malloc.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright notice, this
  9. * list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright notice,
  12. * this list of conditions and the following disclaimer in the documentation
  13. * and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  18. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  21. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  22. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  23. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include <AK/Bitmap.h>
  27. #include <AK/InlineLinkedList.h>
  28. #include <AK/ScopedValueRollback.h>
  29. #include <AK/Vector.h>
  30. #include <LibThread/Lock.h>
  31. #include <assert.h>
  32. #include <mallocdefs.h>
  33. #include <serenity.h>
  34. #include <stdio.h>
  35. #include <stdlib.h>
  36. #include <string.h>
  37. #include <sys/mman.h>
  38. // FIXME: Thread safety.
  39. //#define MALLOC_DEBUG
  40. #define RECYCLE_BIG_ALLOCATIONS
  41. #define MAGIC_PAGE_HEADER 0x42657274
  42. #define MAGIC_BIGALLOC_HEADER 0x42697267
  43. #define PAGE_ROUND_UP(x) ((((size_t)(x)) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1)))
  44. static LibThread::Lock& malloc_lock()
  45. {
  46. static u32 lock_storage[sizeof(LibThread::Lock) / sizeof(u32)];
  47. return *reinterpret_cast<LibThread::Lock*>(&lock_storage);
  48. }
  49. constexpr int number_of_chunked_blocks_to_keep_around_per_size_class = 4;
  50. constexpr int number_of_big_blocks_to_keep_around_per_size_class = 8;
  51. static bool s_log_malloc = false;
  52. static bool s_scrub_malloc = true;
  53. static bool s_scrub_free = true;
  54. static bool s_profiling = false;
  55. static unsigned short size_classes[] = { 8, 16, 32, 64, 128, 252, 508, 1016, 2036, 4090, 8188, 16376, 32756, 0 };
  56. static constexpr size_t num_size_classes = sizeof(size_classes) / sizeof(unsigned short);
  57. constexpr size_t block_size = 64 * KB;
  58. constexpr size_t block_mask = ~(block_size - 1);
  59. struct CommonHeader {
  60. size_t m_magic;
  61. size_t m_size;
  62. };
  63. struct BigAllocationBlock : public CommonHeader {
  64. BigAllocationBlock(size_t size)
  65. {
  66. m_magic = MAGIC_BIGALLOC_HEADER;
  67. m_size = size;
  68. }
  69. unsigned char* m_slot[0];
  70. };
  71. struct FreelistEntry {
  72. FreelistEntry* next;
  73. };
  74. struct ChunkedBlock
  75. : public CommonHeader
  76. , public InlineLinkedListNode<ChunkedBlock> {
  77. ChunkedBlock(size_t bytes_per_chunk)
  78. {
  79. m_magic = MAGIC_PAGE_HEADER;
  80. m_size = bytes_per_chunk;
  81. m_free_chunks = chunk_capacity();
  82. m_freelist = (FreelistEntry*)chunk(0);
  83. for (size_t i = 0; i < chunk_capacity(); ++i) {
  84. auto* entry = (FreelistEntry*)chunk(i);
  85. if (i != chunk_capacity() - 1)
  86. entry->next = (FreelistEntry*)chunk(i + 1);
  87. else
  88. entry->next = nullptr;
  89. }
  90. }
  91. ChunkedBlock* m_prev { nullptr };
  92. ChunkedBlock* m_next { nullptr };
  93. FreelistEntry* m_freelist { nullptr };
  94. unsigned short m_free_chunks { 0 };
  95. unsigned char m_slot[0];
  96. void* chunk(int index)
  97. {
  98. return &m_slot[index * m_size];
  99. }
  100. bool is_full() const { return m_free_chunks == 0; }
  101. size_t bytes_per_chunk() const { return m_size; }
  102. size_t free_chunks() const { return m_free_chunks; }
  103. size_t used_chunks() const { return chunk_capacity() - m_free_chunks; }
  104. size_t chunk_capacity() const { return (block_size - sizeof(ChunkedBlock)) / m_size; }
  105. };
  106. struct Allocator {
  107. size_t size { 0 };
  108. size_t block_count { 0 };
  109. size_t empty_block_count { 0 };
  110. ChunkedBlock* empty_blocks[number_of_chunked_blocks_to_keep_around_per_size_class] { nullptr };
  111. InlineLinkedList<ChunkedBlock> usable_blocks;
  112. InlineLinkedList<ChunkedBlock> full_blocks;
  113. };
  114. struct BigAllocator {
  115. Vector<BigAllocationBlock*, number_of_big_blocks_to_keep_around_per_size_class> blocks;
  116. };
  117. // Allocators will be initialized in __malloc_init.
  118. // We can not rely on global constructors to initialize them,
  119. // because they must be initialized before other global constructors
  120. // are run. Similarly, we can not allow global destructors to destruct
  121. // them. We could have used AK::NeverDestoyed to prevent the latter,
  122. // but it would have not helped with the former.
  123. static u8 g_allocators_storage[sizeof(Allocator) * num_size_classes];
  124. static u8 g_big_allocators_storage[sizeof(BigAllocator)];
  125. static inline Allocator (&allocators())[num_size_classes]
  126. {
  127. return reinterpret_cast<Allocator(&)[num_size_classes]>(g_allocators_storage);
  128. }
  129. static inline BigAllocator (&big_allocators())[1]
  130. {
  131. return reinterpret_cast<BigAllocator(&)[1]>(g_big_allocators_storage);
  132. }
  133. static Allocator* allocator_for_size(size_t size, size_t& good_size)
  134. {
  135. for (int i = 0; size_classes[i]; ++i) {
  136. if (size <= size_classes[i]) {
  137. good_size = size_classes[i];
  138. return &allocators()[i];
  139. }
  140. }
  141. good_size = PAGE_ROUND_UP(size);
  142. return nullptr;
  143. }
  144. static BigAllocator* big_allocator_for_size(size_t size)
  145. {
  146. if (size == 65536)
  147. return &big_allocators()[0];
  148. return nullptr;
  149. }
  150. extern "C" {
  151. size_t malloc_good_size(size_t size)
  152. {
  153. for (int i = 0; size_classes[i]; ++i) {
  154. if (size < size_classes[i])
  155. return size_classes[i];
  156. }
  157. return PAGE_ROUND_UP(size);
  158. }
  159. static void* os_alloc(size_t size, const char* name)
  160. {
  161. auto* ptr = serenity_mmap(nullptr, size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE | MAP_PURGEABLE, 0, 0, block_size, name);
  162. ASSERT(ptr != MAP_FAILED);
  163. return ptr;
  164. }
  165. static void os_free(void* ptr, size_t size)
  166. {
  167. int rc = munmap(ptr, size);
  168. assert(rc == 0);
  169. }
  170. static void* malloc_impl(size_t size)
  171. {
  172. LOCKER(malloc_lock());
  173. if (s_log_malloc)
  174. dbgprintf("LibC: malloc(%zu)\n", size);
  175. if (!size)
  176. return nullptr;
  177. size_t good_size;
  178. auto* allocator = allocator_for_size(size, good_size);
  179. if (!allocator) {
  180. size_t real_size = round_up_to_power_of_two(sizeof(BigAllocationBlock) + size, block_size);
  181. #ifdef RECYCLE_BIG_ALLOCATIONS
  182. if (auto* allocator = big_allocator_for_size(real_size)) {
  183. if (!allocator->blocks.is_empty()) {
  184. auto* block = allocator->blocks.take_last();
  185. int rc = madvise(block, real_size, MADV_SET_NONVOLATILE);
  186. bool this_block_was_purged = rc == 1;
  187. if (rc < 0) {
  188. perror("madvise");
  189. ASSERT_NOT_REACHED();
  190. }
  191. if (mprotect(block, real_size, PROT_READ | PROT_WRITE) < 0) {
  192. perror("mprotect");
  193. ASSERT_NOT_REACHED();
  194. }
  195. if (this_block_was_purged)
  196. new (block) BigAllocationBlock(real_size);
  197. return &block->m_slot[0];
  198. }
  199. }
  200. #endif
  201. auto* block = (BigAllocationBlock*)os_alloc(real_size, "malloc: BigAllocationBlock");
  202. new (block) BigAllocationBlock(real_size);
  203. return &block->m_slot[0];
  204. }
  205. ChunkedBlock* block = nullptr;
  206. for (block = allocator->usable_blocks.head(); block; block = block->next()) {
  207. if (block->free_chunks())
  208. break;
  209. }
  210. if (!block && allocator->empty_block_count) {
  211. block = allocator->empty_blocks[--allocator->empty_block_count];
  212. int rc = madvise(block, block_size, MADV_SET_NONVOLATILE);
  213. bool this_block_was_purged = rc == 1;
  214. if (rc < 0) {
  215. perror("madvise");
  216. ASSERT_NOT_REACHED();
  217. }
  218. rc = mprotect(block, block_size, PROT_READ | PROT_WRITE);
  219. if (rc < 0) {
  220. perror("mprotect");
  221. ASSERT_NOT_REACHED();
  222. }
  223. if (this_block_was_purged)
  224. new (block) ChunkedBlock(good_size);
  225. allocator->usable_blocks.append(block);
  226. }
  227. if (!block) {
  228. char buffer[64];
  229. snprintf(buffer, sizeof(buffer), "malloc: ChunkedBlock(%zu)", good_size);
  230. block = (ChunkedBlock*)os_alloc(block_size, buffer);
  231. new (block) ChunkedBlock(good_size);
  232. allocator->usable_blocks.append(block);
  233. ++allocator->block_count;
  234. }
  235. --block->m_free_chunks;
  236. void* ptr = block->m_freelist;
  237. block->m_freelist = block->m_freelist->next;
  238. if (block->is_full()) {
  239. #ifdef MALLOC_DEBUG
  240. dbgprintf("Block %p is now full in size class %zu\n", block, good_size);
  241. #endif
  242. allocator->usable_blocks.remove(block);
  243. allocator->full_blocks.append(block);
  244. }
  245. #ifdef MALLOC_DEBUG
  246. dbgprintf("LibC: allocated %p (chunk in block %p, size %zu)\n", ptr, block, block->bytes_per_chunk());
  247. #endif
  248. if (s_scrub_malloc)
  249. memset(ptr, MALLOC_SCRUB_BYTE, block->m_size);
  250. return ptr;
  251. }
  252. static void free_impl(void* ptr)
  253. {
  254. ScopedValueRollback rollback(errno);
  255. if (!ptr)
  256. return;
  257. LOCKER(malloc_lock());
  258. void* block_base = (void*)((FlatPtr)ptr & block_mask);
  259. size_t magic = *(size_t*)block_base;
  260. if (magic == MAGIC_BIGALLOC_HEADER) {
  261. auto* block = (BigAllocationBlock*)block_base;
  262. #ifdef RECYCLE_BIG_ALLOCATIONS
  263. if (auto* allocator = big_allocator_for_size(block->m_size)) {
  264. if (allocator->blocks.size() < number_of_big_blocks_to_keep_around_per_size_class) {
  265. allocator->blocks.append(block);
  266. size_t this_block_size = block->m_size;
  267. if (mprotect(block, this_block_size, PROT_NONE) < 0) {
  268. perror("mprotect");
  269. ASSERT_NOT_REACHED();
  270. }
  271. if (madvise(block, this_block_size, MADV_SET_VOLATILE) != 0) {
  272. perror("madvise");
  273. ASSERT_NOT_REACHED();
  274. }
  275. return;
  276. }
  277. }
  278. #endif
  279. os_free(block, block->m_size);
  280. return;
  281. }
  282. assert(magic == MAGIC_PAGE_HEADER);
  283. auto* block = (ChunkedBlock*)block_base;
  284. #ifdef MALLOC_DEBUG
  285. dbgprintf("LibC: freeing %p in allocator %p (size=%u, used=%u)\n", ptr, block, block->bytes_per_chunk(), block->used_chunks());
  286. #endif
  287. if (s_scrub_free)
  288. memset(ptr, FREE_SCRUB_BYTE, block->bytes_per_chunk());
  289. auto* entry = (FreelistEntry*)ptr;
  290. entry->next = block->m_freelist;
  291. block->m_freelist = entry;
  292. if (block->is_full()) {
  293. size_t good_size;
  294. auto* allocator = allocator_for_size(block->m_size, good_size);
  295. #ifdef MALLOC_DEBUG
  296. dbgprintf("Block %p no longer full in size class %u\n", block, good_size);
  297. #endif
  298. allocator->full_blocks.remove(block);
  299. allocator->usable_blocks.prepend(block);
  300. }
  301. ++block->m_free_chunks;
  302. if (!block->used_chunks()) {
  303. size_t good_size;
  304. auto* allocator = allocator_for_size(block->m_size, good_size);
  305. if (allocator->block_count < number_of_chunked_blocks_to_keep_around_per_size_class) {
  306. #ifdef MALLOC_DEBUG
  307. dbgprintf("Keeping block %p around for size class %u\n", block, good_size);
  308. #endif
  309. allocator->usable_blocks.remove(block);
  310. allocator->empty_blocks[allocator->empty_block_count++] = block;
  311. mprotect(block, block_size, PROT_NONE);
  312. madvise(block, block_size, MADV_SET_VOLATILE);
  313. return;
  314. }
  315. #ifdef MALLOC_DEBUG
  316. dbgprintf("Releasing block %p for size class %u\n", block, good_size);
  317. #endif
  318. allocator->usable_blocks.remove(block);
  319. --allocator->block_count;
  320. os_free(block, block_size);
  321. }
  322. }
  323. void* malloc(size_t size)
  324. {
  325. void* ptr = malloc_impl(size);
  326. if (s_profiling)
  327. perf_event(PERF_EVENT_MALLOC, size, reinterpret_cast<FlatPtr>(ptr));
  328. return ptr;
  329. }
  330. void free(void* ptr)
  331. {
  332. if (s_profiling)
  333. perf_event(PERF_EVENT_FREE, reinterpret_cast<FlatPtr>(ptr), 0);
  334. free_impl(ptr);
  335. }
  336. void* calloc(size_t count, size_t size)
  337. {
  338. size_t new_size = count * size;
  339. auto* ptr = malloc(new_size);
  340. memset(ptr, 0, new_size);
  341. return ptr;
  342. }
  343. size_t malloc_size(void* ptr)
  344. {
  345. if (!ptr)
  346. return 0;
  347. LOCKER(malloc_lock());
  348. void* page_base = (void*)((FlatPtr)ptr & block_mask);
  349. auto* header = (const CommonHeader*)page_base;
  350. auto size = header->m_size;
  351. if (header->m_magic == MAGIC_BIGALLOC_HEADER)
  352. size -= sizeof(CommonHeader);
  353. return size;
  354. }
  355. void* realloc(void* ptr, size_t size)
  356. {
  357. if (!ptr)
  358. return malloc(size);
  359. LOCKER(malloc_lock());
  360. auto existing_allocation_size = malloc_size(ptr);
  361. if (size <= existing_allocation_size)
  362. return ptr;
  363. auto* new_ptr = malloc(size);
  364. memcpy(new_ptr, ptr, min(existing_allocation_size, size));
  365. free(ptr);
  366. return new_ptr;
  367. }
  368. void __malloc_init()
  369. {
  370. new (&malloc_lock()) LibThread::Lock();
  371. if (getenv("LIBC_NOSCRUB_MALLOC"))
  372. s_scrub_malloc = false;
  373. if (getenv("LIBC_NOSCRUB_FREE"))
  374. s_scrub_free = false;
  375. if (getenv("LIBC_LOG_MALLOC"))
  376. s_log_malloc = true;
  377. if (getenv("LIBC_PROFILE_MALLOC"))
  378. s_profiling = true;
  379. for (size_t i = 0; i < num_size_classes; ++i) {
  380. new (&allocators()[i]) Allocator();
  381. allocators()[i].size = size_classes[i];
  382. }
  383. new (&big_allocators()[0])(BigAllocator);
  384. }
  385. }