init.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Types.h>
  7. #include <Kernel/Arch/InterruptManagement.h>
  8. #include <Kernel/Arch/Processor.h>
  9. #include <Kernel/Boot/BootInfo.h>
  10. #include <Kernel/Boot/CommandLine.h>
  11. #include <Kernel/Boot/Multiboot.h>
  12. #include <Kernel/Bus/PCI/Access.h>
  13. #include <Kernel/Bus/PCI/Initializer.h>
  14. #include <Kernel/Bus/USB/USBManagement.h>
  15. #include <Kernel/Bus/VirtIO/Device.h>
  16. #include <Kernel/Devices/Audio/Management.h>
  17. #include <Kernel/Devices/DeviceManagement.h>
  18. #include <Kernel/Devices/GPU/Console/BootFramebufferConsole.h>
  19. #include <Kernel/Devices/GPU/Console/VGATextModeConsole.h>
  20. #include <Kernel/Devices/GPU/Management.h>
  21. #include <Kernel/Devices/Generic/DeviceControlDevice.h>
  22. #include <Kernel/Devices/Generic/FullDevice.h>
  23. #include <Kernel/Devices/Generic/MemoryDevice.h>
  24. #include <Kernel/Devices/Generic/NullDevice.h>
  25. #include <Kernel/Devices/Generic/RandomDevice.h>
  26. #include <Kernel/Devices/Generic/SelfTTYDevice.h>
  27. #include <Kernel/Devices/Generic/ZeroDevice.h>
  28. #include <Kernel/Devices/HID/Management.h>
  29. #include <Kernel/Devices/KCOVDevice.h>
  30. #include <Kernel/Devices/PCISerialDevice.h>
  31. #include <Kernel/Devices/SerialDevice.h>
  32. #include <Kernel/Devices/Storage/StorageManagement.h>
  33. #include <Kernel/FileSystem/SysFS/Registry.h>
  34. #include <Kernel/FileSystem/SysFS/Subsystems/Firmware/Directory.h>
  35. #include <Kernel/FileSystem/VirtualFileSystem.h>
  36. #include <Kernel/Firmware/ACPI/Initialize.h>
  37. #include <Kernel/Firmware/ACPI/Parser.h>
  38. #include <Kernel/Heap/kmalloc.h>
  39. #include <Kernel/KSyms.h>
  40. #include <Kernel/Library/Panic.h>
  41. #include <Kernel/Memory/MemoryManager.h>
  42. #include <Kernel/Net/NetworkTask.h>
  43. #include <Kernel/Net/NetworkingManagement.h>
  44. #include <Kernel/Prekernel/Prekernel.h>
  45. #include <Kernel/Sections.h>
  46. #include <Kernel/Security/Random.h>
  47. #include <Kernel/TTY/ConsoleManagement.h>
  48. #include <Kernel/TTY/PTYMultiplexer.h>
  49. #include <Kernel/TTY/VirtualConsole.h>
  50. #include <Kernel/Tasks/FinalizerTask.h>
  51. #include <Kernel/Tasks/Process.h>
  52. #include <Kernel/Tasks/Scheduler.h>
  53. #include <Kernel/Tasks/SyncTask.h>
  54. #include <Kernel/Tasks/WorkQueue.h>
  55. #include <Kernel/Time/TimeManagement.h>
  56. #include <Kernel/kstdio.h>
  57. #if ARCH(X86_64)
  58. # include <Kernel/Arch/x86_64/Hypervisor/VMWareBackdoor.h>
  59. # include <Kernel/Arch/x86_64/Interrupts/APIC.h>
  60. # include <Kernel/Arch/x86_64/Interrupts/PIC.h>
  61. #elif ARCH(AARCH64)
  62. # include <Kernel/Arch/aarch64/RPi/Framebuffer.h>
  63. # include <Kernel/Arch/aarch64/RPi/Mailbox.h>
  64. # include <Kernel/Arch/aarch64/RPi/MiniUART.h>
  65. #endif
  66. // Defined in the linker script
  67. typedef void (*ctor_func_t)();
  68. extern ctor_func_t start_heap_ctors[];
  69. extern ctor_func_t end_heap_ctors[];
  70. extern ctor_func_t start_ctors[];
  71. extern ctor_func_t end_ctors[];
  72. extern uintptr_t __stack_chk_guard;
  73. READONLY_AFTER_INIT uintptr_t __stack_chk_guard __attribute__((used));
  74. #if ARCH(X86_64)
  75. extern "C" u8 start_of_safemem_text[];
  76. extern "C" u8 end_of_safemem_text[];
  77. extern "C" u8 start_of_safemem_atomic_text[];
  78. extern "C" u8 end_of_safemem_atomic_text[];
  79. #endif
  80. extern "C" u8 end_of_kernel_image[];
  81. multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
  82. size_t multiboot_copy_boot_modules_count;
  83. READONLY_AFTER_INIT bool g_in_early_boot;
  84. namespace Kernel {
  85. [[noreturn]] static void init_stage2(void*);
  86. static void setup_serial_debug();
  87. // boot.S expects these functions to exactly have the following signatures.
  88. // We declare them here to ensure their signatures don't accidentally change.
  89. extern "C" void init_finished(u32 cpu) __attribute__((used));
  90. extern "C" [[noreturn]] void init_ap(FlatPtr cpu, Processor* processor_info);
  91. extern "C" [[noreturn]] void init(BootInfo const&);
  92. READONLY_AFTER_INIT VirtualConsole* tty0;
  93. ProcessID g_init_pid { 0 };
  94. ALWAYS_INLINE static Processor& bsp_processor()
  95. {
  96. // This solves a problem where the bsp Processor instance
  97. // gets "re"-initialized in init() when we run all global constructors.
  98. alignas(Processor) static u8 bsp_processor_storage[sizeof(Processor)];
  99. return (Processor&)bsp_processor_storage;
  100. }
  101. // SerenityOS Kernel C++ entry point :^)
  102. //
  103. // This is where C++ execution begins, after boot.S transfers control here.
  104. //
  105. // The purpose of init() is to start multi-tasking. It does the bare minimum
  106. // amount of work needed to start the scheduler.
  107. //
  108. // Once multi-tasking is ready, we spawn a new thread that starts in the
  109. // init_stage2() function. Initialization continues there.
  110. extern "C" {
  111. READONLY_AFTER_INIT PhysicalAddress start_of_prekernel_image;
  112. READONLY_AFTER_INIT PhysicalAddress end_of_prekernel_image;
  113. READONLY_AFTER_INIT size_t physical_to_virtual_offset;
  114. READONLY_AFTER_INIT FlatPtr kernel_mapping_base;
  115. READONLY_AFTER_INIT FlatPtr kernel_load_base;
  116. READONLY_AFTER_INIT PhysicalAddress boot_pml4t;
  117. READONLY_AFTER_INIT PhysicalAddress boot_pdpt;
  118. READONLY_AFTER_INIT PhysicalAddress boot_pd0;
  119. READONLY_AFTER_INIT PhysicalAddress boot_pd_kernel;
  120. READONLY_AFTER_INIT Memory::PageTableEntry* boot_pd_kernel_pt1023;
  121. READONLY_AFTER_INIT StringView kernel_cmdline;
  122. READONLY_AFTER_INIT u32 multiboot_flags;
  123. READONLY_AFTER_INIT multiboot_memory_map_t* multiboot_memory_map;
  124. READONLY_AFTER_INIT size_t multiboot_memory_map_count;
  125. READONLY_AFTER_INIT multiboot_module_entry_t* multiboot_modules;
  126. READONLY_AFTER_INIT size_t multiboot_modules_count;
  127. READONLY_AFTER_INIT PhysicalAddress multiboot_framebuffer_addr;
  128. READONLY_AFTER_INIT u32 multiboot_framebuffer_pitch;
  129. READONLY_AFTER_INIT u32 multiboot_framebuffer_width;
  130. READONLY_AFTER_INIT u32 multiboot_framebuffer_height;
  131. READONLY_AFTER_INIT u8 multiboot_framebuffer_bpp;
  132. READONLY_AFTER_INIT u8 multiboot_framebuffer_type;
  133. }
  134. Atomic<Graphics::Console*> g_boot_console;
  135. #if ARCH(AARCH64)
  136. READONLY_AFTER_INIT static u8 s_command_line_buffer[512];
  137. #endif
  138. extern "C" [[noreturn]] UNMAP_AFTER_INIT void init([[maybe_unused]] BootInfo const& boot_info)
  139. {
  140. g_in_early_boot = true;
  141. #if ARCH(X86_64)
  142. start_of_prekernel_image = PhysicalAddress { boot_info.start_of_prekernel_image };
  143. end_of_prekernel_image = PhysicalAddress { boot_info.end_of_prekernel_image };
  144. physical_to_virtual_offset = boot_info.physical_to_virtual_offset;
  145. kernel_mapping_base = boot_info.kernel_mapping_base;
  146. kernel_load_base = boot_info.kernel_load_base;
  147. gdt64ptr = boot_info.gdt64ptr;
  148. code64_sel = boot_info.code64_sel;
  149. boot_pml4t = PhysicalAddress { boot_info.boot_pml4t };
  150. boot_pdpt = PhysicalAddress { boot_info.boot_pdpt };
  151. boot_pd0 = PhysicalAddress { boot_info.boot_pd0 };
  152. boot_pd_kernel = PhysicalAddress { boot_info.boot_pd_kernel };
  153. boot_pd_kernel_pt1023 = (Memory::PageTableEntry*)boot_info.boot_pd_kernel_pt1023;
  154. char const* cmdline = (char const*)boot_info.kernel_cmdline;
  155. kernel_cmdline = StringView { cmdline, strlen(cmdline) };
  156. multiboot_flags = boot_info.multiboot_flags;
  157. multiboot_memory_map = (multiboot_memory_map_t*)boot_info.multiboot_memory_map;
  158. multiboot_memory_map_count = boot_info.multiboot_memory_map_count;
  159. multiboot_modules = (multiboot_module_entry_t*)boot_info.multiboot_modules;
  160. multiboot_modules_count = boot_info.multiboot_modules_count;
  161. multiboot_framebuffer_addr = PhysicalAddress { boot_info.multiboot_framebuffer_addr };
  162. multiboot_framebuffer_pitch = boot_info.multiboot_framebuffer_pitch;
  163. multiboot_framebuffer_width = boot_info.multiboot_framebuffer_width;
  164. multiboot_framebuffer_height = boot_info.multiboot_framebuffer_height;
  165. multiboot_framebuffer_bpp = boot_info.multiboot_framebuffer_bpp;
  166. multiboot_framebuffer_type = boot_info.multiboot_framebuffer_type;
  167. #elif ARCH(AARCH64)
  168. // FIXME: For the aarch64 platforms, we should get the information by parsing a device tree instead of using multiboot.
  169. auto [ram_base, ram_size] = RPi::Mailbox::the().query_lower_arm_memory_range();
  170. auto [vcmem_base, vcmem_size] = RPi::Mailbox::the().query_videocore_memory_range();
  171. multiboot_memory_map_t mmap[] = {
  172. {
  173. sizeof(struct multiboot_mmap_entry) - sizeof(u32),
  174. (u64)ram_base,
  175. (u64)ram_size,
  176. MULTIBOOT_MEMORY_AVAILABLE,
  177. },
  178. {
  179. sizeof(struct multiboot_mmap_entry) - sizeof(u32),
  180. (u64)vcmem_base,
  181. (u64)vcmem_size,
  182. MULTIBOOT_MEMORY_RESERVED,
  183. },
  184. // FIXME: VideoCore only reports the first 1GB of RAM, the rest only shows up in the device tree.
  185. };
  186. multiboot_memory_map = mmap;
  187. multiboot_memory_map_count = 2;
  188. multiboot_modules = nullptr;
  189. multiboot_modules_count = 0;
  190. // FIXME: Read the /chosen/bootargs property.
  191. kernel_cmdline = RPi::Mailbox::the().query_kernel_command_line(s_command_line_buffer);
  192. #endif
  193. setup_serial_debug();
  194. // We need to copy the command line before kmalloc is initialized,
  195. // as it may overwrite parts of multiboot!
  196. CommandLine::early_initialize(kernel_cmdline);
  197. if (multiboot_modules_count > 0) {
  198. VERIFY(multiboot_modules);
  199. memcpy(multiboot_copy_boot_modules_array, multiboot_modules, multiboot_modules_count * sizeof(multiboot_module_entry_t));
  200. }
  201. multiboot_copy_boot_modules_count = multiboot_modules_count;
  202. new (&bsp_processor()) Processor();
  203. bsp_processor().early_initialize(0);
  204. // Invoke the constructors needed for the kernel heap
  205. for (ctor_func_t* ctor = start_heap_ctors; ctor < end_heap_ctors; ctor++)
  206. (*ctor)();
  207. kmalloc_init();
  208. load_kernel_symbol_table();
  209. bsp_processor().initialize(0);
  210. CommandLine::initialize();
  211. Memory::MemoryManager::initialize(0);
  212. #if ARCH(AARCH64)
  213. auto firmware_version = RPi::Mailbox::the().query_firmware_version();
  214. dmesgln("RPi: Firmware version: {}", firmware_version);
  215. RPi::Framebuffer::initialize();
  216. #endif
  217. // NOTE: If the bootloader provided a framebuffer, then set up an initial console.
  218. // If the bootloader didn't provide a framebuffer, then set up an initial text console.
  219. // We do so we can see the output on the screen as soon as possible.
  220. if (!kernel_command_line().is_early_boot_console_disabled()) {
  221. if (!multiboot_framebuffer_addr.is_null() && multiboot_framebuffer_type == MULTIBOOT_FRAMEBUFFER_TYPE_RGB) {
  222. g_boot_console = &try_make_lock_ref_counted<Graphics::BootFramebufferConsole>(multiboot_framebuffer_addr, multiboot_framebuffer_width, multiboot_framebuffer_height, multiboot_framebuffer_pitch).value().leak_ref();
  223. } else {
  224. g_boot_console = &Graphics::VGATextModeConsole::initialize().leak_ref();
  225. }
  226. }
  227. dmesgln("Starting SerenityOS...");
  228. DeviceManagement::initialize();
  229. SysFSComponentRegistry::initialize();
  230. DeviceManagement::the().attach_null_device(*NullDevice::must_initialize());
  231. DeviceManagement::the().attach_console_device(*ConsoleDevice::must_create());
  232. DeviceManagement::the().attach_device_control_device(*DeviceControlDevice::must_create());
  233. MM.unmap_prekernel();
  234. #if ARCH(X86_64)
  235. // Ensure that the safemem sections are not empty. This could happen if the linker accidentally discards the sections.
  236. VERIFY(+start_of_safemem_text != +end_of_safemem_text);
  237. VERIFY(+start_of_safemem_atomic_text != +end_of_safemem_atomic_text);
  238. #endif
  239. // Invoke all static global constructors in the kernel.
  240. // Note that we want to do this as early as possible.
  241. for (ctor_func_t* ctor = start_ctors; ctor < end_ctors; ctor++)
  242. (*ctor)();
  243. InterruptManagement::initialize();
  244. ACPI::initialize();
  245. // Initialize TimeManagement before using randomness!
  246. TimeManagement::initialize(0);
  247. __stack_chk_guard = get_fast_random<uintptr_t>();
  248. Process::initialize();
  249. Scheduler::initialize();
  250. #if ARCH(X86_64)
  251. // FIXME: Add an abstraction for the smp related functions, instead of using ifdefs in this file.
  252. if (APIC::initialized() && APIC::the().enabled_processor_count() > 1) {
  253. // We must set up the AP boot environment before switching to a kernel process,
  254. // as pages below address USER_RANGE_BASE are only accessible through the kernel
  255. // page directory.
  256. APIC::the().setup_ap_boot_environment();
  257. }
  258. #endif
  259. MUST(Process::create_kernel_process(KString::must_create("init_stage2"sv), init_stage2, nullptr, THREAD_AFFINITY_DEFAULT, Process::RegisterProcess::No));
  260. Scheduler::start();
  261. VERIFY_NOT_REACHED();
  262. }
  263. #if ARCH(X86_64)
  264. //
  265. // This is where C++ execution begins for APs, after boot.S transfers control here.
  266. //
  267. // The purpose of init_ap() is to initialize APs for multi-tasking.
  268. //
  269. extern "C" [[noreturn]] UNMAP_AFTER_INIT void init_ap(FlatPtr cpu, Processor* processor_info)
  270. {
  271. processor_info->early_initialize(cpu);
  272. processor_info->initialize(cpu);
  273. Memory::MemoryManager::initialize(cpu);
  274. Scheduler::set_idle_thread(APIC::the().get_idle_thread(cpu));
  275. Scheduler::start();
  276. VERIFY_NOT_REACHED();
  277. }
  278. //
  279. // This method is called once a CPU enters the scheduler and its idle thread
  280. // At this point the initial boot stack can be freed
  281. //
  282. extern "C" UNMAP_AFTER_INIT void init_finished(u32 cpu)
  283. {
  284. if (cpu == 0) {
  285. // TODO: we can reuse the boot stack, maybe for kmalloc()?
  286. } else {
  287. APIC::the().init_finished(cpu);
  288. TimeManagement::initialize(cpu);
  289. }
  290. }
  291. #endif
  292. void init_stage2(void*)
  293. {
  294. // This is a little bit of a hack. We can't register our process at the time we're
  295. // creating it, but we need to be registered otherwise finalization won't be happy.
  296. // The colonel process gets away without having to do this because it never exits.
  297. Process::register_new(Process::current());
  298. WorkQueue::initialize();
  299. #if ARCH(X86_64)
  300. if (kernel_command_line().is_smp_enabled() && APIC::initialized() && APIC::the().enabled_processor_count() > 1) {
  301. // We can't start the APs until we have a scheduler up and running.
  302. // We need to be able to process ICI messages, otherwise another
  303. // core may send too many and end up deadlocking once the pool is
  304. // exhausted
  305. APIC::the().boot_aps();
  306. }
  307. #endif
  308. // Initialize the PCI Bus as early as possible, for early boot (PCI based) serial logging
  309. PCI::initialize();
  310. if (!PCI::Access::is_disabled()) {
  311. PCISerialDevice::detect();
  312. }
  313. VirtualFileSystem::initialize();
  314. #if ARCH(X86_64)
  315. if (!is_serial_debug_enabled())
  316. (void)SerialDevice::must_create(0).leak_ref();
  317. (void)SerialDevice::must_create(1).leak_ref();
  318. (void)SerialDevice::must_create(2).leak_ref();
  319. (void)SerialDevice::must_create(3).leak_ref();
  320. #elif ARCH(AARCH64)
  321. (void)MUST(RPi::MiniUART::create()).leak_ref();
  322. #endif
  323. #if ARCH(X86_64)
  324. VMWareBackdoor::the(); // don't wait until first mouse packet
  325. #endif
  326. MUST(HIDManagement::initialize());
  327. GraphicsManagement::the().initialize();
  328. ConsoleManagement::the().initialize();
  329. SyncTask::spawn();
  330. FinalizerTask::spawn();
  331. auto boot_profiling = kernel_command_line().is_boot_profiling_enabled();
  332. if (!PCI::Access::is_disabled()) {
  333. USB::USBManagement::initialize();
  334. }
  335. SysFSFirmwareDirectory::initialize();
  336. if (!PCI::Access::is_disabled()) {
  337. VirtIO::detect();
  338. }
  339. NetworkingManagement::the().initialize();
  340. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  341. (void)KCOVDevice::must_create().leak_ref();
  342. #endif
  343. (void)MemoryDevice::must_create().leak_ref();
  344. (void)ZeroDevice::must_create().leak_ref();
  345. (void)FullDevice::must_create().leak_ref();
  346. (void)RandomDevice::must_create().leak_ref();
  347. (void)SelfTTYDevice::must_create().leak_ref();
  348. PTYMultiplexer::initialize();
  349. AudioManagement::the().initialize();
  350. StorageManagement::the().initialize(kernel_command_line().root_device(), kernel_command_line().is_force_pio(), kernel_command_line().is_nvme_polling_enabled());
  351. if (VirtualFileSystem::the().mount_root(StorageManagement::the().root_filesystem()).is_error()) {
  352. PANIC("VirtualFileSystem::mount_root failed");
  353. }
  354. // Switch out of early boot mode.
  355. g_in_early_boot = false;
  356. // NOTE: Everything marked READONLY_AFTER_INIT becomes non-writable after this point.
  357. MM.protect_readonly_after_init_memory();
  358. // NOTE: Everything in the .ksyms section becomes read-only after this point.
  359. MM.protect_ksyms_after_init();
  360. // NOTE: Everything marked UNMAP_AFTER_INIT becomes inaccessible after this point.
  361. MM.unmap_text_after_init();
  362. auto userspace_init = kernel_command_line().userspace_init();
  363. auto init_args = kernel_command_line().userspace_init_args();
  364. auto init_or_error = Process::create_user_process(userspace_init, UserID(0), GroupID(0), move(init_args), {}, tty0);
  365. if (init_or_error.is_error())
  366. PANIC("init_stage2: Error spawning init process: {}", init_or_error.error());
  367. auto [init_process, init_thread] = init_or_error.release_value();
  368. g_init_pid = init_process->pid();
  369. init_thread->set_priority(THREAD_PRIORITY_HIGH);
  370. NetworkTask::spawn();
  371. // NOTE: All kernel processes must be created before enabling boot profiling.
  372. // This is so profiling_enable() can emit process created performance events for them.
  373. if (boot_profiling) {
  374. dbgln("Starting full system boot profiling");
  375. MutexLocker mutex_locker(Process::current().big_lock());
  376. auto const enable_all = ~(u64)0;
  377. auto result = Process::current().profiling_enable(-1, enable_all);
  378. VERIFY(!result.is_error());
  379. }
  380. Process::current().sys$exit(0);
  381. VERIFY_NOT_REACHED();
  382. }
  383. UNMAP_AFTER_INIT void setup_serial_debug()
  384. {
  385. // serial_debug will output all the dbgln() data to COM1 at
  386. // 8-N-1 57600 baud. this is particularly useful for debugging the boot
  387. // process on live hardware.
  388. if (kernel_cmdline.contains("serial_debug"sv)) {
  389. set_serial_debug_enabled(true);
  390. }
  391. }
  392. // Define some Itanium C++ ABI methods to stop the linker from complaining.
  393. // If we actually call these something has gone horribly wrong
  394. void* __dso_handle __attribute__((visibility("hidden")));
  395. }