366. }
  367. // The array aboveRow[ i ] for i = -1 is specified by:
  368. if (have_above && have_left) {
  369. // 1. If haveAbove is equal to 1 and haveLeft is equal to 1, aboveRow[ -1 ] is set equal to
  370. // CurrFrame[ plane ][ y-1 ][ Min(maxX, x-1) ].
  371. above_row_at(-1) = frame_buffer_at(y - 1, min(max_x, x - 1));
  372. } else if (have_above) {
  373. // 2. Otherwise if haveAbove is equal to 1, aboveRow[ -1] is set equal to (1<<(BitDepth-1)) + 1.
  374. above_row_at(-1) = half_sample_value + 1;
  375. } else {
  376. // 3. Otherwise, aboveRow[ -1 ] is set equal to (1<<(BitDepth-1)) - 1
  377. above_row_at(-1) = half_sample_value - 1;
  378. }
  379. // The array leftCol[ i ] for i = 0..size-1 is specified by:
  380. Array<Intermediate, maximum_block_dimensions> left_column;
  381. if (have_left) {
  382. // − If haveLeft is equal to 1, leftCol[ i ] is set equal to CurrFrame[ plane ][ Min(maxY, y+i) ][ x-1 ].
  383. for (auto i = 0u; i < block_size; i++)
  384. left_column[i] = frame_buffer_at(min(max_y, y + i), x - 1);
  385. } else {
  386. // − Otherwise, leftCol[ i ] is set equal to (1<<(BitDepth-1)) + 1.
  387. for (auto i = 0u; i < block_size; i++)
  388. left_column[i] = half_sample_value + 1;
  389. }
  390. // A 2D array named pred containing the intra predicted samples is constructed as follows:
  391. Array<Intermediate, maximum_block_size> predicted_samples;
  392. auto const predicted_sample_at = [&](u32 row, u32 column) -> Intermediate& {
  393. return predicted_samples[index_from_row_and_column(row, column, block_size)];
  394. };
  395. // FIXME: One of the two below should be a simple memcpy of 1D arrays.
  396. switch (mode) {
  397. case PredictionMode::VPred:
  398. // − If mode is equal to V_PRED, pred[ i ][ j ] is set equal to aboveRow[ j ] with j = 0..size-1 and i = 0..size-1
  399. // (each row of the block is filled with a copy of aboveRow).
  400. for (auto j = 0u; j < block_size; j++) {
  401. for (auto i = 0u; i < block_size; i++)
  402. predicted_sample_at(i, j) = above_row_at(j);
  403. }
  404. break;
  405. case PredictionMode::HPred:
  406. // − Otherwise if mode is equal to H_PRED, pred[ i ][ j ] is set equal to leftCol[ i ] with j = 0..size-1 and i =
  407. // 0..size-1 (each column of the block is filled with a copy of leftCol).
  408. for (auto j = 0u; j < block_size; j++) {
  409. for (auto i = 0u; i < block_size; i++)
  410. predicted_sample_at(i, j) = left_column[i];
  411. }
  412. break;
  413. case PredictionMode::D207Pred:
  414. // − Otherwise if mode is equal to D207_PRED, the following applies:
  415. // 1. pred[ size - 1 ][ j ] = leftCol[ size - 1] for j = 0..size-1
  416. for (auto j = 0u; j < block_size; j++)
  417. predicted_sample_at(block_size - 1, j) = left_column[block_size - 1];
  418. // 2. pred[ i ][ 0 ] = Round2( leftCol[ i ] + leftCol[ i + 1 ], 1 ) for i = 0..size-2
  419. for (auto i = 0u; i < block_size - 1u; i++)
  420. predicted_sample_at(i, 0) = round_2(left_column[i] + left_column[i + 1], 1);
  421. // 3. pred[ i ][ 1 ] = Round2( leftCol[ i ] + 2 * leftCol[ i + 1 ] + leftCol[ i + 2 ], 2 ) for i = 0..size-3
  422. for (auto i = 0u; i < block_size - 2u; i++)
  423. predicted_sample_at(i, 1) = round_2(left_column[i] + (2 * left_column[i + 1]) + left_column[i + 2], 2);
  424. // 4. pred[ size - 2 ][ 1 ] = Round2( leftCol[ size - 2 ] + 3 * leftCol[ size - 1 ], 2 )
  425. predicted_sample_at(block_size - 2, 1) = round_2(left_column[block_size - 2] + (3 * left_column[block_size - 1]), 2);
  426. // 5. pred[ i ][ j ] = pred[ i + 1 ][ j - 2 ] for i = (size-2)..0, for j = 2..size-1
  427. // NOTE – In the last step i iterates in reverse order.
  428. for (auto i = block_size - 2u;;) {
  429. for (auto j = 2u; j < block_size; j++)
  430. predicted_sample_at(i, j) = predicted_sample_at(i + 1, j - 2);
  431. if (i == 0)
  432. break;
  433. i--;
  434. }
  435. break;
  436. case PredictionMode::D45Pred:
  437. // Otherwise if mode is equal to D45_PRED,
  438. // for i = 0..size-1, for j = 0..size-1.
  439. for (auto i = 0u; i < block_size; i++) {
  440. for (auto j = 0; j < block_size; j++) {
  441. // pred[ i ][ j ] is set equal to (i + j + 2 < size * 2) ?
  442. if (i + j + 2 < block_size * 2)
  443. // Round2( aboveRow[ i + j ] + aboveRow[ i + j + 1 ] * 2 + aboveRow[ i + j + 2 ], 2 ) :
  444. predicted_sample_at(i, j) = round_2(above_row_at(i + j) + above_row_at(i + j + 1) * 2 + above_row_at(i + j + 2), 2);
  445. else
  446. // aboveRow[ 2 * size - 1 ]
  447. predicted_sample_at(i, j) = above_row_at(2 * block_size - 1);
  448. }
  449. }
  450. break;
  451. case PredictionMode::D63Pred:
  452. // Otherwise if mode is equal to D63_PRED,
  453. for (auto i = 0u; i < block_size; i++) {
  454. for (auto j = 0u; j < block_size; j++) {
  455. // i/2 + j
  456. auto row_index = (i / 2) + j;
  457. // pred[ i ][ j ] is set equal to (i & 1) ?
  458. if (i & 1)
  459. // Round2( aboveRow[ i/2 + j ] + aboveRow[ i/2 + j + 1 ] * 2 + aboveRow[ i/2 + j + 2 ], 2 ) :
  460. predicted_sample_at(i, j) = round_2(above_row_at(row_index) + above_row_at(row_index + 1) * 2 + above_row_at(row_index + 2), 2);
  461. else
  462. // Round2( aboveRow[ i/2 + j ] + aboveRow[ i/2 + j + 1 ], 1 ) for i = 0..size-1, for j = 0..size-1.
  463. predicted_sample_at(i, j) = round_2(above_row_at(row_index) + above_row_at(row_index + 1), 1);
  464. }
  465. }
  466. break;
  467. case PredictionMode::D117Pred:
  468. // Otherwise if mode is equal to D117_PRED, the following applies:
  469. // 1. pred[ 0 ][ j ] = Round2( aboveRow[ j - 1 ] + aboveRow[ j ], 1 ) for j = 0..size-1
  470. for (auto j = 0; j < block_size; j++)
  471. predicted_sample_at(0, j) = round_2(above_row_at(j - 1) + above_row_at(j), 1);
  472. // 2. pred[ 1 ][ 0 ] = Round2( leftCol[ 0 ] + 2 * aboveRow[ -1 ] + aboveRow[ 0 ], 2 )
  473. predicted_sample_at(1, 0) = round_2(left_column[0] + 2 * above_row_at(-1) + above_row_at(0), 2);
  474. // 3. pred[ 1 ][ j ] = Round2( aboveRow[ j - 2 ] + 2 * aboveRow[ j - 1 ] + aboveRow[ j ], 2 ) for j = 1..size-1
  475. for (auto j = 1; j < block_size; j++)
  476. predicted_sample_at(1, j) = round_2(above_row_at(j - 2) + 2 * above_row_at(j - 1) + above_row_at(j), 2);
  477. // 4. pred[ 2 ][ 0 ] = Round2( aboveRow[ -1 ] + 2 * leftCol[ 0 ] + leftCol[ 1 ], 2 )
  478. predicted_sample_at(2, 0) = round_2(above_row_at(-1) + 2 * left_column[0] + left_column[1], 2);
  479. // 5. pred[ i ][ 0 ] = Round2( leftCol[ i - 3 ] + 2 * leftCol[ i - 2 ] + leftCol[ i - 1 ], 2 ) for i = 3..size-1
  480. for (auto i = 3u; i < block_size; i++)
  481. predicted_sample_at(i, 0) = round_2(left_column[i - 3] + 2 * left_column[i - 2] + left_column[i - 1], 2);
  482. // 6. pred[ i ][ j ] = pred[ i - 2 ][ j - 1 ] for i = 2..size-1, for j = 1..size-1
  483. for (auto i = 2u; i < block_size; i++) {
  484. for (auto j = 1u; j < block_size; j++)
  485. predicted_sample_at(i, j) = predicted_sample_at(i - 2, j - 1);
  486. }
  487. break;
  488. case PredictionMode::D135Pred:
  489. // Otherwise if mode is equal to D135_PRED, the following applies:
  490. // 1. pred[ 0 ][ 0 ] = Round2( leftCol[ 0 ] + 2 * aboveRow[ -1 ] + aboveRow[ 0 ], 2 )
  491. predicted_sample_at(0, 0) = round_2(left_column[0] + 2 * above_row_at(-1) + above_row_at(0), 2);
  492. // 2. pred[ 0 ][ j ] = Round2( aboveRow[ j - 2 ] + 2 * aboveRow[ j - 1 ] + aboveRow[ j ], 2 ) for j = 1..size-1
  493. for (auto j = 1; j < block_size; j++)
  494. predicted_sample_at(0, j) = round_2(above_row_at(j - 2) + 2 * above_row_at(j - 1) + above_row_at(j), 2);
  495. // 3. pred[ 1 ][ 0 ] = Round2( aboveRow [ -1 ] + 2 * leftCol[ 0 ] + leftCol[ 1 ], 2 ) for i = 1..size-1
  496. predicted_sample_at(1, 0) = round_2(above_row_at(-1) + 2 * left_column[0] + left_column[1], 2);
  497. // 4. pred[ i ][ 0 ] = Round2( leftCol[ i - 2 ] + 2 * leftCol[ i - 1 ] + leftCol[ i ], 2 ) for i = 2..size-1
  498. for (auto i = 2u; i < block_size; i++)
  499. predicted_sample_at(i, 0) = round_2(left_column[i - 2] + 2 * left_column[i - 1] + left_column[i], 2);
  500. // 5. pred[ i ][ j ] = pred[ i - 1 ][ j - 1 ] for i = 1..size-1, for j = 1..size-1
  501. for (auto i = 1u; i < block_size; i++) {
  502. for (auto j = 1; j < block_size; j++)
  503. predicted_sample_at(i, j) = predicted_sample_at(i - 1, j - 1);
  504. }
  505. break;
  506. case PredictionMode::D153Pred:
  507. // Otherwise if mode is equal to D153_PRED, the following applies:
  508. // 1. pred[ 0 ][ 0 ] = Round2( leftCol[ 0 ] + aboveRow[ -1 ], 1 )
  509. predicted_sample_at(0, 0) = round_2(left_column[0] + above_row_at(-1), 1);
  510. // 2. pred[ i ][ 0 ] = Round2( leftCol[ i - 1] + leftCol[ i ], 1 ) for i = 1..size-1
  511. for (auto i = 1u; i < block_size; i++)
  512. predicted_sample_at(i, 0) = round_2(left_column[i - 1] + left_column[i], 1);
  513. // 3. pred[ 0 ][ 1 ] = Round2( leftCol[ 0 ] + 2 * aboveRow[ -1 ] + aboveRow[ 0 ], 2 )
  514. predicted_sample_at(0, 1) = round_2(left_column[0] + 2 * above_row_at(-1) + above_row_at(0), 2);
  515. // 4. pred[ 1 ][ 1 ] = Round2( aboveRow[ -1 ] + 2 * leftCol [ 0 ] + leftCol [ 1 ], 2 )
  516. predicted_sample_at(1, 1) = round_2(above_row_at(-1) + 2 * left_column[0] + left_column[1], 2);
  517. // 5. pred[ i ][ 1 ] = Round2( leftCol[ i - 2 ] + 2 * leftCol[ i - 1 ] + leftCol[ i ], 2 ) for i = 2..size-1
  518. for (auto i = 2u; i < block_size; i++)
  519. predicted_sample_at(i, 1) = round_2(left_column[i - 2] + 2 * left_column[i - 1] + left_column[i], 2);
  520. // 6. pred[ 0 ][ j ] = Round2( aboveRow[ j - 3 ] + 2 * aboveRow[ j - 2 ] + aboveRow[ j - 1 ], 2 ) for j = 2..size-1
  521. for (auto j = 2; j < block_size; j++)
  522. predicted_sample_at(0, j) = round_2(above_row_at(j - 3) + 2 * above_row_at(j - 2) + above_row_at(j - 1), 2);
  523. // 7. pred[ i ][ j ] = pred[ i - 1 ][ j - 2 ] for i = 1..size-1, for j = 2..size-1
  524. for (auto i = 1u; i < block_size; i++) {
  525. for (auto j = 2u; j < block_size; j++)
  526. predicted_sample_at(i, j) = predicted_sample_at(i - 1, j - 2);
  527. }
  528. break;
  529. case PredictionMode::TmPred:
  530. // Otherwise if mode is equal to TM_PRED,
  531. // pred[ i ][ j ] is set equal to Clip1( aboveRow[ j ] + leftCol[ i ] - aboveRow[ -1 ] )
  532. // for i = 0..size-1, for j = 0..size-1.
  533. for (auto i = 0u; i < block_size; i++) {
  534. for (auto j = 0u; j < block_size; j++)
  535. predicted_sample_at(i, j) = clip_1(m_parser->m_bit_depth, above_row_at(j) + left_column[i] - above_row_at(-1));
  536. }
  537. break;
  538. case PredictionMode::DcPred: {
  539. Intermediate average = 0;
  540. if (have_left && have_above) {
  541. // Otherwise if mode is equal to DC_PRED and haveLeft is equal to 1 and haveAbove is equal to 1,
  542. // The variable avg (the average of the samples in union of aboveRow and leftCol)
  543. // is specified as follows:
  544. // sum = 0
  545. // for ( k = 0; k < size; k++ ) {
  546. // sum += leftCol[ k ]
  547. // sum += aboveRow[ k ]
  548. // }
  549. // avg = (sum + size) >> (log2Size + 1)
  550. Intermediate sum = 0;
  551. for (auto k = 0u; k < block_size; k++) {
  552. sum += left_column[k];
  553. sum += above_row_at(k);
  554. }
  555. average = (sum + block_size) >> (log2_of_block_size + 1);
  556. } else if (have_left && !have_above) {
  557. // Otherwise if mode is equal to DC_PRED and haveLeft is equal to 1 and haveAbove is equal to 0,
  558. // The variable leftAvg is specified as follows:
  559. // sum = 0
  560. // for ( k = 0; k < size; k++ ) {
  561. // sum += leftCol[ k ]
  562. // }
  563. // leftAvg = (sum + (1 << (log2Size - 1) ) ) >> log2Size
  564. Intermediate sum = 0;
  565. for (auto k = 0u; k < block_size; k++)
  566. sum += left_column[k];
  567. average = (sum + (1 << (log2_of_block_size - 1))) >> log2_of_block_size;
  568. } else if (!have_left && have_above) {
  569. // Otherwise if mode is equal to DC_PRED and haveLeft is equal to 0 and haveAbove is equal to 1,
  570. // The variable aboveAvg is specified as follows:
  571. // sum = 0
  572. // for ( k = 0; k < size; k++ ) {
  573. // sum += aboveRow[ k ]
  574. // }
  575. // aboveAvg = (sum + (1 << (log2Size - 1) ) ) >> log2Size
  576. Intermediate sum = 0;
  577. for (auto k = 0u; k < block_size; k++)
  578. sum += above_row_at(k);
  579. average = (sum + (1 << (log2_of_block_size - 1))) >> log2_of_block_size;
  580. } else {
  581. // Otherwise (mode is DC_PRED),
  582. // pred[ i ][ j ] is set equal to 1<<(BitDepth - 1) with i = 0..size-1 and j = 0..size-1.
  583. average = 1 << (m_parser->m_bit_depth - 1);
  584. }
  585. // pred[ i ][ j ] is set equal to avg with i = 0..size-1 and j = 0..size-1.
  586. for (auto i = 0u; i < block_size; i++) {
  587. for (auto j = 0u; j < block_size; j++)
  588. predicted_sample_at(i, j) = average;
  589. }
  590. break;
  591. }
  592. default:
  593. dbgln("Unknown prediction mode {}", static_cast<u8>(mode));
  594. VERIFY_NOT_REACHED();
  595. }
  596. // The current frame is updated as follows:
  597. // − CurrFrame[ plane ][ y + i ][ x + j ] is set equal to pred[ i ][ j ] for i = 0..size-1 and j = 0..size-1.
  598. auto width_in_frame_buffer = min(static_cast<u32>(block_size), max_x - x + 1);
  599. auto height_in_frame_buffer = min(static_cast<u32>(block_size), max_y - y + 1);
  600. for (auto i = 0u; i < height_in_frame_buffer; i++) {
  601. for (auto j = 0u; j < width_in_frame_buffer; j++)
  602. frame_buffer_at(y + i, x + j) = predicted_sample_at(i, j);
  603. }
  604. return {};
  605. }
  606. MotionVector Decoder::select_motion_vector(u8 plane, BlockContext const& block_context, u8 ref_list, u32 block_index)
  607. {
  608. // The inputs to this process are:
  609. // − a variable plane specifying which plane is being predicted,
  610. // − a variable refList specifying that we should select the motion vector from BlockMvs[ refList ],
  611. // − a variable blockIdx, specifying how much of the block has already been predicted in units of 4x4 samples.
  612. // The output of this process is a 2 element array called mv containing the motion vector for this block.
  613. // The purpose of this process is to find the motion vector for this block. Motion vectors are specified for each
  614. // luma block, but a chroma block may cover more than one luma block due to subsampling. In this case, an
  615. // average motion vector is constructed for the chroma block.
  616. // The functions round_mv_comp_q2 and round_mv_comp_q4 perform division with rounding to the nearest
  617. // integer and are specified as:
  618. auto round_mv_comp_q2 = [&](MotionVector in) {
  619. // return (value < 0 ? value - 1 : value + 1) / 2
  620. return MotionVector {
  621. (in.row() < 0 ? in.row() - 1 : in.row() + 1) >> 1,
  622. (in.column() < 0 ? in.column() - 1 : in.column() + 1) >> 1
  623. };
  624. };
  625. auto round_mv_comp_q4 = [&](MotionVector in) {
  626. // return (value < 0 ? value - 2 : value + 2) / 4
  627. return MotionVector {
  628. (in.row() < 0 ? in.row() - 2 : in.row() + 2) >> 2,
  629. (in.column() < 0 ? in.column() - 2 : in.column() + 2) >> 2
  630. };
  631. };
  632. // The motion vector array mv is derived as follows:
  633. // − If plane is equal to 0, or MiSize is greater than or equal to BLOCK_8X8, mv is set equal to
  634. // BlockMvs[ refList ][ blockIdx ].
  635. if (plane == 0 || block_context.size >= Block_8x8)
  636. return m_parser->m_block_mvs[ref_list][block_index];
  637. // − Otherwise, if subsampling_x is equal to 0 and subsampling_y is equal to 0, mv is set equal to
  638. // BlockMvs[ refList ][ blockIdx ].
  639. if (!m_parser->m_subsampling_x && !m_parser->m_subsampling_y)
  640. return m_parser->m_block_mvs[ref_list][block_index];
  641. // − Otherwise, if subsampling_x is equal to 0 and subsampling_y is equal to 1, mv[ comp ] is set equal to
  642. // round_mv_comp_q2( BlockMvs[ refList ][ blockIdx ][ comp ] + BlockMvs[ refList ][ blockIdx + 2 ][ comp ] )
  643. // for comp = 0..1.
  644. if (!m_parser->m_subsampling_x && m_parser->m_subsampling_y)
  645. return round_mv_comp_q2(m_parser->m_block_mvs[ref_list][block_index] + m_parser->m_block_mvs[ref_list][block_index + 2]);
  646. // − Otherwise, if subsampling_x is equal to 1 and subsampling_y is equal to 0, mv[ comp ] is set equal to
  647. // round_mv_comp_q2( BlockMvs[ refList ][ blockIdx ][ comp ] + BlockMvs[ refList ][ blockIdx + 1 ][ comp ] )
  648. // for comp = 0..1.
  649. if (m_parser->m_subsampling_x && !m_parser->m_subsampling_y)
  650. return round_mv_comp_q2(m_parser->m_block_mvs[ref_list][block_index] + m_parser->m_block_mvs[ref_list][block_index + 1]);
  651. // − Otherwise, (subsampling_x is equal to 1 and subsampling_y is equal to 1), mv[ comp ] is set equal to
  652. // round_mv_comp_q4( BlockMvs[ refList ][ 0 ][ comp ] + BlockMvs[ refList ][ 1 ][ comp ] +
  653. // BlockMvs[ refList ][ 2 ][ comp ] + BlockMvs[ refList ][ 3 ][ comp ] ) for comp = 0..1.
  654. VERIFY(m_parser->m_subsampling_x && m_parser->m_subsampling_y);
  655. return round_mv_comp_q4(m_parser->m_block_mvs[ref_list][0] + m_parser->m_block_mvs[ref_list][1]
  656. + m_parser->m_block_mvs[ref_list][2] + m_parser->m_block_mvs[ref_list][3]);
  657. }
  658. MotionVector Decoder::clamp_motion_vector(u8 plane, BlockContext const& block_context, u32 block_row, u32 block_column, MotionVector vector)
  659. {
  660. // FIXME: This function is named very similarly to Parser::clamp_mv. Rename one or the other?
  661. // The purpose of this process is to change the motion vector into the appropriate precision for the current plane
  662. // and to clamp motion vectors that go too far off the edge of the frame.
  663. // The variables sx and sy are set equal to the subsampling for the current plane as follows:
  664. // − If plane is equal to 0, sx is set equal to 0 and sy is set equal to 0.
  665. // − Otherwise, sx is set equal to subsampling_x and sy is set equal to subsampling_y.
  666. bool subsampling_x = plane > 0 ? m_parser->m_subsampling_x : false;
  667. bool subsampling_y = plane > 0 ? m_parser->m_subsampling_y : false;
  668. // The output array clampedMv is specified by the following steps:
  669. i32 blocks_high = num_8x8_blocks_high_lookup[block_context.size];
  670. // Casts must be done here to prevent subtraction underflow from wrapping the values.
  671. i32 mb_to_top_edge = -(static_cast<i32>(block_row * MI_SIZE) * 16) >> subsampling_y;
  672. i32 mb_to_bottom_edge = (((static_cast<i32>(block_context.frame_context.rows()) - blocks_high - static_cast<i32>(block_row)) * MI_SIZE) * 16) >> subsampling_y;
  673. i32 blocks_wide = num_8x8_blocks_wide_lookup[block_context.size];
  674. i32 mb_to_left_edge = -(static_cast<i32>(block_column * MI_SIZE) * 16) >> subsampling_x;
  675. i32 mb_to_right_edge = (((static_cast<i32>(block_context.frame_context.columns()) - blocks_wide - static_cast<i32>(block_column)) * MI_SIZE) * 16) >> subsampling_x;
  676. i32 subpel_left = (INTERP_EXTEND + ((blocks_wide * MI_SIZE) >> subsampling_x)) << SUBPEL_BITS;
  677. i32 subpel_right = subpel_left - SUBPEL_SHIFTS;
  678. i32 subpel_top = (INTERP_EXTEND + ((blocks_high * MI_SIZE) >> subsampling_y)) << SUBPEL_BITS;
  679. i32 subpel_bottom = subpel_top - SUBPEL_SHIFTS;
  680. return {
  681. clip_3(mb_to_top_edge - subpel_top, mb_to_bottom_edge + subpel_bottom, (2 * vector.row()) >> subsampling_y),
  682. clip_3(mb_to_left_edge - subpel_left, mb_to_right_edge + subpel_right, (2 * vector.column()) >> subsampling_x)
  683. };
  684. }
  685. DecoderErrorOr<void> Decoder::predict_inter_block(u8 plane, BlockContext const& block_context, u8 ref_list, u32 block_row, u32 block_column, u32 x, u32 y, u32 width, u32 height, u32 block_index, Span<u16> block_buffer)
  686. {
  687. VERIFY(width <= maximum_block_dimensions && height <= maximum_block_dimensions);
  688. // 2. The motion vector selection process in section 8.5.2.1 is invoked with plane, refList, blockIdx as inputs
  689. // and the output being the motion vector mv.
  690. auto motion_vector = select_motion_vector(plane, block_context, ref_list, block_index);
  691. // 3. The motion vector clamping process in section 8.5.2.2 is invoked with plane, mv as inputs and the output
  692. // being the clamped motion vector clampedMv
  693. auto clamped_vector = clamp_motion_vector(plane, block_context, block_row, block_column, motion_vector);
  694. // 4. The motion vector scaling process in section 8.5.2.3 is invoked with plane, refList, x, y, clampedMv as
  695. // inputs and the output being the initial location startX, startY, and the step sizes stepX, stepY.
  696. // 8.5.2.3 Motion vector scaling process
  697. // The inputs to this process are:
  698. // − a variable plane specifying which plane is being predicted,
  699. // − a variable refList specifying that we should scale to match reference frame ref_frame[ refList ],
  700. // − variables x and y specifying the location of the top left sample in the CurrFrame[ plane ] array of the region
  701. // to be predicted,
  702. // − a variable clampedMv specifying the clamped motion vector.
  703. // The outputs of this process are the variables startX and startY giving the reference block location in units of
  704. // 1/16 th of a sample, and variables xStep and yStep giving the step size in units of 1/16 th of a sample.
  705. // This process is responsible for computing the sampling locations in the reference frame based on the motion
  706. // vector. The sampling locations are also adjusted to compensate for any difference in the size of the reference
  707. // frame compared to the current frame.
  708. // A variable refIdx specifying which reference frame is being used is set equal to
  709. // ref_frame_idx[ ref_frame[ refList ] - LAST_FRAME ].
  710. auto reference_frame_index = m_parser->m_ref_frame_idx[m_parser->m_ref_frame[ref_list] - LastFrame];
  711. // It is a requirement of bitstream conformance that all the following conditions are satisfied:
  712. // − 2 * FrameWidth >= RefFrameWidth[ refIdx ]
  713. // − 2 * FrameHeight >= RefFrameHeight[ refIdx ]
  714. // − FrameWidth <= 16 * RefFrameWidth[ refIdx ]
  715. // − FrameHeight <= 16 * RefFrameHeight[ refIdx ]
  716. if (m_parser->m_frame_store[reference_frame_index][plane].is_empty())
  717. return DecoderError::format(DecoderErrorCategory::Corrupted, "Attempted to use reference frame {} that has not been saved", reference_frame_index);
  718. auto ref_frame_size = m_parser->m_ref_frame_size[reference_frame_index];
  719. auto double_frame_size = block_context.frame_context.size().scaled_by(2);
  720. if (double_frame_size.width() < ref_frame_size.width() || double_frame_size.height() < ref_frame_size.height())
  721. return DecoderError::format(DecoderErrorCategory::Corrupted, "Inter frame size is too small relative to reference frame {}", reference_frame_index);
  722. if (!ref_frame_size.scaled_by(16).contains(block_context.frame_context.size()))
  723. return DecoderError::format(DecoderErrorCategory::Corrupted, "Inter frame size is too large relative to reference frame {}", reference_frame_index);
  724. // FIXME: Convert all the operations in this function to vector operations supported by
  725. // MotionVector.
  726. // A variable xScale is set equal to (RefFrameWidth[ refIdx ] << REF_SCALE_SHIFT) / FrameWidth.
  727. // A variable yScale is set equal to (RefFrameHeight[ refIdx ] << REF_SCALE_SHIFT) / FrameHeight.
  728. // (xScale and yScale specify the size of the reference frame relative to the current frame in units where 16 is
  729. // equivalent to the reference frame having the same size.)
  730. i32 x_scale = (ref_frame_size.width() << REF_SCALE_SHIFT) / block_context.frame_context.size().width();
  731. i32 y_scale = (ref_frame_size.height() << REF_SCALE_SHIFT) / block_context.frame_context.size().height();
  732. // The variable baseX is set equal to (x * xScale) >> REF_SCALE_SHIFT.
  733. // The variable baseY is set equal to (y * yScale) >> REF_SCALE_SHIFT.
  734. // (baseX and baseY specify the location of the block in the reference frame if a zero motion vector is used).
  735. i32 base_x = (x * x_scale) >> REF_SCALE_SHIFT;
  736. i32 base_y = (y * y_scale) >> REF_SCALE_SHIFT;
  737. // The variable lumaX is set equal to (plane > 0) ? x << subsampling_x : x.
  738. // The variable lumaY is set equal to (plane > 0) ? y << subsampling_y : y.
  739. // (lumaX and lumaY specify the location of the block to be predicted in the current frame in units of luma
  740. // samples.)
  741. bool subsampling_x = plane > 0 ? m_parser->m_subsampling_x : false;
  742. bool subsampling_y = plane > 0 ? m_parser->m_subsampling_y : false;
  743. i32 luma_x = x << subsampling_x;
  744. i32 luma_y = y << subsampling_y;
  745. // The variable fracX is set equal to ( (16 * lumaX * xScale) >> REF_SCALE_SHIFT) & SUBPEL_MASK.
  746. // The variable fracY is set equal to ( (16 * lumaY * yScale) >> REF_SCALE_SHIFT) & SUBPEL_MASK.
  747. i32 frac_x = ((16 * luma_x * x_scale) >> REF_SCALE_SHIFT) & SUBPEL_MASK;
  748. i32 frac_y = ((16 * luma_y * y_scale) >> REF_SCALE_SHIFT) & SUBPEL_MASK;
  749. // The variable dX is set equal to ( (clampedMv[ 1 ] * xScale) >> REF_SCALE_SHIFT) + fracX.
  750. // The variable dY is set equal to ( (clampedMv[ 0 ] * yScale) >> REF_SCALE_SHIFT) + fracY.
  751. // (dX and dY specify a scaled motion vector.)
  752. i32 scaled_vector_x = ((clamped_vector.column() * x_scale) >> REF_SCALE_SHIFT) + frac_x;
  753. i32 scaled_vector_y = ((clamped_vector.row() * y_scale) >> REF_SCALE_SHIFT) + frac_y;
  754. // The output variable stepX is set equal to (16 * xScale) >> REF_SCALE_SHIFT.
  755. // The output variable stepY is set equal to (16 * yScale) >> REF_SCALE_SHIFT.
  756. i32 scaled_step_x = (16 * x_scale) >> REF_SCALE_SHIFT;
  757. i32 scaled_step_y = (16 * y_scale) >> REF_SCALE_SHIFT;
  758. // The output variable startX is set equal to (baseX << SUBPEL_BITS) + dX.
  759. // The output variable startY is set equal to (baseY << SUBPEL_BITS) + dY.
  760. i32 offset_scaled_block_x = (base_x << SUBPEL_BITS) + scaled_vector_x;
  761. i32 offset_scaled_block_y = (base_y << SUBPEL_BITS) + scaled_vector_y;
  762. // 5. The block inter prediction process in section 8.5.2.4 is invoked with plane, refList, startX, startY, stepX,
  763. // stepY, w, h as inputs and the output is assigned to the 2D array preds[ refList ].
  764. // 8.5.2.4 Block inter prediction process
  765. // The inputs to this process are:
  766. // − a variable plane,
  767. // − a variable refList specifying that we should predict from ref_frame[ refList ],
  768. // − variables x and y giving the block location in units of 1/16 th of a sample,
  769. // − variables xStep and yStep giving the step size in units of 1/16 th of a sample. (These will be at most equal
  770. // to 80 due to the restrictions on scaling between reference frames.)
  771. static constexpr i32 MAX_SCALED_STEP = 80;
  772. VERIFY(scaled_step_x <= MAX_SCALED_STEP && scaled_step_y <= MAX_SCALED_STEP);
  773. // − variables w and h giving the width and height of the block in units of samples
  774. // The output from this process is the 2D array named pred containing inter predicted samples.
  775. // A variable ref specifying the reference frame contents is set equal to FrameStore[ refIdx ].
  776. auto& reference_frame_buffer = m_parser->m_frame_store[reference_frame_index][plane];
  777. auto reference_frame_width = m_parser->m_ref_frame_size[reference_frame_index].width() >> subsampling_x;
  778. auto reference_frame_buffer_at = [&](u32 row, u32 column) -> u16& {
  779. return reference_frame_buffer[row * reference_frame_width + column];
  780. };
  781. auto block_buffer_at = [&](u32 row, u32 column) -> u16& {
  782. return block_buffer[row * width + column];
  783. };
  784. // The variable lastX is set equal to ( (RefFrameWidth[ refIdx ] + subX) >> subX) - 1.
  785. // The variable lastY is set equal to ( (RefFrameHeight[ refIdx ] + subY) >> subY) - 1.
  786. // (lastX and lastY specify the coordinates of the bottom right sample of the reference plane.)
  787. i32 scaled_right = ((m_parser->m_ref_frame_size[reference_frame_index].width() + subsampling_x) >> subsampling_x) - 1;
  788. i32 scaled_bottom = ((m_parser->m_ref_frame_size[reference_frame_index].height() + subsampling_y) >> subsampling_y) - 1;
  789. // The variable intermediateHeight specifying the height required for the intermediate array is set equal to (((h -
  790. // 1) * yStep + 15) >> 4) + 8.
  791. static constexpr auto maximum_intermediate_height = (((maximum_block_dimensions - 1) * MAX_SCALED_STEP + 15) >> 4) + 8;
  792. auto intermediate_height = (((height - 1) * scaled_step_y + 15) >> 4) + 8;
  793. VERIFY(intermediate_height <= maximum_intermediate_height);
  794. // The sub-sample interpolation is effected via two one-dimensional convolutions. First a horizontal filter is used
  795. // to build up a temporary array, and then this array is vertically filtered to obtain the final prediction. The
  796. // fractional parts of the motion vectors determine the filtering process. If the fractional part is zero, then the
  797. // filtering is equivalent to a straight sample copy.
  798. // The filtering is applied as follows:
  799. // The array intermediate is specified as follows:
  800. // Note: Height is specified by `intermediate_height`, width is specified by `width`
  801. Array<u16, maximum_intermediate_height * maximum_block_dimensions> intermediate_buffer;
  802. auto intermediate_buffer_at = [&](u32 row, u32 column) -> u16& {
  803. return intermediate_buffer[row * width + column];
  804. };
  805. for (auto row = 0u; row < intermediate_height; row++) {
  806. for (auto column = 0u; column < width; column++) {
  807. auto samples_start = offset_scaled_block_x + static_cast<i32>(scaled_step_x * column);
  808. i32 accumulated_samples = 0;
  809. for (auto t = 0u; t < 8u; t++) {
  810. auto sample = reference_frame_buffer_at(
  811. clip_3(0, scaled_bottom, (offset_scaled_block_y >> 4) + static_cast<i32>(row) - 3),
  812. clip_3(0, scaled_right, (samples_start >> 4) + static_cast<i32>(t) - 3));
  813. accumulated_samples += subpel_filters[m_parser->m_interp_filter][samples_start & 15][t] * sample;
  814. }
  815. intermediate_buffer_at(row, column) = clip_1(m_parser->m_bit_depth, round_2(accumulated_samples, 7));
  816. }
  817. }
  818. for (auto row = 0u; row < height; row++) {
  819. for (auto column = 0u; column < width; column++) {
  820. auto samples_start = (offset_scaled_block_y & 15) + static_cast<i32>(scaled_step_y * row);
  821. i32 accumulated_samples = 0;
  822. for (auto t = 0u; t < 8u; t++) {
  823. auto sample = intermediate_buffer_at((samples_start >> 4) + t, column);
  824. accumulated_samples += subpel_filters[m_parser->m_interp_filter][samples_start & 15][t] * sample;
  825. }
  826. block_buffer_at(row, column) = clip_1(m_parser->m_bit_depth, round_2(accumulated_samples, 7));
  827. }
  828. }
  829. return {};
  830. }
  831. DecoderErrorOr<void> Decoder::predict_inter(u8 plane, BlockContext const& block_context, u32 x, u32 y, u32 width, u32 height, u32 block_index)
  832. {
  833. // The inter prediction process is invoked for inter coded blocks. When MiSize is smaller than BLOCK_8X8, the
  834. // prediction is done with a granularity of 4x4 samples, otherwise the whole plane is predicted at the same time.
  835. // The inputs to this process are:
  836. // − a variable plane specifying which plane is being predicted,
  837. // − variables x and y specifying the location of the top left sample in the CurrFrame[ plane ] array of the region
  838. // to be predicted,
  839. // − variables w and h specifying the width and height of the region to be predicted,
  840. // − a variable blockIdx, specifying how much of the block has already been predicted in units of 4x4 samples.
  841. // The outputs of this process are inter predicted samples in the current frame CurrFrame.
  842. // The variable isCompound is set equal to ref_frame[ 1 ] > NONE.
  843. auto is_compound = m_parser->m_ref_frame[1] > None;
  844. // The prediction arrays are formed by the following ordered steps:
  845. // 1. The variable refList is set equal to 0.
  846. // 2. through 5.
  847. Array<u16, maximum_block_size> predicted_buffer;
  848. auto predicted_span = predicted_buffer.span().trim(width * height);
  849. TRY(predict_inter_block(plane, block_context, 0, block_context.row, block_context.column, x, y, width, height, block_index, predicted_span));
  850. auto predicted_buffer_at = [&](Span<u16> buffer, u32 row, u32 column) -> u16& {
  851. return buffer[row * width + column];
  852. };
  853. // 6. If isCompound is equal to 1, then the variable refList is set equal to 1 and steps 2, 3, 4 and 5 are repeated
  854. // to form the prediction for the second reference.
  855. // The inter predicted samples are then derived as follows:
  856. auto& frame_buffer = get_output_buffer(plane);
  857. VERIFY(!frame_buffer.is_empty());
  858. auto frame_width = (block_context.frame_context.columns() * 8u) >> (plane > 0 ? m_parser->m_subsampling_x : false);
  859. auto frame_height = (block_context.frame_context.rows() * 8u) >> (plane > 0 ? m_parser->m_subsampling_y : false);
  860. auto frame_buffer_at = [&](u32 row, u32 column) -> u16& {
  861. return frame_buffer[row * frame_width + column];
  862. };
  863. auto width_in_frame_buffer = min(width, frame_width - x);
  864. auto height_in_frame_buffer = min(height, frame_height - y);
  865. // − If isCompound is equal to 0, CurrFrame[ plane ][ y + i ][ x + j ] is set equal to preds[ 0 ][ i ][ j ] for i = 0..h-1
  866. // and j = 0..w-1.
  867. if (!is_compound) {
  868. for (auto i = 0u; i < height_in_frame_buffer; i++) {
  869. for (auto j = 0u; j < width_in_frame_buffer; j++)
  870. frame_buffer_at(y + i, x + j) = predicted_buffer_at(predicted_span, i, j);
  871. }
  872. return {};
  873. }
  874. // − Otherwise, CurrFrame[ plane ][ y + i ][ x + j ] is set equal to Round2( preds[ 0 ][ i ][ j ] + preds[ 1 ][ i ][ j ], 1 )
  875. // for i = 0..h-1 and j = 0..w-1.
  876. Array<u16, maximum_block_size> second_predicted_buffer;
  877. auto second_predicted_span = second_predicted_buffer.span().trim(width * height);
  878. TRY(predict_inter_block(plane, block_context, 1, block_context.row, block_context.column, x, y, width, height, block_index, second_predicted_span));
  879. for (auto i = 0u; i < height_in_frame_buffer; i++) {
  880. for (auto j = 0u; j < width_in_frame_buffer; j++)
  881. frame_buffer_at(y + i, x + j) = round_2(predicted_buffer_at(predicted_span, i, j) + predicted_buffer_at(second_predicted_span, i, j), 1);
  882. }
  883. return {};
  884. }
  885. u16 Decoder::dc_q(u8 b)
  886. {
  887. // The function dc_q( b ) is specified as dc_qlookup[ (BitDepth-8) >> 1 ][ Clip3( 0, 255, b ) ] where dc_lookup is
  888. // defined as follows:
  889. static const u16 dc_qlookup[3][256] = {
  890. { 4, 8, 8, 9, 10, 11, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 23, 24, 25, 26, 26, 27, 28, 29, 30, 31, 32, 32, 33, 34, 35, 36, 37, 38, 38, 39, 40, 41, 42, 43, 43, 44, 45, 46, 47, 48, 48, 49, 50, 51, 52, 53, 53, 54, 55, 56, 57, 57, 58, 59, 60, 61, 62, 62, 63, 64, 65, 66, 66, 67, 68, 69, 70, 70, 71, 72, 73, 74, 74, 75, 76, 77, 78, 78, 79, 80, 81, 81, 82, 83, 84, 85, 85, 87, 88, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 118, 120, 121, 123, 125, 127, 129, 131, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 161, 164, 166, 169, 172, 174, 177, 180, 182, 185, 187, 190, 192, 195, 199, 202, 205, 208, 211, 214, 217, 220, 223, 226, 230, 233, 237, 240, 243, 247, 250, 253, 257, 261, 265, 269, 272, 276, 280, 284, 288, 292, 296, 300, 304, 309, 313, 317, 322, 326, 330, 335, 340, 344, 349, 354, 359, 364, 369, 374, 379, 384, 389, 395, 400, 406, 411, 417, 423, 429, 435, 441, 447, 454, 461, 467, 475, 482, 489, 497, 505, 513, 522, 530, 539, 549, 559, 569, 579, 590, 602, 614, 626, 640, 654, 668, 684, 700, 717, 736, 755, 775, 796, 819, 843, 869, 896, 925, 955, 988, 1022, 1058, 1098, 1139, 1184, 1232, 1282, 1336 },
  891. { 4, 9, 10, 13, 15, 17, 20, 22, 25, 28, 31, 34, 37, 40, 43, 47, 50, 53, 57, 60, 64, 68, 71, 75, 78, 82, 86, 90, 93, 97, 101, 105, 109, 113, 116, 120, 124, 128, 132, 136, 140, 143, 147, 151, 155, 159, 163, 166, 170, 174, 178, 182, 185, 189, 193, 197, 200, 204, 208, 212, 215, 219, 223, 226, 230, 233, 237, 241, 244, 248, 251, 255, 259, 262, 266, 269, 273, 276, 280, 283, 287, 290, 293, 297, 300, 304, 307, 310, 314, 317, 321, 324, 327, 331, 334, 337, 343, 350, 356, 362, 369, 375, 381, 387, 394, 400, 406, 412, 418, 424, 430, 436, 442, 448, 454, 460, 466, 472, 478, 484, 490, 499, 507, 516, 525, 533, 542, 550, 559, 567, 576, 584, 592, 601, 609, 617, 625, 634, 644, 655, 666, 676, 687, 698, 708, 718, 729, 739, 749, 759, 770, 782, 795, 807, 819, 831, 844, 856, 868, 880, 891, 906, 920, 933, 947, 961, 975, 988, 1001, 1015, 1030, 1045, 1061, 1076, 1090, 1105, 1120, 1137, 1153, 1170, 1186, 1202, 1218, 1236, 1253, 1271, 1288, 1306, 1323, 1342, 1361, 1379, 1398, 1416, 1436, 1456, 1476, 1496, 1516, 1537, 1559, 1580, 1601, 1624, 1647, 1670, 1692, 1717, 1741, 1766, 1791, 1817, 1844, 1871, 1900, 1929, 1958, 1990, 2021, 2054, 2088, 2123, 2159, 2197, 2236, 2276, 2319, 2363, 2410, 2458, 2508, 2561, 2616, 2675, 2737, 2802, 2871, 2944, 3020, 3102, 3188, 3280, 3375, 3478, 3586, 3702, 3823, 3953, 4089, 4236, 4394, 4559, 4737, 4929, 5130, 5347 },
  892. { 4, 12, 18, 25, 33, 41, 50, 60, 70, 80, 91, 103, 115, 127, 140, 153, 166, 180, 194, 208, 222, 237, 251, 266, 281, 296, 312, 327, 343, 358, 374, 390, 405, 421, 437, 453, 469, 484, 500, 516, 532, 548, 564, 580, 596, 611, 627, 643, 659, 674, 690, 706, 721, 737, 752, 768, 783, 798, 814, 829, 844, 859, 874, 889, 904, 919, 934, 949, 964, 978, 993, 1008, 1022, 1037, 1051, 1065, 1080, 1094, 1108, 1122, 1136, 1151, 1165, 1179, 1192, 1206, 1220, 1234, 1248, 1261, 1275, 1288, 1302, 1315, 1329, 1342, 1368, 1393, 1419, 1444, 1469, 1494, 1519, 1544, 1569, 1594, 1618, 1643, 1668, 1692, 1717, 1741, 1765, 1789, 1814, 1838, 1862, 1885, 1909, 1933, 1957, 1992, 2027, 2061, 2096, 2130, 2165, 2199, 2233, 2267, 2300, 2334, 2367, 2400, 2434, 2467, 2499, 2532, 2575, 2618, 2661, 2704, 2746, 2788, 2830, 2872, 2913, 2954, 2995, 3036, 3076, 3127, 3177, 3226, 3275, 3324, 3373, 3421, 3469, 3517, 3565, 3621, 3677, 3733, 3788, 3843, 3897, 3951, 4005, 4058, 4119, 4181, 4241, 4301, 4361, 4420, 4479, 4546, 4612, 4677, 4742, 4807, 4871, 4942, 5013, 5083, 5153, 5222, 5291, 5367, 5442, 5517, 5591, 5665, 5745, 5825, 5905, 5984, 6063, 6149, 6234, 6319, 6404, 6495, 6587, 6678, 6769, 6867, 6966, 7064, 7163, 7269, 7376, 7483, 7599, 7715, 7832, 7958, 8085, 8214, 8352, 8492, 8635, 8788, 8945, 9104, 9275, 9450, 9639, 9832, 10031, 10245, 10465, 10702, 10946, 11210, 11482, 11776, 12081, 12409, 12750, 13118, 13501, 13913, 14343, 14807, 15290, 15812, 16356, 16943, 17575, 18237, 18949, 19718, 20521, 21387 }
  893. };
  894. return dc_qlookup[(m_parser->m_bit_depth - 8) >> 1][clip_3<u8>(0, 255, b)];
  895. }
  896. u16 Decoder::ac_q(u8 b)
  897. {
  898. // The function ac_q( b ) is specified as ac_qlookup[ (BitDepth-8) >> 1 ][ Clip3( 0, 255, b ) ] where ac_lookup is
  899. // defined as follows:
  900. static const u16 ac_qlookup[3][256] = {
  901. { 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179, 182, 185, 188, 191, 194, 197, 200, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 260, 265, 270, 275, 280, 285, 290, 295, 300, 305, 311, 317, 323, 329, 335, 341, 347, 353, 359, 366, 373, 380, 387, 394, 401, 408, 416, 424, 432, 440, 448, 456, 465, 474, 483, 492, 501, 510, 520, 530, 540, 550, 560, 571, 582, 593, 604, 615, 627, 639, 651, 663, 676, 689, 702, 715, 729, 743, 757, 771, 786, 801, 816, 832, 848, 864, 881, 898, 915, 933, 951, 969, 988, 1007, 1026, 1046, 1066, 1087, 1108, 1129, 1151, 1173, 1196, 1219, 1243, 1267, 1292, 1317, 1343, 1369, 1396, 1423, 1451, 1479, 1508, 1537, 1567, 1597, 1628, 1660, 1692, 1725, 1759, 1793, 1828 },
  902. { 4, 9, 11, 13, 16, 18, 21, 24, 27, 30, 33, 37, 40, 44, 48, 51, 55, 59, 63, 67, 71, 75, 79, 83, 88, 92, 96, 100, 105, 109, 114, 118, 122, 127, 131, 136, 140, 145, 149, 154, 158, 163, 168, 172, 177, 181, 186, 190, 195, 199, 204, 208, 213, 217, 222, 226, 231, 235, 240, 244, 249, 253, 258, 262, 267, 271, 275, 280, 284, 289, 293, 297, 302, 306, 311, 315, 319, 324, 328, 332, 337, 341, 345, 349, 354, 358, 362, 367, 371, 375, 379, 384, 388, 392, 396, 401, 409, 417, 425, 433, 441, 449, 458, 466, 474, 482, 490, 498, 506, 514, 523, 531, 539, 547, 555, 563, 571, 579, 588, 596, 604, 616, 628, 640, 652, 664, 676, 688, 700, 713, 725, 737, 749, 761, 773, 785, 797, 809, 825, 841, 857, 873, 889, 905, 922, 938, 954, 970, 986, 1002, 1018, 1038, 1058, 1078, 1098, 1118, 1138, 1158, 1178, 1198, 1218, 1242, 1266, 1290, 1314, 1338, 1362, 1386, 1411, 1435, 1463, 1491, 1519, 1547, 1575, 1603, 1631, 1663, 1695, 1727, 1759, 1791, 1823, 1859, 1895, 1931, 1967, 2003, 2039, 2079, 2119, 2159, 2199, 2239, 2283, 2327, 2371, 2415, 2459, 2507, 2555, 2603, 2651, 2703, 2755, 2807, 2859, 2915, 2971, 3027, 3083, 3143, 3203, 3263, 3327, 3391, 3455, 3523, 3591, 3659, 3731, 3803, 3876, 3952, 4028, 4104, 4184, 4264, 4348, 4432, 4516, 4604, 4692, 4784, 4876, 4972, 5068, 5168, 5268, 5372, 5476, 5584, 5692, 5804, 5916, 6032, 6148, 6268, 6388, 6512, 6640, 6768, 6900, 7036, 7172, 7312 },
  903. { 4, 13, 19, 27, 35, 44, 54, 64, 75, 87, 99, 112, 126, 139, 154, 168, 183, 199, 214, 230, 247, 263, 280, 297, 314, 331, 349, 366, 384, 402, 420, 438, 456, 475, 493, 511, 530, 548, 567, 586, 604, 623, 642, 660, 679, 698, 716, 735, 753, 772, 791, 809, 828, 846, 865, 884, 902, 920, 939, 957, 976, 994, 1012, 1030, 1049, 1067, 1085, 1103, 1121, 1139, 1157, 1175, 1193, 1211, 1229, 1246, 1264, 1282, 1299, 1317, 1335, 1352, 1370, 1387, 1405, 1422, 1440, 1457, 1474, 1491, 1509, 1526, 1543, 1560, 1577, 1595, 1627, 1660, 1693, 1725, 1758, 1791, 1824, 1856, 1889, 1922, 1954, 1987, 2020, 2052, 2085, 2118, 2150, 2183, 2216, 2248, 2281, 2313, 2346, 2378, 2411, 2459, 2508, 2556, 2605, 2653, 2701, 2750, 2798, 2847, 2895, 2943, 2992, 3040, 3088, 3137, 3185, 3234, 3298, 3362, 3426, 3491, 3555, 3619, 3684, 3748, 3812, 3876, 3941, 4005, 4069, 4149, 4230, 4310, 4390, 4470, 4550, 4631, 4711, 4791, 4871, 4967, 5064, 5160, 5256, 5352, 5448, 5544, 5641, 5737, 5849, 5961, 6073, 6185, 6297, 6410, 6522, 6650, 6778, 6906, 7034, 7162, 7290, 7435, 7579, 7723, 7867, 8011, 8155, 8315, 8475, 8635, 8795, 8956, 9132, 9308, 9484, 9660, 9836, 10028, 10220, 10412, 10604, 10812, 11020, 11228, 11437, 11661, 11885, 12109, 12333, 12573, 12813, 13053, 13309, 13565, 13821, 14093, 14365, 14637, 14925, 15213, 15502, 15806, 16110, 16414, 16734, 17054, 17390, 17726, 18062, 18414, 18766, 19134, 19502, 19886, 20270, 20670, 21070, 21486, 21902, 22334, 22766, 23214, 23662, 24126, 24590, 25070, 25551, 26047, 26559, 27071, 27599, 28143, 28687, 29247 }
  904. };
  905. return ac_qlookup[(m_parser->m_bit_depth - 8) >> 1][clip_3<u8>(0, 255, b)];
  906. }
  907. u8 Decoder::get_qindex()
  908. {
  909. // The function get_qindex( ) returns the quantizer index for the current block and is specified by the following:
  910. // − If seg_feature_active( SEG_LVL_ALT_Q ) is equal to 1 the following ordered steps apply:
  911. if (m_parser->seg_feature_active(SEG_LVL_ALT_Q)) {
  912. // 1. Set the variable data equal to FeatureData[ segment_id ][ SEG_LVL_ALT_Q ].
  913. auto data = m_parser->m_feature_data[m_parser->m_segment_id][SEG_LVL_ALT_Q];
  914. // 2. If segmentation_abs_or_delta_update is equal to 0, set data equal to base_q_idx + data
  915. if (!m_parser->m_segmentation_abs_or_delta_update) {
  916. data += m_parser->m_base_q_idx;
  917. }
  918. // 3. Return Clip3( 0, 255, data ).
  919. return clip_3<u8>(0, 255, data);
  920. }
  921. // − Otherwise, return base_q_idx.
  922. return m_parser->m_base_q_idx;
  923. }
  924. u16 Decoder::get_dc_quant(u8 plane)
  925. {
  926. // The function get_dc_quant( plane ) returns the quantizer value for the dc coefficient for a particular plane and
  927. // is derived as follows:
  928. // − If plane is equal to 0, return dc_q( get_qindex( ) + delta_q_y_dc ).
  929. // − Otherwise, return dc_q( get_qindex( ) + delta_q_uv_dc ).
  930. // Instead of if { return }, select the value to add and return.
  931. i8 offset = plane == 0 ? m_parser->m_delta_q_y_dc : m_parser->m_delta_q_uv_dc;
  932. return dc_q(static_cast<u8>(get_qindex() + offset));
  933. }
  934. u16 Decoder::get_ac_quant(u8 plane)
  935. {
  936. // The function get_ac_quant( plane ) returns the quantizer value for the ac coefficient for a particular plane and
  937. // is derived as follows:
  938. // − If plane is equal to 0, return ac_q( get_qindex( ) ).
  939. // − Otherwise, return ac_q( get_qindex( ) + delta_q_uv_ac ).
  940. // Instead of if { return }, select the value to add and return.
  941. i8 offset = plane == 0 ? 0 : m_parser->m_delta_q_uv_ac;
  942. return ac_q(static_cast<u8>(get_qindex() + offset));
  943. }
  944. DecoderErrorOr<void> Decoder::reconstruct(u8 plane, BlockContext const& block_context, u32 transform_block_x, u32 transform_block_y, TXSize transform_block_size)
  945. {
  946. // 8.6.2 Reconstruct process
  947. // The variable dqDenom is set equal to 2 if txSz is equal to TX_32X32, otherwise dqDenom is set equal to 1.
  948. Intermediate dq_denominator = transform_block_size == TX_32x32 ? 2 : 1;
  949. // The variable n (specifying the base 2 logarithm of the width of the transform block) is set equal to 2 + txSz.
  950. u8 log2_of_block_size = 2u + transform_block_size;
  951. // The variable n0 (specifying the width of the transform block) is set equal to 1 << n.
  952. auto block_size = 1u << log2_of_block_size;
  953. // 1. Dequant[ i ][ j ] is set equal to ( Tokens[ i * n0 + j ] * get_ac_quant( plane ) ) / dqDenom
  954. // for i = 0..(n0-1), for j = 0..(n0-1)
  955. Array<Intermediate, maximum_transform_size> dequantized;
  956. Intermediate ac_quant = get_ac_quant(plane);
  957. for (auto i = 0u; i < block_size; i++) {
  958. for (auto j = 0u; j < block_size; j++) {
  959. auto index = index_from_row_and_column(i, j, block_size);
  960. if (index == 0)
  961. continue;
  962. dequantized[index] = (m_parser->m_tokens[index] * ac_quant) / dq_denominator;
  963. }
  964. }
  965. // 2. Dequant[ 0 ][ 0 ] is set equal to ( Tokens[ 0 ] * get_dc_quant( plane ) ) / dqDenom
  966. dequantized[0] = (m_parser->m_tokens[0] * get_dc_quant(plane)) / dq_denominator;
  967. // It is a requirement of bitstream conformance that the values written into the Dequant array in steps 1 and 2
  968. // are representable by a signed integer with 8 + BitDepth bits.
  969. for (auto i = 0u; i < block_size * block_size; i++)
  970. VERIFY(check_intermediate_bounds(dequantized[i]));
  971. // 3. Invoke the 2D inverse transform block process defined in section 8.7.2 with the variable n as input.
  972. // The inverse transform outputs are stored back to the Dequant buffer.
  973. TRY(inverse_transform_2d(dequantized, log2_of_block_size));
  974. // 4. CurrFrame[ plane ][ y + i ][ x + j ] is set equal to Clip1( CurrFrame[ plane ][ y + i ][ x + j ] + Dequant[ i ][ j ] )
  975. // for i = 0..(n0-1) and j = 0..(n0-1).
  976. auto& current_buffer = get_output_buffer(plane);
  977. auto subsampling_x = (plane > 0 ? m_parser->m_subsampling_x : 0);
  978. auto subsampling_y = (plane > 0 ? m_parser->m_subsampling_y : 0);
  979. auto frame_width = (block_context.frame_context.columns() * 8) >> subsampling_x;
  980. auto frame_height = (block_context.frame_context.rows() * 8) >> subsampling_y;
  981. auto width_in_frame_buffer = min(block_size, frame_width - transform_block_x);
  982. auto height_in_frame_buffer = min(block_size, frame_height - transform_block_y);
  983. for (auto i = 0u; i < height_in_frame_buffer; i++) {
  984. for (auto j = 0u; j < width_in_frame_buffer; j++) {
  985. auto index = index_from_row_and_column(transform_block_y + i, transform_block_x + j, frame_width);
  986. auto dequantized_value = dequantized[index_from_row_and_column(i, j, block_size)];
  987. current_buffer[index] = clip_1(m_parser->m_bit_depth, current_buffer[index] + dequantized_value);
  988. }
  989. }
  990. return {};
  991. }
  992. inline DecoderErrorOr<void> Decoder::inverse_walsh_hadamard_transform(Span<Intermediate> data, u8 log2_of_block_size, u8 shift)
  993. {
  994. (void)data;
  995. (void)shift;
  996. // The input to this process is a variable shift that specifies the amount of pre-scaling.
  997. // This process does an in-place transform of the array T (of length 4) by the following ordered steps:
  998. if (1 << log2_of_block_size != 4)
  999. return DecoderError::corrupted("Block size was not 4"sv);
  1000. return DecoderError::not_implemented();
  1001. }
  1002. inline i32 Decoder::cos64(u8 angle)
  1003. {
  1004. const i32 cos64_lookup[33] = { 16384, 16364, 16305, 16207, 16069, 15893, 15679, 15426, 15137, 14811, 14449, 14053, 13623, 13160, 12665, 12140, 11585, 11003, 10394, 9760, 9102, 8423, 7723, 7005, 6270, 5520, 4756, 3981, 3196, 2404, 1606, 804, 0 };
  1005. // 1. Set a variable angle2 equal to angle & 127.
  1006. angle &= 127;
  1007. // 2. If angle2 is greater than or equal to 0 and less than or equal to 32, return cos64_lookup[ angle2 ].
  1008. if (angle <= 32)
  1009. return cos64_lookup[angle];
  1010. // 3. If angle2 is greater than 32 and less than or equal to 64, return cos64_lookup[ 64 - angle2 ] * -1.
  1011. if (angle <= 64)
  1012. return -cos64_lookup[64 - angle];
  1013. // 4. If angle2 is greater than 64 and less than or equal to 96, return cos64_lookup[ angle2 - 64 ] * -1.
  1014. if (angle <= 96)
  1015. return -cos64_lookup[angle - 64];
  1016. // 5. Otherwise (if angle2 is greater than 96 and less than 128), return cos64_lookup[ 128 - angle2 ].
  1017. return cos64_lookup[128 - angle];
  1018. }
  1019. inline i32 Decoder::sin64(u8 angle)
  1020. {
  1021. if (angle < 32)
  1022. angle += 128;
  1023. return cos64(angle - 32u);
  1024. }
  1025. template<typename T>
  1026. inline i32 Decoder::round_2(T value, u8 bits)
  1027. {
  1028. value = (value + static_cast<T>(1u << (bits - 1u))) >> bits;
  1029. return static_cast<i32>(value);
  1030. }
  1031. inline bool check_bounds(i64 value, u8 bits)
  1032. {
  1033. i64 const maximum = (1ll << (bits - 1ll)) - 1ll;
  1034. return value >= ~maximum && value <= maximum;
  1035. }
  1036. inline bool Decoder::check_intermediate_bounds(Intermediate value)
  1037. {
  1038. i32 maximum = (1 << (8 + m_parser->m_bit_depth - 1)) - 1;
  1039. return value >= ~maximum && value <= maximum;
  1040. }
  1041. // (8.7.1.1) The function B( a, b, angle, 0 ) performs a butterfly rotation.
  1042. inline void Decoder::butterfly_rotation_in_place(Span<Intermediate> data, size_t index_a, size_t index_b, u8 angle, bool flip)
  1043. {
  1044. auto cos = cos64(angle);
  1045. auto sin = sin64(angle);
  1046. // 1. The variable x is set equal to T[ a ] * cos64( angle ) - T[ b ] * sin64( angle ).
  1047. i64 rotated_a = data[index_a] * cos - data[index_b] * sin;
  1048. // 2. The variable y is set equal to T[ a ] * sin64( angle ) + T[ b ] * cos64( angle ).
  1049. i64 rotated_b = data[index_a] * sin + data[index_b] * cos;
  1050. // 3. T[ a ] is set equal to Round2( x, 14 ).
  1051. data[index_a] = round_2(rotated_a, 14);
  1052. // 4. T[ b ] is set equal to Round2( y, 14 ).
  1053. data[index_b] = round_2(rotated_b, 14);
  1054. // The function B( a ,b, angle, 1 ) performs a butterfly rotation and flip specified by the following ordered steps:
  1055. // 1. The function B( a, b, angle, 0 ) is invoked.
  1056. // 2. The contents of T[ a ] and T[ b ] are exchanged.
  1057. if (flip)
  1058. swap(data[index_a], data[index_b]);
  1059. // It is a requirement of bitstream conformance that the values saved into the array T by this function are
  1060. // representable by a signed integer using 8 + BitDepth bits of precision.
  1061. VERIFY(check_intermediate_bounds(data[index_a]));
  1062. VERIFY(check_intermediate_bounds(data[index_b]));
  1063. }
  1064. // (8.7.1.1) The function H( a, b, 0 ) performs a Hadamard rotation.
  1065. inline void Decoder::hadamard_rotation_in_place(Span<Intermediate> data, size_t index_a, size_t index_b, bool flip)
  1066. {
  1067. // The function H( a, b, 1 ) performs a Hadamard rotation with flipped indices and is specified as follows:
  1068. // 1. The function H( b, a, 0 ) is invoked.
  1069. if (flip)
  1070. swap(index_a, index_b);
  1071. // The function H( a, b, 0 ) performs a Hadamard rotation specified by the following ordered steps:
  1072. // 1. The variable x is set equal to T[ a ].
  1073. auto a_value = data[index_a];
  1074. // 2. The variable y is set equal to T[ b ].
  1075. auto b_value = data[index_b];
  1076. // 3. T[ a ] is set equal to x + y.
  1077. data[index_a] = a_value + b_value;
  1078. // 4. T[ b ] is set equal to x - y.
  1079. data[index_b] = a_value - b_value;
  1080. // It is a requirement of bitstream conformance that the values saved into the array T by this function are
  1081. // representable by a signed integer using 8 + BitDepth bits of precision.
  1082. VERIFY(check_intermediate_bounds(data[index_a]));
  1083. VERIFY(check_intermediate_bounds(data[index_b]));
  1084. }
  1085. inline DecoderErrorOr<void> Decoder::inverse_discrete_cosine_transform_array_permutation(Span<Intermediate> data, u8 log2_of_block_size)
  1086. {
  1087. u8 block_size = 1 << log2_of_block_size;
  1088. // This process performs an in-place permutation of the array T of length 2^n for 2 ≤ n ≤ 5 which is required before
  1089. // execution of the inverse DCT process.
  1090. if (log2_of_block_size < 2 || log2_of_block_size > 5)
  1091. return DecoderError::corrupted("Block size was out of range"sv);
  1092. // 1.1. A temporary array named copyT is set equal to T.
  1093. Array<Intermediate, maximum_transform_size> data_copy;
  1094. AK::TypedTransfer<Intermediate>::copy(data_copy.data(), data.data(), block_size);
  1095. // 1.2. T[ i ] is set equal to copyT[ brev( n, i ) ] for i = 0..((1<<n) - 1).
  1096. for (auto i = 0u; i < block_size; i++)
  1097. data[i] = data_copy[brev(log2_of_block_size, i)];
  1098. return {};
  1099. }
  1100. inline DecoderErrorOr<void> Decoder::inverse_discrete_cosine_transform(Span<Intermediate> data, u8 log2_of_block_size)
  1101. {
  1102. // 2.1. The variable n0 is set equal to 1<<n.
  1103. u8 block_size = 1 << log2_of_block_size;
  1104. // 8.7.1.3 Inverse DCT process
  1105. // 2.2. The variable n1 is set equal to 1<<(n-1).
  1106. u8 half_block_size = block_size >> 1;
  1107. // 2.3 The variable n2 is set equal to 1<<(n-2).
  1108. u8 quarter_block_size = half_block_size >> 1;
  1109. // 2.4 The variable n3 is set equal to 1<<(n-3).
  1110. u8 eighth_block_size = quarter_block_size >> 1;
  1111. // 2.5 If n is equal to 2, invoke B( 0, 1, 16, 1 ), otherwise recursively invoke the inverse DCT defined in this
  1112. // section with the variable n set equal to n - 1.
  1113. if (log2_of_block_size == 2)
  1114. butterfly_rotation_in_place(data, 0, 1, 16, true);
  1115. else
  1116. TRY(inverse_discrete_cosine_transform(data, log2_of_block_size - 1));
  1117. // 2.6 Invoke B( n1+i, n0-1-i, 32-brev( 5, n1+i), 0 ) for i = 0..(n2-1).
  1118. for (auto i = 0u; i < quarter_block_size; i++) {
  1119. auto index = half_block_size + i;
  1120. butterfly_rotation_in_place(data, index, block_size - 1 - i, 32 - brev(5, index), false);
  1121. }
  1122. // 2.7 If n is greater than or equal to 3:
  1123. if (log2_of_block_size >= 3) {
  1124. // a. Invoke H( n1+4*i+2*j, n1+1+4*i+2*j, j ) for i = 0..(n3-1), j = 0..1.
  1125. for (auto i = 0u; i < eighth_block_size; i++) {
  1126. for (auto j = 0u; j < 2; j++) {
  1127. auto index = half_block_size + (4 * i) + (2 * j);
  1128. hadamard_rotation_in_place(data, index, index + 1, j);
  1129. }
  1130. }
  1131. }
  1132. // 4. If n is equal to 5:
  1133. if (log2_of_block_size == 5) {
  1134. // a. Invoke B( n0-n+3-n2*j-4*i, n1+n-4+n2*j+4*i, 28-16*i+56*j, 1 ) for i = 0..1, j = 0..1.
  1135. for (auto i = 0u; i < 2; i++) {
  1136. for (auto j = 0u; j < 2; j++) {
  1137. auto index_a = block_size - log2_of_block_size + 3 - (quarter_block_size * j) - (4 * i);
  1138. auto index_b = half_block_size + log2_of_block_size - 4 + (quarter_block_size * j) + (4 * i);
  1139. auto angle = 28 - (16 * i) + (56 * j);
  1140. butterfly_rotation_in_place(data, index_a, index_b, angle, true);
  1141. }
  1142. }
  1143. // b. Invoke H( n1+n3*j+i, n1+n2-5+n3*j-i, j&1 ) for i = 0..1, j = 0..3.
  1144. for (auto i = 0u; i < 2; i++) {
  1145. for (auto j = 0u; j < 4; j++) {
  1146. auto index_a = half_block_size + (eighth_block_size * j) + i;
  1147. auto index_b = half_block_size + quarter_block_size - 5 + (eighth_block_size * j) - i;
  1148. hadamard_rotation_in_place(data, index_a, index_b, (j & 1) != 0);
  1149. }
  1150. }
  1151. }
  1152. // 5. If n is greater than or equal to 4:
  1153. if (log2_of_block_size >= 4) {
  1154. // a. Invoke B( n0-n+2-i-n2*j, n1+n-3+i+n2*j, 24+48*j, 1 ) for i = 0..(n==5), j = 0..1.
  1155. for (auto i = 0u; i <= (log2_of_block_size == 5); i++) {
  1156. for (auto j = 0u; j < 2; j++) {
  1157. auto index_a = block_size - log2_of_block_size + 2 - i - (quarter_block_size * j);
  1158. auto index_b = half_block_size + log2_of_block_size - 3 + i + (quarter_block_size * j);
  1159. butterfly_rotation_in_place(data, index_a, index_b, 24 + (48 * j), true);
  1160. }
  1161. }
  1162. // b. Invoke H( n1+n2*j+i, n1+n2-1+n2*j-i, j&1 ) for i = 0..(2n-7), j = 0..1.
  1163. for (auto i = 0u; i < (2 * log2_of_block_size) - 6u; i++) {
  1164. for (auto j = 0u; j < 2; j++) {
  1165. auto index_a = half_block_size + (quarter_block_size * j) + i;
  1166. auto index_b = half_block_size + quarter_block_size - 1 + (quarter_block_size * j) - i;
  1167. hadamard_rotation_in_place(data, index_a, index_b, (j & 1) != 0);
  1168. }
  1169. }
  1170. }
  1171. // 6. If n is greater than or equal to 3:
  1172. if (log2_of_block_size >= 3) {
  1173. // a. Invoke B( n0-n3-1-i, n1+n3+i, 16, 1 ) for i = 0..(n3-1).
  1174. for (auto i = 0u; i < eighth_block_size; i++) {
  1175. auto index_a = block_size - eighth_block_size - 1 - i;
  1176. auto index_b = half_block_size + eighth_block_size + i;
  1177. butterfly_rotation_in_place(data, index_a, index_b, 16, true);
  1178. }
  1179. }
  1180. // 7. Invoke H( i, n0-1-i, 0 ) for i = 0..(n1-1).
  1181. for (auto i = 0u; i < half_block_size; i++)
  1182. hadamard_rotation_in_place(data, i, block_size - 1 - i, false);
  1183. return {};
  1184. }
  1185. inline void Decoder::inverse_asymmetric_discrete_sine_transform_input_array_permutation(Span<Intermediate> data, u8 log2_of_block_size)
  1186. {
  1187. // The variable n0 is set equal to 1<<n.
  1188. auto block_size = 1u << log2_of_block_size;
  1189. // The variable n1 is set equal to 1<<(n-1).
  1190. // We can iterate by 2 at a time instead of taking half block size.
  1191. // A temporary array named copyT is set equal to T.
  1192. Array<Intermediate, maximum_transform_size> data_copy;
  1193. AK::TypedTransfer<Intermediate>::copy(data_copy.data(), data.data(), block_size);
  1194. // The values at even locations T[ 2 * i ] are set equal to copyT[ n0 - 1 - 2 * i ] for i = 0..(n1-1).
  1195. // The values at odd locations T[ 2 * i + 1 ] are set equal to copyT[ 2 * i ] for i = 0..(n1-1).
  1196. for (auto i = 0u; i < block_size; i += 2) {
  1197. data[i] = data_copy[block_size - 1 - i];
  1198. data[i + 1] = data_copy[i];
  1199. }
  1200. }
  1201. inline void Decoder::inverse_asymmetric_discrete_sine_transform_output_array_permutation(Span<Intermediate> data, u8 log2_of_block_size)
  1202. {
  1203. auto block_size = 1u << log2_of_block_size;
  1204. // A temporary array named copyT is set equal to T.
  1205. Array<Intermediate, maximum_transform_size> data_copy;
  1206. AK::TypedTransfer<Intermediate>::copy(data_copy.data(), data.data(), block_size);
  1207. // The permutation depends on n as follows:
  1208. if (log2_of_block_size == 4) {
  1209. // − If n is equal to 4,
  1210. // T[ 8*a + 4*b + 2*c + d ] is set equal to copyT[ 8*(d^c) + 4*(c^b) + 2*(b^a) + a ] for a = 0..1
  1211. // and b = 0..1 and c = 0..1 and d = 0..1.
  1212. for (auto a = 0u; a < 2; a++)
  1213. for (auto b = 0u; b < 2; b++)
  1214. for (auto c = 0u; c < 2; c++)
  1215. for (auto d = 0u; d < 2; d++)
  1216. data[(8 * a) + (4 * b) + (2 * c) + d] = data_copy[8 * (d ^ c) + 4 * (c ^ b) + 2 * (b ^ a) + a];
  1217. } else {
  1218. VERIFY(log2_of_block_size == 3);
  1219. // − Otherwise (n is equal to 3),
  1220. // T[ 4*a + 2*b + c ] is set equal to copyT[ 4*(c^b) + 2*(b^a) + a ] for a = 0..1 and
  1221. // b = 0..1 and c = 0..1.
  1222. for (auto a = 0u; a < 2; a++)
  1223. for (auto b = 0u; b < 2; b++)
  1224. for (auto c = 0u; c < 2; c++)
  1225. data[4 * a + 2 * b + c] = data_copy[4 * (c ^ b) + 2 * (b ^ a) + a];
  1226. }
  1227. }
  1228. inline void Decoder::inverse_asymmetric_discrete_sine_transform_4(Span<Intermediate> data)
  1229. {
  1230. VERIFY(data.size() == 4);
  1231. const i64 sinpi_1_9 = 5283;
  1232. const i64 sinpi_2_9 = 9929;
  1233. const i64 sinpi_3_9 = 13377;
  1234. const i64 sinpi_4_9 = 15212;
  1235. // Steps are derived from pseudocode in (8.7.1.6):
  1236. // s0 = SINPI_1_9 * T[ 0 ]
  1237. i64 s0 = sinpi_1_9 * data[0];
  1238. // s1 = SINPI_2_9 * T[ 0 ]
  1239. i64 s1 = sinpi_2_9 * data[0];
  1240. // s2 = SINPI_3_9 * T[ 1 ]
  1241. i64 s2 = sinpi_3_9 * data[1];
  1242. // s3 = SINPI_4_9 * T[ 2 ]
  1243. i64 s3 = sinpi_4_9 * data[2];
  1244. // s4 = SINPI_1_9 * T[ 2 ]
  1245. i64 s4 = sinpi_1_9 * data[2];
  1246. // s5 = SINPI_2_9 * T[ 3 ]
  1247. i64 s5 = sinpi_2_9 * data[3];
  1248. // s6 = SINPI_4_9 * T[ 3 ]
  1249. i64 s6 = sinpi_4_9 * data[3];
  1250. // v = T[ 0 ] - T[ 2 ] + T[ 3 ]
  1251. // s7 = SINPI_3_9 * v
  1252. i64 s7 = sinpi_3_9 * (data[0] - data[2] + data[3]);
  1253. // x0 = s0 + s3 + s5
  1254. auto x0 = s0 + s3 + s5;
  1255. // x1 = s1 - s4 - s6
  1256. auto x1 = s1 - s4 - s6;
  1257. // x2 = s7
  1258. auto x2 = s7;
  1259. // x3 = s2
  1260. auto x3 = s2;
  1261. // s0 = x0 + x3
  1262. s0 = x0 + x3;
  1263. // s1 = x1 + x3
  1264. s1 = x1 + x3;
  1265. // s2 = x2
  1266. s2 = x2;
  1267. // s3 = x0 + x1 - x3
  1268. s3 = x0 + x1 - x3;
  1269. // T[ 0 ] = Round2( s0, 14 )
  1270. data[0] = round_2(s0, 14);
  1271. // T[ 1 ] = Round2( s1, 14 )
  1272. data[1] = round_2(s1, 14);
  1273. // T[ 2 ] = Round2( s2, 14 )
  1274. data[2] = round_2(s2, 14);
  1275. // T[ 3 ] = Round2( s3, 14 )
  1276. data[3] = round_2(s3, 14);
  1277. // (8.7.1.1) The inverse asymmetric discrete sine transforms also make use of an intermediate array named S.
  1278. // The values in this array require higher precision to avoid overflow. Using signed integers with 24 +
  1279. // BitDepth bits of precision is enough to avoid overflow.
  1280. const u8 bits = 24 + m_parser->m_bit_depth;
  1281. VERIFY(check_bounds(data[0], bits));
  1282. VERIFY(check_bounds(data[1], bits));
  1283. VERIFY(check_bounds(data[2], bits));
  1284. VERIFY(check_bounds(data[3], bits));
  1285. }
  1286. // The function SB( a, b, angle, 0 ) performs a butterfly rotation.
  1287. // Spec defines the source as array T, and the destination array as S.
  1288. template<typename S, typename D>
  1289. inline void Decoder::butterfly_rotation(Span<S> source, Span<D> destination, size_t index_a, size_t index_b, u8 angle, bool flip)
  1290. {
  1291. // The function SB( a, b, angle, 0 ) performs a butterfly rotation according to the following ordered steps:
  1292. auto cos = cos64(angle);
  1293. auto sin = sin64(angle);
  1294. // Expand to the destination buffer's precision.
  1295. D a = source[index_a];
  1296. D b = source[index_b];
  1297. // 1. S[ a ] is set equal to T[ a ] * cos64( angle ) - T[ b ] * sin64( angle ).
  1298. destination[index_a] = a * cos - b * sin;
  1299. // 2. S[ b ] is set equal to T[ a ] * sin64( angle ) + T[ b ] * cos64( angle ).
  1300. destination[index_b] = a * sin + b * cos;
  1301. // The function SB( a, b, angle, 1 ) performs a butterfly rotation and flip according to the following ordered steps:
  1302. // 1. The function SB( a, b, angle, 0 ) is invoked.
  1303. // 2. The contents of S[ a ] and S[ b ] are exchanged.
  1304. if (flip)
  1305. swap(destination[index_a], destination[index_b]);
  1306. }
  1307. // The function SH( a, b ) performs a Hadamard rotation and rounding.
  1308. // Spec defines the source array as S, and the destination array as T.
  1309. template<typename S, typename D>
  1310. inline void Decoder::hadamard_rotation(Span<S> source, Span<D> destination, size_t index_a, size_t index_b)
  1311. {
  1312. // Keep the source buffer's precision until rounding.
  1313. S a = source[index_a];
  1314. S b = source[index_b];
  1315. // 1. T[ a ] is set equal to Round2( S[ a ] + S[ b ], 14 ).
  1316. destination[index_a] = round_2(a + b, 14);
  1317. // 2. T[ b ] is set equal to Round2( S[ a ] - S[ b ], 14 ).
  1318. destination[index_b] = round_2(a - b, 14);
  1319. }
  1320. inline DecoderErrorOr<void> Decoder::inverse_asymmetric_discrete_sine_transform_8(Span<Intermediate> data)
  1321. {
  1322. VERIFY(data.size() == 8);
  1323. // This process does an in-place transform of the array T using:
  1324. // A higher precision array S for intermediate results.
  1325. Array<i64, 8> high_precision_temp;
  1326. // The following ordered steps apply:
  1327. // 1. Invoke the ADST input array permutation process specified in section 8.7.1.4 with the input variable n set
  1328. // equal to 3.
  1329. inverse_asymmetric_discrete_sine_transform_input_array_permutation(data, 3);
  1330. // 2. Invoke SB( 2*i, 1+2*i, 30-8*i, 1 ) for i = 0..3.
  1331. for (auto i = 0u; i < 4; i++)
  1332. butterfly_rotation(data, high_precision_temp.span(), 2 * i, 1 + (2 * i), 30 - (8 * i), true);
  1333. // (8.7.1.1) NOTE - The values in array S require higher precision to avoid overflow. Using signed integers with
  1334. // 24 + BitDepth bits of precision is enough to avoid overflow.
  1335. const u8 bits = 24 + m_parser->m_bit_depth;
  1336. for (auto i = 0u; i < 8; i++)
  1337. VERIFY(check_bounds(high_precision_temp[i], bits));
  1338. // 3. Invoke SH( i, 4+i ) for i = 0..3.
  1339. for (auto i = 0u; i < 4; i++)
  1340. hadamard_rotation(high_precision_temp.span(), data, i, 4 + i);
  1341. // 4. Invoke SB( 4+3*i, 5+i, 24-16*i, 1 ) for i = 0..1.
  1342. for (auto i = 0u; i < 2; i++)
  1343. butterfly_rotation(data, high_precision_temp.span(), 4 + (3 * i), 5 + i, 24 - (16 * i), true);
  1344. // Check again that we haven't exceeded the integer bounds.
  1345. for (auto i = 0u; i < 8; i++)
  1346. VERIFY(check_bounds(high_precision_temp[i], bits));
  1347. // 5. Invoke SH( 4+i, 6+i ) for i = 0..1.
  1348. for (auto i = 0u; i < 2; i++)
  1349. hadamard_rotation(high_precision_temp.span(), data, 4 + i, 6 + i);
  1350. // 6. Invoke H( i, 2+i, 0 ) for i = 0..1.
  1351. for (auto i = 0u; i < 2; i++)
  1352. hadamard_rotation_in_place(data, i, 2 + i, false);
  1353. // 7. Invoke B( 2+4*i, 3+4*i, 16, 1 ) for i = 0..1.
  1354. for (auto i = 0u; i < 2; i++)
  1355. butterfly_rotation_in_place(data, 2 + (4 * i), 3 + (4 * i), 16, true);
  1356. // 8. Invoke the ADST output array permutation process specified in section 8.7.1.5 with the input variable n
  1357. // set equal to 3.
  1358. inverse_asymmetric_discrete_sine_transform_output_array_permutation(data, 3);
  1359. // 9. Set T[ 1+2*i ] equal to -T[ 1+2*i ] for i = 0..3.
  1360. for (auto i = 0u; i < 4; i++) {
  1361. auto index = 1 + (2 * i);
  1362. data[index] = -data[index];
  1363. }
  1364. return {};
  1365. }
  1366. inline DecoderErrorOr<void> Decoder::inverse_asymmetric_discrete_sine_transform_16(Span<Intermediate> data)
  1367. {
  1368. VERIFY(data.size() == 16);
  1369. // This process does an in-place transform of the array T using:
  1370. // A higher precision array S for intermediate results.
  1371. Array<i64, 16> high_precision_temp;
  1372. // The following ordered steps apply:
  1373. // 1. Invoke the ADST input array permutation process specified in section 8.7.1.4 with the input variable n set
  1374. // equal to 4.
  1375. inverse_asymmetric_discrete_sine_transform_input_array_permutation(data, 4);
  1376. // 2. Invoke SB( 2*i, 1+2*i, 31-4*i, 1 ) for i = 0..7.
  1377. for (auto i = 0u; i < 8; i++)
  1378. butterfly_rotation(data, high_precision_temp.span(), 2 * i, 1 + (2 * i), 31 - (4 * i), true);
  1379. // (8.7.1.1) The inverse asymmetric discrete sine transforms also make use of an intermediate array named S.
  1380. // The values in this array require higher precision to avoid overflow. Using signed integers with 24 +
  1381. // BitDepth bits of precision is enough to avoid overflow.
  1382. const u8 bits = 24 + m_parser->m_bit_depth;
  1383. for (auto i = 0u; i < 16; i++)
  1384. VERIFY(check_bounds(data[i], bits));
  1385. // 3. Invoke SH( i, 8+i ) for i = 0..7.
  1386. for (auto i = 0u; i < 8; i++)
  1387. hadamard_rotation(high_precision_temp.span(), data, i, 8 + i);
  1388. // 4. Invoke SB( 8+2*i, 9+2*i, 28-16*i, 1 ) for i = 0..3.
  1389. for (auto i = 0u; i < 4; i++)
  1390. butterfly_rotation(data, high_precision_temp.span(), 8 + (2 * i), 9 + (2 * i), 128 + 28 - (16 * i), true);
  1391. // Check again that we haven't exceeded the integer bounds.
  1392. for (auto i = 0u; i < 16; i++)
  1393. VERIFY(check_bounds(data[i], bits));
  1394. // 5. Invoke SH( 8+i, 12+i ) for i = 0..3.
  1395. for (auto i = 0u; i < 4; i++)
  1396. hadamard_rotation(high_precision_temp.span(), data, 8 + i, 12 + i);
  1397. // 6. Invoke H( i, 4+i, 0 ) for i = 0..3.
  1398. for (auto i = 0u; i < 4; i++)
  1399. hadamard_rotation_in_place(data, i, 4 + i, false);
  1400. // 7. Invoke SB( 4+8*i+3*j, 5+8*i+j, 24-16*j, 1 ) for i = 0..1, for j = 0..1.
  1401. for (auto i = 0u; i < 2; i++)
  1402. for (auto j = 0u; j < 2; j++)
  1403. butterfly_rotation(data, high_precision_temp.span(), 4 + (8 * i) + (3 * j), 5 + (8 * i) + j, 24 - (16 * j), true);
  1404. // Check again that we haven't exceeded the integer bounds.
  1405. for (auto i = 0u; i < 16; i++)
  1406. VERIFY(check_bounds(data[i], bits));
  1407. // 8. Invoke SH( 4+8*j+i, 6+8*j+i ) for i = 0..1, j = 0..1.
  1408. for (auto i = 0u; i < 2; i++)
  1409. for (auto j = 0u; j < 2; j++)
  1410. hadamard_rotation(high_precision_temp.span(), data, 4 + (8 * j) + i, 6 + (8 * j) + i);
  1411. // 9. Invoke H( 8*j+i, 2+8*j+i, 0 ) for i = 0..1, for j = 0..1.
  1412. for (auto i = 0u; i < 2; i++)
  1413. for (auto j = 0u; j < 2; j++)
  1414. hadamard_rotation_in_place(data, (8 * j) + i, 2 + (8 * j) + i, false);
  1415. // 10. Invoke B( 2+4*j+8*i, 3+4*j+8*i, 48+64*(i^j), 0 ) for i = 0..1, for j = 0..1.
  1416. for (auto i = 0u; i < 2; i++)
  1417. for (auto j = 0u; j < 2; j++)
  1418. butterfly_rotation_in_place(data, 2 + (4 * j) + (8 * i), 3 + (4 * j) + (8 * i), 48 + (64 * (i ^ j)), false);
  1419. // 11. Invoke the ADST output array permutation process specified in section 8.7.1.5 with the input variable n
  1420. // set equal to 4.
  1421. inverse_asymmetric_discrete_sine_transform_output_array_permutation(data, 4);
  1422. // 12. Set T[ 1+12*j+2*i ] equal to -T[ 1+12*j+2*i ] for i = 0..1, for j = 0..1.
  1423. for (auto i = 0u; i < 2; i++) {
  1424. for (auto j = 0u; j < 2; j++) {
  1425. auto index = 1 + (12 * j) + (2 * i);
  1426. data[index] = -data[index];
  1427. }
  1428. }
  1429. return {};
  1430. }
  1431. inline DecoderErrorOr<void> Decoder::inverse_asymmetric_discrete_sine_transform(Span<Intermediate> data, u8 log2_of_block_size)
  1432. {
  1433. // 8.7.1.9 Inverse ADST Process
  1434. // This process performs an in-place inverse ADST process on the array T of size 2^n for 2 ≤ n ≤ 4.
  1435. if (log2_of_block_size < 2 || log2_of_block_size > 4)
  1436. return DecoderError::corrupted("Block size was out of range"sv);
  1437. // The process to invoke depends on n as follows:
  1438. if (log2_of_block_size == 2) {
  1439. // − If n is equal to 2, invoke the Inverse ADST4 process specified in section 8.7.1.6.
  1440. inverse_asymmetric_discrete_sine_transform_4(data);
  1441. return {};
  1442. }
  1443. if (log2_of_block_size == 3) {
  1444. // − Otherwise if n is equal to 3, invoke the Inverse ADST8 process specified in section 8.7.1.7.
  1445. return inverse_asymmetric_discrete_sine_transform_8(data);
  1446. }
  1447. // − Otherwise (n is equal to 4), invoke the Inverse ADST16 process specified in section 8.7.1.8.
  1448. return inverse_asymmetric_discrete_sine_transform_16(data);
  1449. }
  1450. DecoderErrorOr<void> Decoder::inverse_transform_2d(Span<Intermediate> dequantized, u8 log2_of_block_size)
  1451. {
  1452. // This process performs a 2D inverse transform for an array of size 2^n by 2^n stored in the 2D array Dequant.
  1453. // The input to this process is a variable n (log2_of_block_size) that specifies the base 2 logarithm of the width of the transform.
  1454. // 1. Set the variable n0 (block_size) equal to 1 << n.
  1455. auto block_size = 1u << log2_of_block_size;
  1456. Array<Intermediate, maximum_transform_size> row_array;
  1457. Span<Intermediate> row = row_array.span().trim(block_size);
  1458. // 2. The row transforms with i = 0..(n0-1) are applied as follows:
  1459. for (auto i = 0u; i < block_size; i++) {
  1460. // 1. Set T[ j ] equal to Dequant[ i ][ j ] for j = 0..(n0-1).
  1461. for (auto j = 0u; j < block_size; j++)
  1462. row[j] = dequantized[index_from_row_and_column(i, j, block_size)];
  1463. // 2. If Lossless is equal to 1, invoke the Inverse WHT process as specified in section 8.7.1.10 with shift equal
  1464. // to 2.
  1465. if (m_parser->m_lossless) {
  1466. TRY(inverse_walsh_hadamard_transform(row, log2_of_block_size, 2));
  1467. continue;
  1468. }
  1469. switch (m_parser->m_tx_type) {
  1470. case DCT_DCT:
  1471. case ADST_DCT:
  1472. // Otherwise, if TxType is equal to DCT_DCT or TxType is equal to ADST_DCT, apply an inverse DCT as
  1473. // follows:
  1474. // 1. Invoke the inverse DCT permutation process as specified in section 8.7.1.2 with the input variable n.
  1475. TRY(inverse_discrete_cosine_transform_array_permutation(row, log2_of_block_size));
  1476. // 2. Invoke the inverse DCT process as specified in section 8.7.1.3 with the input variable n.
  1477. TRY(inverse_discrete_cosine_transform(row, log2_of_block_size));
  1478. break;
  1479. case DCT_ADST:
  1480. case ADST_ADST:
  1481. // 4. Otherwise (TxType is equal to DCT_ADST or TxType is equal to ADST_ADST), invoke the inverse ADST
  1482. // process as specified in section 8.7.1.9 with input variable n.
  1483. TRY(inverse_asymmetric_discrete_sine_transform(row, log2_of_block_size));
  1484. break;
  1485. default:
  1486. return DecoderError::corrupted("Unknown tx_type"sv);
  1487. }
  1488. // 5. Set Dequant[ i ][ j ] equal to T[ j ] for j = 0..(n0-1).
  1489. for (auto j = 0u; j < block_size; j++)
  1490. dequantized[index_from_row_and_column(i, j, block_size)] = row[j];
  1491. }
  1492. Array<Intermediate, maximum_transform_size> column_array;
  1493. auto column = column_array.span().trim(block_size);
  1494. // 3. The column transforms with j = 0..(n0-1) are applied as follows:
  1495. for (auto j = 0u; j < block_size; j++) {
  1496. // 1. Set T[ i ] equal to Dequant[ i ][ j ] for i = 0..(n0-1).
  1497. for (auto i = 0u; i < block_size; i++)
  1498. column[i] = dequantized[index_from_row_and_column(i, j, block_size)];
  1499. // 2. If Lossless is equal to 1, invoke the Inverse WHT process as specified in section 8.7.1.10 with shift equal
  1500. // to 0.
  1501. if (m_parser->m_lossless) {
  1502. TRY(inverse_walsh_hadamard_transform(column, log2_of_block_size, 2));
  1503. continue;
  1504. }
  1505. switch (m_parser->m_tx_type) {
  1506. case DCT_DCT:
  1507. case DCT_ADST:
  1508. // Otherwise, if TxType is equal to DCT_DCT or TxType is equal to DCT_ADST, apply an inverse DCT as
  1509. // follows:
  1510. // 1. Invoke the inverse DCT permutation process as specified in section 8.7.1.2 with the input variable n.
  1511. TRY(inverse_discrete_cosine_transform_array_permutation(column, log2_of_block_size));
  1512. // 2. Invoke the inverse DCT process as specified in section 8.7.1.3 with the input variable n.
  1513. TRY(inverse_discrete_cosine_transform(column, log2_of_block_size));
  1514. break;
  1515. case ADST_DCT:
  1516. case ADST_ADST:
  1517. // 4. Otherwise (TxType is equal to ADST_DCT or TxType is equal to ADST_ADST), invoke the inverse ADST
  1518. // process as specified in section 8.7.1.9 with input variable n.
  1519. TRY(inverse_asymmetric_discrete_sine_transform(column, log2_of_block_size));
  1520. break;
  1521. default:
  1522. VERIFY_NOT_REACHED();
  1523. }
  1524. // 5. If Lossless is equal to 1, set Dequant[ i ][ j ] equal to T[ i ] for i = 0..(n0-1).
  1525. for (auto i = 0u; i < block_size; i++)
  1526. dequantized[index_from_row_and_column(i, j, block_size)] = column[i];
  1527. // 6. Otherwise (Lossless is equal to 0), set Dequant[ i ][ j ] equal to Round2( T[ i ], Min( 6, n + 2 ) )
  1528. // for i = 0..(n0-1).
  1529. if (!m_parser->m_lossless) {
  1530. for (auto i = 0u; i < block_size; i++) {
  1531. auto index = index_from_row_and_column(i, j, block_size);
  1532. dequantized[index] = round_2(dequantized[index], min(6, log2_of_block_size + 2));
  1533. }
  1534. }
  1535. }
  1536. return {};
  1537. }
  1538. DecoderErrorOr<void> Decoder::update_reference_frames(FrameContext const& frame_context)
  1539. {
  1540. // This process is invoked as the final step in decoding a frame.
  1541. // The inputs to this process are the samples in the current frame CurrFrame[ plane ][ x ][ y ].
  1542. // The output from this process is an updated set of reference frames and previous motion vectors.
  1543. // The following ordered steps apply:
  1544. // 1. For each value of i from 0 to NUM_REF_FRAMES - 1, the following applies if bit i of refresh_frame_flags
  1545. // is equal to 1 (i.e. if (refresh_frame_flags>>i)&1 is equal to 1):
  1546. auto refresh_flags = m_parser->m_refresh_frame_flags;
  1547. for (auto i = 0; i < NUM_REF_FRAMES; i++) {
  1548. if ((refresh_flags & 1) != 0) {
  1549. // − RefFrameWidth[ i ] is set equal to FrameWidth.
  1550. // − RefFrameHeight[ i ] is set equal to FrameHeight.
  1551. m_parser->m_ref_frame_size[i] = frame_context.size();
  1552. // − RefSubsamplingX[ i ] is set equal to subsampling_x.
  1553. m_parser->m_ref_subsampling_x[i] = m_parser->m_subsampling_x;
  1554. // − RefSubsamplingY[ i ] is set equal to subsampling_y.
  1555. m_parser->m_ref_subsampling_y[i] = m_parser->m_subsampling_y;
  1556. // − RefBitDepth[ i ] is set equal to BitDepth.
  1557. m_parser->m_ref_bit_depth[i] = m_parser->m_bit_depth;
  1558. // − FrameStore[ i ][ 0 ][ y ][ x ] is set equal to CurrFrame[ 0 ][ y ][ x ] for x = 0..FrameWidth-1, for y =
  1559. // 0..FrameHeight-1.
  1560. // − FrameStore[ i ][ plane ][ y ][ x ] is set equal to CurrFrame[ plane ][ y ][ x ] for plane = 1..2, for x =
  1561. // 0..((FrameWidth+subsampling_x) >> subsampling_x)-1, for y = 0..((FrameHeight+subsampling_y) >>
  1562. // subsampling_y)-1.
  1563. // FIXME: Frame width is not equal to the buffer's stride. If we store the stride of the buffer with the reference
  1564. // frame, we can just copy the framebuffer data instead. Alternatively, we should crop the output framebuffer.
  1565. for (auto plane = 0u; plane < 3; plane++) {
  1566. auto width = frame_context.size().width();
  1567. auto height = frame_context.size().height();
  1568. auto stride = frame_context.columns() * 8;
  1569. if (plane > 0) {
  1570. width = (width + m_parser->m_subsampling_x) >> m_parser->m_subsampling_x;
  1571. height = (height + m_parser->m_subsampling_y) >> m_parser->m_subsampling_y;
  1572. stride >>= m_parser->m_subsampling_x;
  1573. }
  1574. auto original_buffer = get_output_buffer(plane);
  1575. auto& frame_store_buffer = m_parser->m_frame_store[i][plane];
  1576. frame_store_buffer.resize_and_keep_capacity(width * height);
  1577. for (auto x = 0u; x < width; x++) {
  1578. for (auto y = 0u; y < height; y++) {
  1579. auto sample = original_buffer[index_from_row_and_column(y, x, stride)];
  1580. frame_store_buffer[index_from_row_and_column(y, x, width)] = sample;
  1581. }
  1582. }
  1583. }
  1584. }
  1585. refresh_flags >>= 1;
  1586. }
  1587. // 2. If show_existing_frame is equal to 0, the following applies:
  1588. if (!frame_context.shows_existing_frame()) {
  1589. DECODER_TRY_ALLOC(m_parser->m_previous_block_contexts.try_resize_to_match_other_vector2d(frame_context.block_contexts()));
  1590. // − PrevRefFrames[ row ][ col ][ list ] is set equal to RefFrames[ row ][ col ][ list ] for row = 0..MiRows-1,
  1591. // for col = 0..MiCols-1, for list = 0..1.
  1592. // − PrevMvs[ row ][ col ][ list ][ comp ] is set equal to Mvs[ row ][ col ][ list ][ comp ] for row = 0..MiRows-1,
  1593. // for col = 0..MiCols-1, for list = 0..1, for comp = 0..1.
  1594. // And from decode_frame():
  1595. // - If all of the following conditions are true, PrevSegmentIds[ row ][ col ] is set equal to
  1596. // SegmentIds[ row ][ col ] for row = 0..MiRows-1, for col = 0..MiCols-1:
  1597. // − show_existing_frame is equal to 0,
  1598. // − segmentation_enabled is equal to 1,
  1599. // − segmentation_update_map is equal to 1.
  1600. bool keep_segment_ids = !frame_context.shows_existing_frame() && m_parser->m_segmentation_enabled && m_parser->m_segmentation_update_map;
  1601. frame_context.block_contexts().copy_to(m_parser->m_previous_block_contexts, [keep_segment_ids](FrameBlockContext context) {
  1602. auto persistent_context = PersistentBlockContext(context);
  1603. if (!keep_segment_ids)
  1604. persistent_context.segment_id = 0;
  1605. return persistent_context;
  1606. });
  1607. }
  1608. return {};
  1609. }
  1610. }