Region.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Memory.h>
  7. #include <AK/StringView.h>
  8. #include <Kernel/Arch/x86/PageFault.h>
  9. #include <Kernel/Debug.h>
  10. #include <Kernel/FileSystem/Inode.h>
  11. #include <Kernel/Memory/AnonymousVMObject.h>
  12. #include <Kernel/Memory/MemoryManager.h>
  13. #include <Kernel/Memory/PageDirectory.h>
  14. #include <Kernel/Memory/Region.h>
  15. #include <Kernel/Memory/SharedInodeVMObject.h>
  16. #include <Kernel/Panic.h>
  17. #include <Kernel/Process.h>
  18. #include <Kernel/Thread.h>
  19. namespace Kernel::Memory {
  20. Region::Region(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  21. : m_range(range)
  22. , m_offset_in_vmobject(offset_in_vmobject)
  23. , m_vmobject(move(vmobject))
  24. , m_name(move(name))
  25. , m_access(access | ((access & 0x7) << 4))
  26. , m_shared(shared)
  27. , m_cacheable(cacheable == Cacheable::Yes)
  28. {
  29. VERIFY(m_range.base().is_page_aligned());
  30. VERIFY(m_range.size());
  31. VERIFY((m_range.size() % PAGE_SIZE) == 0);
  32. m_vmobject->add_region(*this);
  33. MM.register_region(*this);
  34. }
  35. Region::~Region()
  36. {
  37. if (is_writable() && vmobject().is_shared_inode()) {
  38. // FIXME: This is very aggressive. Find a way to do less work!
  39. (void)static_cast<SharedInodeVMObject&>(vmobject()).sync();
  40. }
  41. m_vmobject->remove_region(*this);
  42. MM.unregister_region(*this);
  43. if (m_page_directory) {
  44. SpinlockLocker page_lock(m_page_directory->get_lock());
  45. SpinlockLocker lock(s_mm_lock);
  46. unmap(ShouldDeallocateVirtualRange::Yes);
  47. VERIFY(!m_page_directory);
  48. }
  49. }
  50. ErrorOr<NonnullOwnPtr<Region>> Region::try_clone()
  51. {
  52. VERIFY(Process::has_current());
  53. if (m_shared) {
  54. VERIFY(!m_stack);
  55. if (vmobject().is_inode())
  56. VERIFY(vmobject().is_shared_inode());
  57. // Create a new region backed by the same VMObject.
  58. OwnPtr<KString> region_name;
  59. if (m_name)
  60. region_name = TRY(m_name->try_clone());
  61. auto region = TRY(Region::try_create_user_accessible(
  62. m_range, m_vmobject, m_offset_in_vmobject, move(region_name), access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared));
  63. region->set_mmap(m_mmap);
  64. region->set_shared(m_shared);
  65. region->set_syscall_region(is_syscall_region());
  66. return region;
  67. }
  68. if (vmobject().is_inode())
  69. VERIFY(vmobject().is_private_inode());
  70. auto vmobject_clone = TRY(vmobject().try_clone());
  71. // Set up a COW region. The parent (this) region becomes COW as well!
  72. remap();
  73. OwnPtr<KString> clone_region_name;
  74. if (m_name)
  75. clone_region_name = TRY(m_name->try_clone());
  76. auto clone_region = TRY(Region::try_create_user_accessible(
  77. m_range, vmobject_clone, m_offset_in_vmobject, move(clone_region_name), access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared));
  78. if (m_stack) {
  79. VERIFY(is_readable());
  80. VERIFY(is_writable());
  81. VERIFY(vmobject().is_anonymous());
  82. clone_region->set_stack(true);
  83. }
  84. clone_region->set_syscall_region(is_syscall_region());
  85. clone_region->set_mmap(m_mmap);
  86. return clone_region;
  87. }
  88. void Region::set_vmobject(NonnullRefPtr<VMObject>&& obj)
  89. {
  90. if (m_vmobject.ptr() == obj.ptr())
  91. return;
  92. m_vmobject->remove_region(*this);
  93. m_vmobject = move(obj);
  94. m_vmobject->add_region(*this);
  95. }
  96. size_t Region::cow_pages() const
  97. {
  98. if (!vmobject().is_anonymous())
  99. return 0;
  100. return static_cast<AnonymousVMObject const&>(vmobject()).cow_pages();
  101. }
  102. size_t Region::amount_dirty() const
  103. {
  104. if (!vmobject().is_inode())
  105. return amount_resident();
  106. return static_cast<InodeVMObject const&>(vmobject()).amount_dirty();
  107. }
  108. size_t Region::amount_resident() const
  109. {
  110. size_t bytes = 0;
  111. for (size_t i = 0; i < page_count(); ++i) {
  112. auto const* page = physical_page(i);
  113. if (page && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  114. bytes += PAGE_SIZE;
  115. }
  116. return bytes;
  117. }
  118. size_t Region::amount_shared() const
  119. {
  120. size_t bytes = 0;
  121. for (size_t i = 0; i < page_count(); ++i) {
  122. auto const* page = physical_page(i);
  123. if (page && page->ref_count() > 1 && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  124. bytes += PAGE_SIZE;
  125. }
  126. return bytes;
  127. }
  128. ErrorOr<NonnullOwnPtr<Region>> Region::try_create_user_accessible(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  129. {
  130. return adopt_nonnull_own_or_enomem(new (nothrow) Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, shared));
  131. }
  132. ErrorOr<NonnullOwnPtr<Region>> Region::try_create_kernel_only(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable)
  133. {
  134. return adopt_nonnull_own_or_enomem(new (nothrow) Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, false));
  135. }
  136. bool Region::should_cow(size_t page_index) const
  137. {
  138. if (!vmobject().is_anonymous())
  139. return false;
  140. return static_cast<AnonymousVMObject const&>(vmobject()).should_cow(first_page_index() + page_index, m_shared);
  141. }
  142. void Region::set_should_cow(size_t page_index, bool cow)
  143. {
  144. VERIFY(!m_shared);
  145. if (vmobject().is_anonymous())
  146. static_cast<AnonymousVMObject&>(vmobject()).set_should_cow(first_page_index() + page_index, cow);
  147. }
  148. bool Region::map_individual_page_impl(size_t page_index)
  149. {
  150. VERIFY(m_page_directory->get_lock().is_locked_by_current_processor());
  151. VERIFY(s_mm_lock.is_locked_by_current_processor());
  152. auto page_vaddr = vaddr_from_page_index(page_index);
  153. bool user_allowed = page_vaddr.get() >= USER_RANGE_BASE && is_user_address(page_vaddr);
  154. if (is_mmap() && !user_allowed) {
  155. PANIC("About to map mmap'ed page at a kernel address");
  156. }
  157. auto* pte = MM.ensure_pte(*m_page_directory, page_vaddr);
  158. if (!pte)
  159. return false;
  160. auto* page = physical_page(page_index);
  161. if (!page || (!is_readable() && !is_writable())) {
  162. pte->clear();
  163. } else {
  164. pte->set_cache_disabled(!m_cacheable);
  165. pte->set_physical_page_base(page->paddr().get());
  166. pte->set_present(true);
  167. if (page->is_shared_zero_page() || page->is_lazy_committed_page() || should_cow(page_index))
  168. pte->set_writable(false);
  169. else
  170. pte->set_writable(is_writable());
  171. if (Processor::current().has_feature(CPUFeature::NX))
  172. pte->set_execute_disabled(!is_executable());
  173. pte->set_user_allowed(user_allowed);
  174. }
  175. return true;
  176. }
  177. bool Region::do_remap_vmobject_page(size_t page_index, bool with_flush)
  178. {
  179. if (!m_page_directory)
  180. return true; // not an error, region may have not yet mapped it
  181. if (!translate_vmobject_page(page_index))
  182. return true; // not an error, region doesn't map this page
  183. SpinlockLocker page_lock(m_page_directory->get_lock());
  184. SpinlockLocker lock(s_mm_lock);
  185. VERIFY(physical_page(page_index));
  186. bool success = map_individual_page_impl(page_index);
  187. if (with_flush)
  188. MemoryManager::flush_tlb(m_page_directory, vaddr_from_page_index(page_index));
  189. return success;
  190. }
  191. bool Region::remap_vmobject_page(size_t page_index, bool with_flush)
  192. {
  193. auto& vmobject = this->vmobject();
  194. bool success = true;
  195. SpinlockLocker lock(vmobject.m_lock);
  196. vmobject.for_each_region([&](auto& region) {
  197. if (!region.do_remap_vmobject_page(page_index, with_flush))
  198. success = false;
  199. });
  200. return success;
  201. }
  202. void Region::unmap(ShouldDeallocateVirtualRange deallocate_range)
  203. {
  204. if (!m_page_directory)
  205. return;
  206. SpinlockLocker page_lock(m_page_directory->get_lock());
  207. SpinlockLocker lock(s_mm_lock);
  208. size_t count = page_count();
  209. for (size_t i = 0; i < count; ++i) {
  210. auto vaddr = vaddr_from_page_index(i);
  211. MM.release_pte(*m_page_directory, vaddr, i == count - 1 ? MemoryManager::IsLastPTERelease::Yes : MemoryManager::IsLastPTERelease::No);
  212. }
  213. MemoryManager::flush_tlb(m_page_directory, vaddr(), page_count());
  214. if (deallocate_range == ShouldDeallocateVirtualRange::Yes) {
  215. m_page_directory->range_allocator().deallocate(range());
  216. }
  217. m_page_directory = nullptr;
  218. }
  219. void Region::set_page_directory(PageDirectory& page_directory)
  220. {
  221. VERIFY(!m_page_directory || m_page_directory == &page_directory);
  222. VERIFY(s_mm_lock.is_locked_by_current_processor());
  223. m_page_directory = page_directory;
  224. }
  225. ErrorOr<void> Region::map(PageDirectory& page_directory, ShouldFlushTLB should_flush_tlb)
  226. {
  227. SpinlockLocker page_lock(page_directory.get_lock());
  228. SpinlockLocker lock(s_mm_lock);
  229. // FIXME: Find a better place for this sanity check(?)
  230. if (is_user() && !is_shared()) {
  231. VERIFY(!vmobject().is_shared_inode());
  232. }
  233. set_page_directory(page_directory);
  234. size_t page_index = 0;
  235. while (page_index < page_count()) {
  236. if (!map_individual_page_impl(page_index))
  237. break;
  238. ++page_index;
  239. }
  240. if (page_index > 0) {
  241. if (should_flush_tlb == ShouldFlushTLB::Yes)
  242. MemoryManager::flush_tlb(m_page_directory, vaddr(), page_index);
  243. if (page_index == page_count())
  244. return {};
  245. }
  246. return ENOMEM;
  247. }
  248. void Region::remap()
  249. {
  250. VERIFY(m_page_directory);
  251. auto result = map(*m_page_directory);
  252. if (result.is_error())
  253. TODO();
  254. }
  255. void Region::clear_to_zero()
  256. {
  257. VERIFY(vmobject().is_anonymous());
  258. SpinlockLocker locker(vmobject().m_lock);
  259. for (auto i = 0u; i < page_count(); ++i) {
  260. auto page = physical_page_slot(i);
  261. VERIFY(page);
  262. if (page->is_shared_zero_page())
  263. continue;
  264. page = MM.shared_zero_page();
  265. }
  266. }
  267. PageFaultResponse Region::handle_fault(PageFault const& fault)
  268. {
  269. auto page_index_in_region = page_index_from_address(fault.vaddr());
  270. if (fault.type() == PageFault::Type::PageNotPresent) {
  271. if (fault.is_read() && !is_readable()) {
  272. dbgln("NP(non-readable) fault in Region({})[{}]", this, page_index_in_region);
  273. return PageFaultResponse::ShouldCrash;
  274. }
  275. if (fault.is_write() && !is_writable()) {
  276. dbgln("NP(non-writable) write fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  277. return PageFaultResponse::ShouldCrash;
  278. }
  279. if (vmobject().is_inode()) {
  280. dbgln_if(PAGE_FAULT_DEBUG, "NP(inode) fault in Region({})[{}]", this, page_index_in_region);
  281. return handle_inode_fault(page_index_in_region);
  282. }
  283. auto& page_slot = physical_page_slot(page_index_in_region);
  284. if (page_slot->is_lazy_committed_page()) {
  285. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  286. VERIFY(m_vmobject->is_anonymous());
  287. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({});
  288. if (!remap_vmobject_page(page_index_in_vmobject))
  289. return PageFaultResponse::OutOfMemory;
  290. return PageFaultResponse::Continue;
  291. }
  292. dbgln("BUG! Unexpected NP fault at {}", fault.vaddr());
  293. return PageFaultResponse::ShouldCrash;
  294. }
  295. VERIFY(fault.type() == PageFault::Type::ProtectionViolation);
  296. if (fault.access() == PageFault::Access::Write && is_writable() && should_cow(page_index_in_region)) {
  297. dbgln_if(PAGE_FAULT_DEBUG, "PV(cow) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  298. auto* phys_page = physical_page(page_index_in_region);
  299. if (phys_page->is_shared_zero_page() || phys_page->is_lazy_committed_page()) {
  300. dbgln_if(PAGE_FAULT_DEBUG, "NP(zero) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  301. return handle_zero_fault(page_index_in_region);
  302. }
  303. return handle_cow_fault(page_index_in_region);
  304. }
  305. dbgln("PV(error) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  306. return PageFaultResponse::ShouldCrash;
  307. }
  308. PageFaultResponse Region::handle_zero_fault(size_t page_index_in_region)
  309. {
  310. VERIFY_INTERRUPTS_DISABLED();
  311. VERIFY(vmobject().is_anonymous());
  312. auto& page_slot = physical_page_slot(page_index_in_region);
  313. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  314. SpinlockLocker locker(vmobject().m_lock);
  315. if (!page_slot.is_null() && !page_slot->is_shared_zero_page() && !page_slot->is_lazy_committed_page()) {
  316. dbgln_if(PAGE_FAULT_DEBUG, "MM: zero_page() but page already present. Fine with me!");
  317. if (!remap_vmobject_page(page_index_in_vmobject))
  318. return PageFaultResponse::OutOfMemory;
  319. return PageFaultResponse::Continue;
  320. }
  321. auto current_thread = Thread::current();
  322. if (current_thread != nullptr)
  323. current_thread->did_zero_fault();
  324. if (page_slot->is_lazy_committed_page()) {
  325. VERIFY(m_vmobject->is_anonymous());
  326. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({});
  327. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED COMMITTED {}", page_slot->paddr());
  328. } else {
  329. page_slot = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
  330. if (page_slot.is_null()) {
  331. dmesgln("MM: handle_zero_fault was unable to allocate a physical page");
  332. return PageFaultResponse::OutOfMemory;
  333. }
  334. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED {}", page_slot->paddr());
  335. }
  336. if (!remap_vmobject_page(page_index_in_vmobject)) {
  337. dmesgln("MM: handle_zero_fault was unable to allocate a page table to map {}", page_slot);
  338. return PageFaultResponse::OutOfMemory;
  339. }
  340. return PageFaultResponse::Continue;
  341. }
  342. PageFaultResponse Region::handle_cow_fault(size_t page_index_in_region)
  343. {
  344. VERIFY_INTERRUPTS_DISABLED();
  345. auto current_thread = Thread::current();
  346. if (current_thread)
  347. current_thread->did_cow_fault();
  348. if (!vmobject().is_anonymous())
  349. return PageFaultResponse::ShouldCrash;
  350. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  351. auto response = reinterpret_cast<AnonymousVMObject&>(vmobject()).handle_cow_fault(page_index_in_vmobject, vaddr().offset(page_index_in_region * PAGE_SIZE));
  352. if (!remap_vmobject_page(page_index_in_vmobject))
  353. return PageFaultResponse::OutOfMemory;
  354. return response;
  355. }
  356. PageFaultResponse Region::handle_inode_fault(size_t page_index_in_region)
  357. {
  358. VERIFY_INTERRUPTS_DISABLED();
  359. VERIFY(vmobject().is_inode());
  360. VERIFY(!s_mm_lock.is_locked_by_current_processor());
  361. VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
  362. auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject());
  363. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  364. auto& vmobject_physical_page_entry = inode_vmobject.physical_pages()[page_index_in_vmobject];
  365. {
  366. SpinlockLocker locker(inode_vmobject.m_lock);
  367. if (!vmobject_physical_page_entry.is_null()) {
  368. dbgln_if(PAGE_FAULT_DEBUG, "handle_inode_fault: Page faulted in by someone else before reading, remapping.");
  369. if (!remap_vmobject_page(page_index_in_vmobject))
  370. return PageFaultResponse::OutOfMemory;
  371. return PageFaultResponse::Continue;
  372. }
  373. }
  374. dbgln_if(PAGE_FAULT_DEBUG, "Inode fault in {} page index: {}", name(), page_index_in_region);
  375. auto current_thread = Thread::current();
  376. if (current_thread)
  377. current_thread->did_inode_fault();
  378. u8 page_buffer[PAGE_SIZE];
  379. auto& inode = inode_vmobject.inode();
  380. auto buffer = UserOrKernelBuffer::for_kernel_buffer(page_buffer);
  381. auto result = inode.read_bytes(page_index_in_vmobject * PAGE_SIZE, PAGE_SIZE, buffer, nullptr);
  382. if (result.is_error()) {
  383. dmesgln("handle_inode_fault: Error ({}) while reading from inode", result.error());
  384. return PageFaultResponse::ShouldCrash;
  385. }
  386. auto nread = result.value();
  387. if (nread < PAGE_SIZE) {
  388. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  389. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  390. }
  391. SpinlockLocker locker(inode_vmobject.m_lock);
  392. if (!vmobject_physical_page_entry.is_null()) {
  393. // Someone else faulted in this page while we were reading from the inode.
  394. // No harm done (other than some duplicate work), remap the page here and return.
  395. dbgln_if(PAGE_FAULT_DEBUG, "handle_inode_fault: Page faulted in by someone else, remapping.");
  396. if (!remap_vmobject_page(page_index_in_vmobject))
  397. return PageFaultResponse::OutOfMemory;
  398. return PageFaultResponse::Continue;
  399. }
  400. vmobject_physical_page_entry = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
  401. if (vmobject_physical_page_entry.is_null()) {
  402. dmesgln("MM: handle_inode_fault was unable to allocate a physical page");
  403. return PageFaultResponse::OutOfMemory;
  404. }
  405. {
  406. SpinlockLocker mm_locker(s_mm_lock);
  407. u8* dest_ptr = MM.quickmap_page(*vmobject_physical_page_entry);
  408. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  409. MM.unquickmap_page();
  410. }
  411. if (!remap_vmobject_page(page_index_in_vmobject))
  412. return PageFaultResponse::OutOfMemory;
  413. return PageFaultResponse::Continue;
  414. }
  415. }