Process.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Singleton.h>
  7. #include <AK/StdLibExtras.h>
  8. #include <AK/StringBuilder.h>
  9. #include <AK/Time.h>
  10. #include <AK/Types.h>
  11. #include <Kernel/API/Syscall.h>
  12. #include <Kernel/Arch/x86/InterruptDisabler.h>
  13. #include <Kernel/Coredump.h>
  14. #include <Kernel/Debug.h>
  15. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  16. # include <Kernel/Devices/KCOVDevice.h>
  17. #endif
  18. #include <Kernel/Devices/NullDevice.h>
  19. #include <Kernel/FileSystem/Custody.h>
  20. #include <Kernel/FileSystem/FileDescription.h>
  21. #include <Kernel/FileSystem/VirtualFileSystem.h>
  22. #include <Kernel/KBufferBuilder.h>
  23. #include <Kernel/KSyms.h>
  24. #include <Kernel/Memory/AnonymousVMObject.h>
  25. #include <Kernel/Memory/PageDirectory.h>
  26. #include <Kernel/Memory/SharedInodeVMObject.h>
  27. #include <Kernel/Module.h>
  28. #include <Kernel/PerformanceEventBuffer.h>
  29. #include <Kernel/PerformanceManager.h>
  30. #include <Kernel/Process.h>
  31. #include <Kernel/ProcessExposed.h>
  32. #include <Kernel/Sections.h>
  33. #include <Kernel/StdLib.h>
  34. #include <Kernel/TTY/TTY.h>
  35. #include <Kernel/Thread.h>
  36. #include <Kernel/ThreadTracer.h>
  37. #include <LibC/errno_numbers.h>
  38. #include <LibC/limits.h>
  39. namespace Kernel {
  40. static void create_signal_trampoline();
  41. RecursiveSpinlock g_profiling_lock;
  42. static Atomic<pid_t> next_pid;
  43. static Singleton<MutexProtected<Process::List>> s_processes;
  44. READONLY_AFTER_INIT HashMap<String, OwnPtr<Module>>* g_modules;
  45. READONLY_AFTER_INIT Memory::Region* g_signal_trampoline_region;
  46. static Singleton<MutexProtected<String>> s_hostname;
  47. MutexProtected<String>& hostname()
  48. {
  49. return *s_hostname;
  50. }
  51. MutexProtected<Process::List>& processes()
  52. {
  53. return *s_processes;
  54. }
  55. ProcessID Process::allocate_pid()
  56. {
  57. // Overflow is UB, and negative PIDs wreck havoc.
  58. // TODO: Handle PID overflow
  59. // For example: Use an Atomic<u32>, mask the most significant bit,
  60. // retry if PID is already taken as a PID, taken as a TID,
  61. // takes as a PGID, taken as a SID, or zero.
  62. return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
  63. }
  64. UNMAP_AFTER_INIT void Process::initialize()
  65. {
  66. g_modules = new HashMap<String, OwnPtr<Module>>;
  67. next_pid.store(0, AK::MemoryOrder::memory_order_release);
  68. hostname().with_exclusive([&](auto& name) {
  69. name = "courage";
  70. });
  71. create_signal_trampoline();
  72. }
  73. NonnullRefPtrVector<Process> Process::all_processes()
  74. {
  75. NonnullRefPtrVector<Process> output;
  76. processes().with_shared([&](const auto& list) {
  77. output.ensure_capacity(list.size_slow());
  78. for (const auto& process : list)
  79. output.append(NonnullRefPtr<Process>(process));
  80. });
  81. return output;
  82. }
  83. bool Process::in_group(gid_t gid) const
  84. {
  85. return this->gid() == gid || extra_gids().contains_slow(gid);
  86. }
  87. void Process::kill_threads_except_self()
  88. {
  89. InterruptDisabler disabler;
  90. if (thread_count() <= 1)
  91. return;
  92. auto current_thread = Thread::current();
  93. for_each_thread([&](Thread& thread) {
  94. if (&thread == current_thread)
  95. return;
  96. if (auto state = thread.state(); state == Thread::State::Dead
  97. || state == Thread::State::Dying)
  98. return;
  99. // We need to detach this thread in case it hasn't been joined
  100. thread.detach();
  101. thread.set_should_die();
  102. });
  103. u32 dropped_lock_count = 0;
  104. if (big_lock().force_unlock_if_locked(dropped_lock_count) != LockMode::Unlocked)
  105. dbgln("Process {} big lock had {} locks", *this, dropped_lock_count);
  106. }
  107. void Process::kill_all_threads()
  108. {
  109. for_each_thread([&](Thread& thread) {
  110. // We need to detach this thread in case it hasn't been joined
  111. thread.detach();
  112. thread.set_should_die();
  113. });
  114. }
  115. void Process::register_new(Process& process)
  116. {
  117. // Note: this is essentially the same like process->ref()
  118. RefPtr<Process> new_process = process;
  119. processes().with_exclusive([&](auto& list) {
  120. list.prepend(process);
  121. });
  122. }
  123. RefPtr<Process> Process::create_user_process(RefPtr<Thread>& first_thread, const String& path, uid_t uid, gid_t gid, ProcessID parent_pid, int& error, Vector<String>&& arguments, Vector<String>&& environment, TTY* tty)
  124. {
  125. auto parts = path.split('/');
  126. if (arguments.is_empty()) {
  127. arguments.append(parts.last());
  128. }
  129. RefPtr<Custody> cwd;
  130. if (auto parent = Process::from_pid(parent_pid))
  131. cwd = parent->m_cwd;
  132. if (!cwd)
  133. cwd = VirtualFileSystem::the().root_custody();
  134. auto process = Process::create(first_thread, parts.take_last(), uid, gid, parent_pid, false, move(cwd), nullptr, tty);
  135. if (!first_thread)
  136. return {};
  137. if (!process->m_fds.try_resize(process->m_fds.max_open())) {
  138. first_thread = nullptr;
  139. return {};
  140. }
  141. auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : NullDevice::the();
  142. auto description = device_to_use_as_tty.open(O_RDWR).value();
  143. auto setup_description = [&process, &description](int fd) {
  144. process->m_fds.m_fds_metadatas[fd].allocate();
  145. process->m_fds[fd].set(*description);
  146. };
  147. setup_description(0);
  148. setup_description(1);
  149. setup_description(2);
  150. error = process->exec(path, move(arguments), move(environment)).error();
  151. if (error != 0) {
  152. dbgln("Failed to exec {}: {}", path, error);
  153. first_thread = nullptr;
  154. return {};
  155. }
  156. register_new(*process);
  157. error = 0;
  158. // NOTE: All user processes have a leaked ref on them. It's balanced by Thread::WaitBlockCondition::finalize().
  159. (void)process.leak_ref();
  160. return process;
  161. }
  162. RefPtr<Process> Process::create_kernel_process(RefPtr<Thread>& first_thread, String&& name, void (*entry)(void*), void* entry_data, u32 affinity, RegisterProcess do_register)
  163. {
  164. auto process = Process::create(first_thread, move(name), (uid_t)0, (gid_t)0, ProcessID(0), true);
  165. if (!first_thread || !process)
  166. return {};
  167. first_thread->regs().set_ip((FlatPtr)entry);
  168. #if ARCH(I386)
  169. first_thread->regs().esp = FlatPtr(entry_data); // entry function argument is expected to be in regs.esp
  170. #else
  171. first_thread->regs().rdi = FlatPtr(entry_data); // entry function argument is expected to be in regs.rdi
  172. #endif
  173. if (do_register == RegisterProcess::Yes)
  174. register_new(*process);
  175. SpinlockLocker lock(g_scheduler_lock);
  176. first_thread->set_affinity(affinity);
  177. first_thread->set_state(Thread::State::Runnable);
  178. return process;
  179. }
  180. void Process::protect_data()
  181. {
  182. m_protected_data_refs.unref([&]() {
  183. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, false);
  184. });
  185. }
  186. void Process::unprotect_data()
  187. {
  188. m_protected_data_refs.ref([&]() {
  189. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, true);
  190. });
  191. }
  192. RefPtr<Process> Process::create(RefPtr<Thread>& first_thread, const String& name, uid_t uid, gid_t gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty, Process* fork_parent)
  193. {
  194. auto space = Memory::AddressSpace::try_create(fork_parent ? &fork_parent->address_space() : nullptr);
  195. if (!space)
  196. return {};
  197. auto process = adopt_ref_if_nonnull(new (nothrow) Process(name, uid, gid, ppid, is_kernel_process, move(cwd), move(executable), tty));
  198. if (!process)
  199. return {};
  200. auto result = process->attach_resources(space.release_nonnull(), first_thread, fork_parent);
  201. if (result.is_error())
  202. return {};
  203. return process;
  204. }
  205. Process::Process(const String& name, uid_t uid, gid_t gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty)
  206. : m_name(move(name))
  207. , m_is_kernel_process(is_kernel_process)
  208. , m_executable(move(executable))
  209. , m_cwd(move(cwd))
  210. , m_tty(tty)
  211. , m_wait_block_condition(*this)
  212. {
  213. // Ensure that we protect the process data when exiting the constructor.
  214. ProtectedDataMutationScope scope { *this };
  215. m_protected_values.pid = allocate_pid();
  216. m_protected_values.ppid = ppid;
  217. m_protected_values.uid = uid;
  218. m_protected_values.gid = gid;
  219. m_protected_values.euid = uid;
  220. m_protected_values.egid = gid;
  221. m_protected_values.suid = uid;
  222. m_protected_values.sgid = gid;
  223. auto maybe_procfs_traits = ProcessProcFSTraits::try_create({}, make_weak_ptr());
  224. // NOTE: This can fail, but it should be very, *very* rare.
  225. VERIFY(!maybe_procfs_traits.is_error());
  226. m_procfs_traits = maybe_procfs_traits.release_value();
  227. dbgln_if(PROCESS_DEBUG, "Created new process {}({})", m_name, this->pid().value());
  228. }
  229. KResult Process::attach_resources(NonnullOwnPtr<Memory::AddressSpace>&& preallocated_space, RefPtr<Thread>& first_thread, Process* fork_parent)
  230. {
  231. m_space = move(preallocated_space);
  232. if (fork_parent) {
  233. // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process.
  234. first_thread = Thread::current()->clone(*this);
  235. if (!first_thread)
  236. return ENOMEM;
  237. } else {
  238. // NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.)
  239. auto thread_or_error = Thread::try_create(*this);
  240. if (thread_or_error.is_error())
  241. return thread_or_error.error();
  242. first_thread = thread_or_error.release_value();
  243. first_thread->detach();
  244. }
  245. return KSuccess;
  246. }
  247. Process::~Process()
  248. {
  249. unprotect_data();
  250. VERIFY(thread_count() == 0); // all threads should have been finalized
  251. VERIFY(!m_alarm_timer);
  252. PerformanceManager::add_process_exit_event(*this);
  253. }
  254. bool Process::unref() const
  255. {
  256. // NOTE: We need to obtain the process list lock before doing anything,
  257. // because otherwise someone might get in between us lowering the
  258. // refcount and acquiring the lock.
  259. auto did_hit_zero = processes().with_exclusive([&](auto& list) {
  260. auto new_ref_count = deref_base();
  261. if (new_ref_count > 0)
  262. return false;
  263. if (m_list_node.is_in_list())
  264. list.remove(*const_cast<Process*>(this));
  265. return true;
  266. });
  267. if (did_hit_zero)
  268. delete this;
  269. return did_hit_zero;
  270. }
  271. // Make sure the compiler doesn't "optimize away" this function:
  272. extern void signal_trampoline_dummy() __attribute__((used));
  273. void signal_trampoline_dummy()
  274. {
  275. #if ARCH(I386)
  276. // The trampoline preserves the current eax, pushes the signal code and
  277. // then calls the signal handler. We do this because, when interrupting a
  278. // blocking syscall, that syscall may return some special error code in eax;
  279. // This error code would likely be overwritten by the signal handler, so it's
  280. // necessary to preserve it here.
  281. asm(
  282. ".intel_syntax noprefix\n"
  283. ".globl asm_signal_trampoline\n"
  284. "asm_signal_trampoline:\n"
  285. "push ebp\n"
  286. "mov ebp, esp\n"
  287. "push eax\n" // we have to store eax 'cause it might be the return value from a syscall
  288. "sub esp, 4\n" // align the stack to 16 bytes
  289. "mov eax, [ebp+12]\n" // push the signal code
  290. "push eax\n"
  291. "call [ebp+8]\n" // call the signal handler
  292. "add esp, 8\n"
  293. "mov eax, %P0\n"
  294. "int 0x82\n" // sigreturn syscall
  295. ".globl asm_signal_trampoline_end\n"
  296. "asm_signal_trampoline_end:\n"
  297. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  298. #elif ARCH(X86_64)
  299. // The trampoline preserves the current rax, pushes the signal code and
  300. // then calls the signal handler. We do this because, when interrupting a
  301. // blocking syscall, that syscall may return some special error code in eax;
  302. // This error code would likely be overwritten by the signal handler, so it's
  303. // necessary to preserve it here.
  304. asm(
  305. ".intel_syntax noprefix\n"
  306. ".globl asm_signal_trampoline\n"
  307. "asm_signal_trampoline:\n"
  308. "push rbp\n"
  309. "mov rbp, rsp\n"
  310. "push rax\n" // we have to store rax 'cause it might be the return value from a syscall
  311. "sub rsp, 8\n" // align the stack to 16 bytes
  312. "mov rdi, [rbp+24]\n" // push the signal code
  313. "call [rbp+16]\n" // call the signal handler
  314. "add rsp, 8\n"
  315. "mov rax, %P0\n"
  316. "int 0x82\n" // sigreturn syscall
  317. ".globl asm_signal_trampoline_end\n"
  318. "asm_signal_trampoline_end:\n"
  319. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  320. #endif
  321. }
  322. extern "C" char const asm_signal_trampoline[];
  323. extern "C" char const asm_signal_trampoline_end[];
  324. void create_signal_trampoline()
  325. {
  326. // NOTE: We leak this region.
  327. g_signal_trampoline_region = MM.allocate_kernel_region(PAGE_SIZE, "Signal trampolines", Memory::Region::Access::ReadWrite).leak_ptr();
  328. g_signal_trampoline_region->set_syscall_region(true);
  329. size_t trampoline_size = asm_signal_trampoline_end - asm_signal_trampoline;
  330. u8* code_ptr = (u8*)g_signal_trampoline_region->vaddr().as_ptr();
  331. memcpy(code_ptr, asm_signal_trampoline, trampoline_size);
  332. g_signal_trampoline_region->set_writable(false);
  333. g_signal_trampoline_region->remap();
  334. }
  335. void Process::crash(int signal, FlatPtr ip, bool out_of_memory)
  336. {
  337. VERIFY(!is_dead());
  338. VERIFY(&Process::current() == this);
  339. if (out_of_memory) {
  340. dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this);
  341. } else {
  342. if (ip >= kernel_load_base && g_kernel_symbols_available) {
  343. auto* symbol = symbolicate_kernel_address(ip);
  344. dbgln("\033[31;1m{:p} {} +{}\033[0m\n", ip, (symbol ? symbol->name : "(k?)"), (symbol ? ip - symbol->address : 0));
  345. } else {
  346. dbgln("\033[31;1m{:p} (?)\033[0m\n", ip);
  347. }
  348. dump_backtrace();
  349. }
  350. {
  351. ProtectedDataMutationScope scope { *this };
  352. m_protected_values.termination_signal = signal;
  353. }
  354. set_should_generate_coredump(!out_of_memory);
  355. address_space().dump_regions();
  356. VERIFY(is_user_process());
  357. die();
  358. // We can not return from here, as there is nowhere
  359. // to unwind to, so die right away.
  360. Thread::current()->die_if_needed();
  361. VERIFY_NOT_REACHED();
  362. }
  363. RefPtr<Process> Process::from_pid(ProcessID pid)
  364. {
  365. return processes().with_shared([&](const auto& list) -> RefPtr<Process> {
  366. for (auto& process : list) {
  367. if (process.pid() == pid)
  368. return &process;
  369. }
  370. return {};
  371. });
  372. }
  373. const Process::FileDescriptionAndFlags* Process::FileDescriptions::get_if_valid(size_t i) const
  374. {
  375. SpinlockLocker lock(m_fds_lock);
  376. if (m_fds_metadatas.size() <= i)
  377. return nullptr;
  378. if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
  379. return &metadata;
  380. return nullptr;
  381. }
  382. Process::FileDescriptionAndFlags* Process::FileDescriptions::get_if_valid(size_t i)
  383. {
  384. SpinlockLocker lock(m_fds_lock);
  385. if (m_fds_metadatas.size() <= i)
  386. return nullptr;
  387. if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
  388. return &metadata;
  389. return nullptr;
  390. }
  391. const Process::FileDescriptionAndFlags& Process::FileDescriptions::at(size_t i) const
  392. {
  393. SpinlockLocker lock(m_fds_lock);
  394. VERIFY(m_fds_metadatas[i].is_allocated());
  395. return m_fds_metadatas[i];
  396. }
  397. Process::FileDescriptionAndFlags& Process::FileDescriptions::at(size_t i)
  398. {
  399. SpinlockLocker lock(m_fds_lock);
  400. VERIFY(m_fds_metadatas[i].is_allocated());
  401. return m_fds_metadatas[i];
  402. }
  403. RefPtr<FileDescription> Process::FileDescriptions::file_description(int fd) const
  404. {
  405. SpinlockLocker lock(m_fds_lock);
  406. if (fd < 0)
  407. return nullptr;
  408. if (static_cast<size_t>(fd) < m_fds_metadatas.size())
  409. return m_fds_metadatas[fd].description();
  410. return nullptr;
  411. }
  412. void Process::FileDescriptions::enumerate(Function<void(const FileDescriptionAndFlags&)> callback) const
  413. {
  414. SpinlockLocker lock(m_fds_lock);
  415. for (auto& file_description_metadata : m_fds_metadatas) {
  416. callback(file_description_metadata);
  417. }
  418. }
  419. void Process::FileDescriptions::change_each(Function<void(FileDescriptionAndFlags&)> callback)
  420. {
  421. SpinlockLocker lock(m_fds_lock);
  422. for (auto& file_description_metadata : m_fds_metadatas) {
  423. callback(file_description_metadata);
  424. }
  425. }
  426. size_t Process::FileDescriptions::open_count() const
  427. {
  428. size_t count = 0;
  429. enumerate([&](auto& file_description_metadata) {
  430. if (file_description_metadata.is_valid())
  431. ++count;
  432. });
  433. return count;
  434. }
  435. KResultOr<Process::ScopedDescriptionAllocation> Process::FileDescriptions::allocate(int first_candidate_fd)
  436. {
  437. SpinlockLocker lock(m_fds_lock);
  438. for (size_t i = first_candidate_fd; i < max_open(); ++i) {
  439. if (!m_fds_metadatas[i].is_allocated()) {
  440. m_fds_metadatas[i].allocate();
  441. return Process::ScopedDescriptionAllocation { static_cast<int>(i), &m_fds_metadatas[i] };
  442. }
  443. }
  444. return EMFILE;
  445. }
  446. Time kgettimeofday()
  447. {
  448. return TimeManagement::now();
  449. }
  450. siginfo_t Process::wait_info()
  451. {
  452. siginfo_t siginfo {};
  453. siginfo.si_signo = SIGCHLD;
  454. siginfo.si_pid = pid().value();
  455. siginfo.si_uid = uid();
  456. if (m_protected_values.termination_signal) {
  457. siginfo.si_status = m_protected_values.termination_signal;
  458. siginfo.si_code = CLD_KILLED;
  459. } else {
  460. siginfo.si_status = m_protected_values.termination_status;
  461. siginfo.si_code = CLD_EXITED;
  462. }
  463. return siginfo;
  464. }
  465. Custody& Process::current_directory()
  466. {
  467. if (!m_cwd)
  468. m_cwd = VirtualFileSystem::the().root_custody();
  469. return *m_cwd;
  470. }
  471. KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Userspace<char const*> user_path, size_t path_length) const
  472. {
  473. if (path_length == 0)
  474. return EINVAL;
  475. if (path_length > PATH_MAX)
  476. return ENAMETOOLONG;
  477. auto string_or_error = try_copy_kstring_from_user(user_path, path_length);
  478. if (string_or_error.is_error())
  479. return string_or_error.error();
  480. return string_or_error.release_value();
  481. }
  482. KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Syscall::StringArgument const& path) const
  483. {
  484. Userspace<char const*> path_characters((FlatPtr)path.characters);
  485. return get_syscall_path_argument(path_characters, path.length);
  486. }
  487. bool Process::dump_core()
  488. {
  489. VERIFY(is_dumpable());
  490. VERIFY(should_generate_coredump());
  491. dbgln("Generating coredump for pid: {}", pid().value());
  492. auto coredump_path = String::formatted("/tmp/coredump/{}_{}_{}", name(), pid().value(), kgettimeofday().to_truncated_seconds());
  493. auto coredump = Coredump::create(*this, coredump_path);
  494. if (!coredump)
  495. return false;
  496. return !coredump->write().is_error();
  497. }
  498. bool Process::dump_perfcore()
  499. {
  500. VERIFY(is_dumpable());
  501. VERIFY(m_perf_event_buffer);
  502. dbgln("Generating perfcore for pid: {}", pid().value());
  503. // Try to generate a filename which isn't already used.
  504. auto base_filename = String::formatted("{}_{}", name(), pid().value());
  505. auto description_or_error = VirtualFileSystem::the().open(String::formatted("{}.profile", base_filename), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
  506. for (size_t attempt = 1; attempt < 10 && description_or_error.is_error(); ++attempt)
  507. description_or_error = VirtualFileSystem::the().open(String::formatted("{}.{}.profile", base_filename, attempt), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
  508. if (description_or_error.is_error()) {
  509. dbgln("Failed to generate perfcore for pid {}: Could not generate filename for the perfcore file.", pid().value());
  510. return false;
  511. }
  512. auto& description = *description_or_error.value();
  513. KBufferBuilder builder;
  514. if (!m_perf_event_buffer->to_json(builder)) {
  515. dbgln("Failed to generate perfcore for pid {}: Could not serialize performance events to JSON.", pid().value());
  516. return false;
  517. }
  518. auto json = builder.build();
  519. if (!json) {
  520. dbgln("Failed to generate perfcore for pid {}: Could not allocate buffer.", pid().value());
  521. return false;
  522. }
  523. auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data());
  524. if (description.write(json_buffer, json->size()).is_error()) {
  525. return false;
  526. dbgln("Failed to generate perfcore for pid {}: Cound not write to perfcore file.", pid().value());
  527. }
  528. dbgln("Wrote perfcore for pid {} to {}", pid().value(), description.absolute_path());
  529. return true;
  530. }
  531. void Process::finalize()
  532. {
  533. VERIFY(Thread::current() == g_finalizer);
  534. dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this);
  535. if (is_dumpable()) {
  536. if (m_should_generate_coredump)
  537. dump_core();
  538. if (m_perf_event_buffer) {
  539. dump_perfcore();
  540. TimeManagement::the().disable_profile_timer();
  541. }
  542. }
  543. m_threads_for_coredump.clear();
  544. if (m_alarm_timer)
  545. TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull());
  546. m_fds.clear();
  547. m_tty = nullptr;
  548. m_executable = nullptr;
  549. m_cwd = nullptr;
  550. m_arguments.clear();
  551. m_environment.clear();
  552. m_state.store(State::Dead, AK::MemoryOrder::memory_order_release);
  553. {
  554. // FIXME: PID/TID BUG
  555. if (auto parent_thread = Thread::from_tid(ppid().value())) {
  556. if (!(parent_thread->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT))
  557. parent_thread->send_signal(SIGCHLD, this);
  558. }
  559. }
  560. if (!!ppid()) {
  561. if (auto parent = Process::from_pid(ppid())) {
  562. parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children;
  563. parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children;
  564. }
  565. }
  566. unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated);
  567. m_space->remove_all_regions({});
  568. VERIFY(ref_count() > 0);
  569. // WaitBlockCondition::finalize will be in charge of dropping the last
  570. // reference if there are still waiters around, or whenever the last
  571. // waitable states are consumed. Unless there is no parent around
  572. // anymore, in which case we'll just drop it right away.
  573. m_wait_block_condition.finalize();
  574. }
  575. void Process::disowned_by_waiter(Process& process)
  576. {
  577. m_wait_block_condition.disowned_by_waiter(process);
  578. }
  579. void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal)
  580. {
  581. if (auto parent = Process::from_pid(ppid()))
  582. parent->m_wait_block_condition.unblock(*this, flags, signal);
  583. }
  584. void Process::die()
  585. {
  586. auto expected = State::Running;
  587. if (!m_state.compare_exchange_strong(expected, State::Dying, AK::memory_order_acquire)) {
  588. // It's possible that another thread calls this at almost the same time
  589. // as we can't always instantly kill other threads (they may be blocked)
  590. // So if we already were called then other threads should stop running
  591. // momentarily and we only really need to service the first thread
  592. return;
  593. }
  594. // Let go of the TTY, otherwise a slave PTY may keep the master PTY from
  595. // getting an EOF when the last process using the slave PTY dies.
  596. // If the master PTY owner relies on an EOF to know when to wait() on a
  597. // slave owner, we have to allow the PTY pair to be torn down.
  598. m_tty = nullptr;
  599. VERIFY(m_threads_for_coredump.is_empty());
  600. for_each_thread([&](auto& thread) {
  601. m_threads_for_coredump.append(thread);
  602. });
  603. processes().with_shared([&](const auto& list) {
  604. for (auto it = list.begin(); it != list.end();) {
  605. auto& process = *it;
  606. ++it;
  607. if (process.has_tracee_thread(pid())) {
  608. dbgln_if(PROCESS_DEBUG, "Process {} ({}) is attached by {} ({}) which will exit", process.name(), process.pid(), name(), pid());
  609. process.stop_tracing();
  610. auto err = process.send_signal(SIGSTOP, this);
  611. if (err.is_error())
  612. dbgln("Failed to send the SIGSTOP signal to {} ({})", process.name(), process.pid());
  613. }
  614. }
  615. });
  616. kill_all_threads();
  617. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  618. KCOVDevice::free_process();
  619. #endif
  620. }
  621. void Process::terminate_due_to_signal(u8 signal)
  622. {
  623. VERIFY_INTERRUPTS_DISABLED();
  624. VERIFY(signal < 32);
  625. VERIFY(&Process::current() == this);
  626. dbgln("Terminating {} due to signal {}", *this, signal);
  627. {
  628. ProtectedDataMutationScope scope { *this };
  629. m_protected_values.termination_status = 0;
  630. m_protected_values.termination_signal = signal;
  631. }
  632. die();
  633. }
  634. KResult Process::send_signal(u8 signal, Process* sender)
  635. {
  636. // Try to send it to the "obvious" main thread:
  637. auto receiver_thread = Thread::from_tid(pid().value());
  638. // If the main thread has died, there may still be other threads:
  639. if (!receiver_thread) {
  640. // The first one should be good enough.
  641. // Neither kill(2) nor kill(3) specify any selection precedure.
  642. for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision {
  643. receiver_thread = &thread;
  644. return IterationDecision::Break;
  645. });
  646. }
  647. if (receiver_thread) {
  648. receiver_thread->send_signal(signal, sender);
  649. return KSuccess;
  650. }
  651. return ESRCH;
  652. }
  653. RefPtr<Thread> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, OwnPtr<KString> name, u32 affinity, bool joinable)
  654. {
  655. VERIFY((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX));
  656. // FIXME: Do something with guard pages?
  657. auto thread_or_error = Thread::try_create(*this);
  658. if (thread_or_error.is_error())
  659. return {};
  660. auto thread = thread_or_error.release_value();
  661. thread->set_name(move(name));
  662. thread->set_affinity(affinity);
  663. thread->set_priority(priority);
  664. if (!joinable)
  665. thread->detach();
  666. auto& regs = thread->regs();
  667. regs.set_ip((FlatPtr)entry);
  668. regs.set_sp((FlatPtr)entry_data); // entry function argument is expected to be in the SP register
  669. SpinlockLocker lock(g_scheduler_lock);
  670. thread->set_state(Thread::State::Runnable);
  671. return thread;
  672. }
  673. void Process::FileDescriptionAndFlags::clear()
  674. {
  675. // FIXME: Verify Process::m_fds_lock is locked!
  676. m_description = nullptr;
  677. m_flags = 0;
  678. }
  679. void Process::FileDescriptionAndFlags::set(NonnullRefPtr<FileDescription>&& description, u32 flags)
  680. {
  681. // FIXME: Verify Process::m_fds_lock is locked!
  682. m_description = move(description);
  683. m_flags = flags;
  684. }
  685. void Process::set_tty(TTY* tty)
  686. {
  687. m_tty = tty;
  688. }
  689. KResult Process::start_tracing_from(ProcessID tracer)
  690. {
  691. auto thread_tracer = ThreadTracer::create(tracer);
  692. if (!thread_tracer)
  693. return ENOMEM;
  694. m_tracer = move(thread_tracer);
  695. return KSuccess;
  696. }
  697. void Process::stop_tracing()
  698. {
  699. m_tracer = nullptr;
  700. }
  701. void Process::tracer_trap(Thread& thread, const RegisterState& regs)
  702. {
  703. VERIFY(m_tracer.ptr());
  704. m_tracer->set_regs(regs);
  705. thread.send_urgent_signal_to_self(SIGTRAP);
  706. }
  707. bool Process::create_perf_events_buffer_if_needed()
  708. {
  709. if (!m_perf_event_buffer) {
  710. m_perf_event_buffer = PerformanceEventBuffer::try_create_with_size(4 * MiB);
  711. m_perf_event_buffer->add_process(*this, ProcessEventType::Create);
  712. }
  713. return !!m_perf_event_buffer;
  714. }
  715. void Process::delete_perf_events_buffer()
  716. {
  717. if (m_perf_event_buffer)
  718. m_perf_event_buffer = nullptr;
  719. }
  720. bool Process::remove_thread(Thread& thread)
  721. {
  722. ProtectedDataMutationScope scope { *this };
  723. auto thread_cnt_before = m_protected_values.thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
  724. VERIFY(thread_cnt_before != 0);
  725. thread_list().with([&](auto& thread_list) {
  726. thread_list.remove(thread);
  727. });
  728. return thread_cnt_before == 1;
  729. }
  730. bool Process::add_thread(Thread& thread)
  731. {
  732. ProtectedDataMutationScope scope { *this };
  733. bool is_first = m_protected_values.thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0;
  734. thread_list().with([&](auto& thread_list) {
  735. thread_list.append(thread);
  736. });
  737. return is_first;
  738. }
  739. void Process::set_dumpable(bool dumpable)
  740. {
  741. if (dumpable == m_protected_values.dumpable)
  742. return;
  743. ProtectedDataMutationScope scope { *this };
  744. m_protected_values.dumpable = dumpable;
  745. }
  746. KResult Process::set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value)
  747. {
  748. // Write it into the first available property slot.
  749. for (auto& slot : m_coredump_properties) {
  750. if (slot.key)
  751. continue;
  752. slot.key = move(key);
  753. slot.value = move(value);
  754. return KSuccess;
  755. }
  756. return ENOBUFS;
  757. }
  758. KResult Process::try_set_coredump_property(StringView key, StringView value)
  759. {
  760. auto key_kstring = KString::try_create(key);
  761. auto value_kstring = KString::try_create(value);
  762. if (key_kstring && value_kstring)
  763. return set_coredump_property(key_kstring.release_nonnull(), value_kstring.release_nonnull());
  764. return ENOMEM;
  765. };
  766. }