execve.cpp 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/ScopeGuard.h>
  7. #include <AK/TemporaryChange.h>
  8. #include <AK/WeakPtr.h>
  9. #include <Kernel/Debug.h>
  10. #include <Kernel/FileSystem/Custody.h>
  11. #include <Kernel/FileSystem/OpenFileDescription.h>
  12. #include <Kernel/Memory/AllocationStrategy.h>
  13. #include <Kernel/Memory/MemoryManager.h>
  14. #include <Kernel/Memory/PageDirectory.h>
  15. #include <Kernel/Memory/Region.h>
  16. #include <Kernel/Memory/SharedInodeVMObject.h>
  17. #include <Kernel/Panic.h>
  18. #include <Kernel/PerformanceManager.h>
  19. #include <Kernel/Process.h>
  20. #include <Kernel/Random.h>
  21. #include <Kernel/Time/TimeManagement.h>
  22. #include <LibC/limits.h>
  23. #include <LibELF/AuxiliaryVector.h>
  24. #include <LibELF/Image.h>
  25. #include <LibELF/Validation.h>
  26. namespace Kernel {
  27. extern Memory::Region* g_signal_trampoline_region;
  28. struct LoadResult {
  29. OwnPtr<Memory::AddressSpace> space;
  30. FlatPtr load_base { 0 };
  31. FlatPtr entry_eip { 0 };
  32. size_t size { 0 };
  33. WeakPtr<Memory::Region> tls_region;
  34. size_t tls_size { 0 };
  35. size_t tls_alignment { 0 };
  36. WeakPtr<Memory::Region> stack_region;
  37. };
  38. static Vector<ELF::AuxiliaryValue> generate_auxiliary_vector(FlatPtr load_base, FlatPtr entry_eip, UserID uid, UserID euid, GroupID gid, GroupID egid, StringView executable_path, Optional<Process::ScopedDescriptionAllocation> const& main_program_fd_allocation);
  39. static bool validate_stack_size(NonnullOwnPtrVector<KString> const& arguments, NonnullOwnPtrVector<KString>& environment)
  40. {
  41. size_t total_arguments_size = 0;
  42. size_t total_environment_size = 0;
  43. for (auto const& a : arguments)
  44. total_arguments_size += a.length() + 1;
  45. for (auto const& e : environment)
  46. total_environment_size += e.length() + 1;
  47. total_arguments_size += sizeof(char*) * (arguments.size() + 1);
  48. total_environment_size += sizeof(char*) * (environment.size() + 1);
  49. static constexpr size_t max_arguments_size = Thread::default_userspace_stack_size / 8;
  50. static constexpr size_t max_environment_size = Thread::default_userspace_stack_size / 8;
  51. if (total_arguments_size > max_arguments_size)
  52. return false;
  53. if (total_environment_size > max_environment_size)
  54. return false;
  55. // FIXME: This doesn't account for the size of the auxiliary vector
  56. return true;
  57. }
  58. static ErrorOr<FlatPtr> make_userspace_context_for_main_thread([[maybe_unused]] ThreadRegisters& regs, Memory::Region& region, NonnullOwnPtrVector<KString> const& arguments,
  59. NonnullOwnPtrVector<KString> const& environment, Vector<ELF::AuxiliaryValue> auxiliary_values)
  60. {
  61. FlatPtr new_sp = region.range().end().get();
  62. // Add some bits of randomness to the user stack pointer.
  63. new_sp -= round_up_to_power_of_two(get_fast_random<u32>() % 4096, 16);
  64. auto push_on_new_stack = [&new_sp](FlatPtr value) {
  65. new_sp -= sizeof(FlatPtr);
  66. Userspace<FlatPtr*> stack_ptr = new_sp;
  67. auto result = copy_to_user(stack_ptr, &value);
  68. VERIFY(!result.is_error());
  69. };
  70. auto push_aux_value_on_new_stack = [&new_sp](auxv_t value) {
  71. new_sp -= sizeof(auxv_t);
  72. Userspace<auxv_t*> stack_ptr = new_sp;
  73. auto result = copy_to_user(stack_ptr, &value);
  74. VERIFY(!result.is_error());
  75. };
  76. auto push_string_on_new_stack = [&new_sp](StringView string) {
  77. new_sp -= round_up_to_power_of_two(string.length() + 1, sizeof(FlatPtr));
  78. Userspace<FlatPtr*> stack_ptr = new_sp;
  79. auto result = copy_to_user(stack_ptr, string.characters_without_null_termination(), string.length() + 1);
  80. VERIFY(!result.is_error());
  81. };
  82. Vector<FlatPtr> argv_entries;
  83. for (auto const& argument : arguments) {
  84. push_string_on_new_stack(argument.view());
  85. TRY(argv_entries.try_append(new_sp));
  86. }
  87. Vector<FlatPtr> env_entries;
  88. for (auto const& variable : environment) {
  89. push_string_on_new_stack(variable.view());
  90. TRY(env_entries.try_append(new_sp));
  91. }
  92. for (auto& value : auxiliary_values) {
  93. if (!value.optional_string.is_empty()) {
  94. push_string_on_new_stack(value.optional_string);
  95. value.auxv.a_un.a_ptr = (void*)new_sp;
  96. }
  97. }
  98. for (ssize_t i = auxiliary_values.size() - 1; i >= 0; --i) {
  99. auto& value = auxiliary_values[i];
  100. push_aux_value_on_new_stack(value.auxv);
  101. }
  102. push_on_new_stack(0);
  103. for (ssize_t i = env_entries.size() - 1; i >= 0; --i)
  104. push_on_new_stack(env_entries[i]);
  105. FlatPtr envp = new_sp;
  106. push_on_new_stack(0);
  107. for (ssize_t i = argv_entries.size() - 1; i >= 0; --i)
  108. push_on_new_stack(argv_entries[i]);
  109. FlatPtr argv = new_sp;
  110. // NOTE: The stack needs to be 16-byte aligned.
  111. new_sp -= new_sp % 16;
  112. #if ARCH(I386)
  113. // GCC assumes that the return address has been pushed to the stack when it enters the function,
  114. // so we need to reserve an extra pointer's worth of bytes below this to make GCC's stack alignment
  115. // calculations work
  116. new_sp -= sizeof(void*);
  117. push_on_new_stack(envp);
  118. push_on_new_stack(argv);
  119. push_on_new_stack(argv_entries.size());
  120. #else
  121. regs.rdi = argv_entries.size();
  122. regs.rsi = argv;
  123. regs.rdx = envp;
  124. #endif
  125. VERIFY(new_sp % 16 == 0);
  126. // FIXME: The way we're setting up the stack and passing arguments to the entry point isn't ABI-compliant
  127. return new_sp;
  128. }
  129. struct RequiredLoadRange {
  130. FlatPtr start { 0 };
  131. FlatPtr end { 0 };
  132. };
  133. static ErrorOr<RequiredLoadRange> get_required_load_range(OpenFileDescription& program_description)
  134. {
  135. auto& inode = *(program_description.inode());
  136. auto vmobject = TRY(Memory::SharedInodeVMObject::try_create_with_inode(inode));
  137. size_t executable_size = inode.size();
  138. size_t rounded_executable_size = TRY(Memory::page_round_up(executable_size));
  139. auto region = TRY(MM.allocate_kernel_region_with_vmobject(*vmobject, rounded_executable_size, "ELF memory range calculation", Memory::Region::Access::Read));
  140. auto elf_image = ELF::Image(region->vaddr().as_ptr(), executable_size);
  141. if (!elf_image.is_valid()) {
  142. return EINVAL;
  143. }
  144. RequiredLoadRange range {};
  145. elf_image.for_each_program_header([&range](const auto& pheader) {
  146. if (pheader.type() != PT_LOAD)
  147. return;
  148. auto region_start = (FlatPtr)pheader.vaddr().as_ptr();
  149. auto region_end = region_start + pheader.size_in_memory();
  150. if (range.start == 0 || region_start < range.start)
  151. range.start = region_start;
  152. if (range.end == 0 || region_end > range.end)
  153. range.end = region_end;
  154. });
  155. VERIFY(range.end > range.start);
  156. return range;
  157. };
  158. static ErrorOr<FlatPtr> get_load_offset(const ElfW(Ehdr) & main_program_header, OpenFileDescription& main_program_description, OpenFileDescription* interpreter_description)
  159. {
  160. constexpr FlatPtr load_range_start = 0x08000000;
  161. constexpr FlatPtr load_range_size = 65536 * PAGE_SIZE; // 2**16 * PAGE_SIZE = 256MB
  162. constexpr FlatPtr minimum_load_offset_randomization_size = 10 * MiB;
  163. auto random_load_offset_in_range([](auto start, auto size) {
  164. return Memory::page_round_down(start + get_good_random<FlatPtr>() % size);
  165. });
  166. if (main_program_header.e_type == ET_DYN) {
  167. return random_load_offset_in_range(load_range_start, load_range_size);
  168. }
  169. if (main_program_header.e_type != ET_EXEC)
  170. return EINVAL;
  171. auto main_program_load_range = TRY(get_required_load_range(main_program_description));
  172. RequiredLoadRange selected_range {};
  173. if (interpreter_description) {
  174. auto interpreter_load_range = TRY(get_required_load_range(*interpreter_description));
  175. auto interpreter_size_in_memory = interpreter_load_range.end - interpreter_load_range.start;
  176. auto interpreter_load_range_end = load_range_start + load_range_size - interpreter_size_in_memory;
  177. // No intersection
  178. if (main_program_load_range.end < load_range_start || main_program_load_range.start > interpreter_load_range_end)
  179. return random_load_offset_in_range(load_range_start, load_range_size);
  180. RequiredLoadRange first_available_part = { load_range_start, main_program_load_range.start };
  181. RequiredLoadRange second_available_part = { main_program_load_range.end, interpreter_load_range_end };
  182. // Select larger part
  183. if (first_available_part.end - first_available_part.start > second_available_part.end - second_available_part.start)
  184. selected_range = first_available_part;
  185. else
  186. selected_range = second_available_part;
  187. } else
  188. selected_range = main_program_load_range;
  189. // If main program is too big and leaves us without enough space for adequate loader randomization
  190. if (selected_range.end - selected_range.start < minimum_load_offset_randomization_size)
  191. return E2BIG;
  192. return random_load_offset_in_range(selected_range.start, selected_range.end - selected_range.start);
  193. }
  194. enum class ShouldAllocateTls {
  195. No,
  196. Yes,
  197. };
  198. enum class ShouldAllowSyscalls {
  199. No,
  200. Yes,
  201. };
  202. static ErrorOr<LoadResult> load_elf_object(NonnullOwnPtr<Memory::AddressSpace> new_space, OpenFileDescription& object_description,
  203. FlatPtr load_offset, ShouldAllocateTls should_allocate_tls, ShouldAllowSyscalls should_allow_syscalls)
  204. {
  205. auto& inode = *(object_description.inode());
  206. auto vmobject = TRY(Memory::SharedInodeVMObject::try_create_with_inode(inode));
  207. if (vmobject->writable_mappings()) {
  208. dbgln("Refusing to execute a write-mapped program");
  209. return ETXTBSY;
  210. }
  211. size_t executable_size = inode.size();
  212. size_t rounded_executable_size = TRY(Memory::page_round_up(executable_size));
  213. auto executable_region = TRY(MM.allocate_kernel_region_with_vmobject(*vmobject, rounded_executable_size, "ELF loading", Memory::Region::Access::Read));
  214. auto elf_image = ELF::Image(executable_region->vaddr().as_ptr(), executable_size);
  215. if (!elf_image.is_valid())
  216. return ENOEXEC;
  217. Memory::Region* master_tls_region { nullptr };
  218. size_t master_tls_size = 0;
  219. size_t master_tls_alignment = 0;
  220. FlatPtr load_base_address = 0;
  221. auto elf_name = TRY(object_description.pseudo_path());
  222. VERIFY(!Processor::in_critical());
  223. Memory::MemoryManager::enter_address_space(*new_space);
  224. auto load_tls_section = [&](auto& program_header) -> ErrorOr<void> {
  225. VERIFY(should_allocate_tls == ShouldAllocateTls::Yes);
  226. VERIFY(program_header.size_in_memory());
  227. if (!elf_image.is_within_image(program_header.raw_data(), program_header.size_in_image())) {
  228. dbgln("Shenanigans! ELF PT_TLS header sneaks outside of executable.");
  229. return ENOEXEC;
  230. }
  231. auto range = TRY(new_space->try_allocate_range({}, program_header.size_in_memory()));
  232. auto region_name = TRY(KString::formatted("{} (master-tls)", elf_name));
  233. master_tls_region = TRY(new_space->allocate_region(range, region_name->view(), PROT_READ | PROT_WRITE, AllocationStrategy::Reserve));
  234. master_tls_size = program_header.size_in_memory();
  235. master_tls_alignment = program_header.alignment();
  236. TRY(copy_to_user(master_tls_region->vaddr().as_ptr(), program_header.raw_data(), program_header.size_in_image()));
  237. return {};
  238. };
  239. auto load_writable_section = [&](auto& program_header) -> ErrorOr<void> {
  240. // Writable section: create a copy in memory.
  241. VERIFY(program_header.alignment() == PAGE_SIZE);
  242. if (!elf_image.is_within_image(program_header.raw_data(), program_header.size_in_image())) {
  243. dbgln("Shenanigans! Writable ELF PT_LOAD header sneaks outside of executable.");
  244. return ENOEXEC;
  245. }
  246. int prot = 0;
  247. if (program_header.is_readable())
  248. prot |= PROT_READ;
  249. if (program_header.is_writable())
  250. prot |= PROT_WRITE;
  251. auto region_name = TRY(KString::formatted("{} (data-{}{})", elf_name, program_header.is_readable() ? "r" : "", program_header.is_writable() ? "w" : ""));
  252. auto range_base = VirtualAddress { Memory::page_round_down(program_header.vaddr().offset(load_offset).get()) };
  253. size_t rounded_range_end = TRY(Memory::page_round_up(program_header.vaddr().offset(load_offset).offset(program_header.size_in_memory()).get()));
  254. auto range_end = VirtualAddress { rounded_range_end };
  255. auto range = TRY(new_space->try_allocate_range(range_base, range_end.get() - range_base.get()));
  256. auto region = TRY(new_space->allocate_region(range, region_name->view(), prot, AllocationStrategy::Reserve));
  257. // It's not always the case with PIE executables (and very well shouldn't be) that the
  258. // virtual address in the program header matches the one we end up giving the process.
  259. // In order to copy the data image correctly into memory, we need to copy the data starting at
  260. // the right initial page offset into the pages allocated for the elf_alloc-XX section.
  261. // FIXME: There's an opportunity to munmap, or at least mprotect, the padding space between
  262. // the .text and .data PT_LOAD sections of the executable.
  263. // Accessing it would definitely be a bug.
  264. auto page_offset = program_header.vaddr();
  265. page_offset.mask(~PAGE_MASK);
  266. TRY(copy_to_user((u8*)region->vaddr().as_ptr() + page_offset.get(), program_header.raw_data(), program_header.size_in_image()));
  267. return {};
  268. };
  269. auto load_section = [&](auto& program_header) -> ErrorOr<void> {
  270. if (program_header.size_in_memory() == 0)
  271. return {};
  272. if (program_header.is_writable())
  273. return load_writable_section(program_header);
  274. // Non-writable section: map the executable itself in memory.
  275. VERIFY(program_header.alignment() == PAGE_SIZE);
  276. int prot = 0;
  277. if (program_header.is_readable())
  278. prot |= PROT_READ;
  279. if (program_header.is_writable())
  280. prot |= PROT_WRITE;
  281. if (program_header.is_executable())
  282. prot |= PROT_EXEC;
  283. auto range_base = VirtualAddress { Memory::page_round_down(program_header.vaddr().offset(load_offset).get()) };
  284. size_t rounded_range_end = TRY(Memory::page_round_up(program_header.vaddr().offset(load_offset).offset(program_header.size_in_memory()).get()));
  285. auto range_end = VirtualAddress { rounded_range_end };
  286. auto range = TRY(new_space->try_allocate_range(range_base, range_end.get() - range_base.get()));
  287. auto region = TRY(new_space->allocate_region_with_vmobject(range, *vmobject, program_header.offset(), elf_name->view(), prot, true));
  288. if (should_allow_syscalls == ShouldAllowSyscalls::Yes)
  289. region->set_syscall_region(true);
  290. if (program_header.offset() == 0)
  291. load_base_address = (FlatPtr)region->vaddr().as_ptr();
  292. return {};
  293. };
  294. auto load_elf_program_header = [&](auto& program_header) -> ErrorOr<void> {
  295. if (program_header.type() == PT_TLS)
  296. return load_tls_section(program_header);
  297. if (program_header.type() == PT_LOAD)
  298. return load_section(program_header);
  299. // NOTE: We ignore other program header types.
  300. return {};
  301. };
  302. TRY([&] {
  303. ErrorOr<void> result;
  304. elf_image.for_each_program_header([&](ELF::Image::ProgramHeader const& program_header) {
  305. result = load_elf_program_header(program_header);
  306. return result.is_error() ? IterationDecision::Break : IterationDecision::Continue;
  307. });
  308. return result;
  309. }());
  310. if (!elf_image.entry().offset(load_offset).get()) {
  311. dbgln("do_exec: Failure loading program, entry pointer is invalid! {})", elf_image.entry().offset(load_offset));
  312. return ENOEXEC;
  313. }
  314. auto stack_range = TRY(new_space->try_allocate_range({}, Thread::default_userspace_stack_size));
  315. auto* stack_region = TRY(new_space->allocate_region(stack_range, "Stack (Main thread)", PROT_READ | PROT_WRITE, AllocationStrategy::Reserve));
  316. stack_region->set_stack(true);
  317. return LoadResult {
  318. move(new_space),
  319. load_base_address,
  320. elf_image.entry().offset(load_offset).get(),
  321. executable_size,
  322. AK::try_make_weak_ptr(master_tls_region),
  323. master_tls_size,
  324. master_tls_alignment,
  325. stack_region->make_weak_ptr()
  326. };
  327. }
  328. ErrorOr<LoadResult>
  329. Process::load(NonnullRefPtr<OpenFileDescription> main_program_description,
  330. RefPtr<OpenFileDescription> interpreter_description, const ElfW(Ehdr) & main_program_header)
  331. {
  332. auto new_space = TRY(Memory::AddressSpace::try_create(nullptr));
  333. ScopeGuard space_guard([&]() {
  334. Memory::MemoryManager::enter_process_address_space(*this);
  335. });
  336. auto load_offset = TRY(get_load_offset(main_program_header, main_program_description, interpreter_description));
  337. if (interpreter_description.is_null()) {
  338. auto load_result = TRY(load_elf_object(move(new_space), main_program_description, load_offset, ShouldAllocateTls::Yes, ShouldAllowSyscalls::No));
  339. m_master_tls_region = load_result.tls_region;
  340. m_master_tls_size = load_result.tls_size;
  341. m_master_tls_alignment = load_result.tls_alignment;
  342. return load_result;
  343. }
  344. auto interpreter_load_result = TRY(load_elf_object(move(new_space), *interpreter_description, load_offset, ShouldAllocateTls::No, ShouldAllowSyscalls::Yes));
  345. // TLS allocation will be done in userspace by the loader
  346. VERIFY(!interpreter_load_result.tls_region);
  347. VERIFY(!interpreter_load_result.tls_alignment);
  348. VERIFY(!interpreter_load_result.tls_size);
  349. return interpreter_load_result;
  350. }
  351. ErrorOr<void> Process::do_exec(NonnullRefPtr<OpenFileDescription> main_program_description, NonnullOwnPtrVector<KString> arguments, NonnullOwnPtrVector<KString> environment,
  352. RefPtr<OpenFileDescription> interpreter_description, Thread*& new_main_thread, u32& prev_flags, const ElfW(Ehdr) & main_program_header)
  353. {
  354. VERIFY(is_user_process());
  355. VERIFY(!Processor::in_critical());
  356. // Although we *could* handle a pseudo_path here, trying to execute something that doesn't have
  357. // a custody (e.g. BlockDevice or RandomDevice) is pretty suspicious anyway.
  358. auto path = TRY(main_program_description->original_absolute_path());
  359. dbgln_if(EXEC_DEBUG, "do_exec: {}", path);
  360. // FIXME: How much stack space does process startup need?
  361. if (!validate_stack_size(arguments, environment))
  362. return E2BIG;
  363. // FIXME: split_view() currently allocates (Vector) without checking for failure.
  364. auto parts = path->view().split_view('/');
  365. if (parts.is_empty())
  366. return ENOENT;
  367. auto new_process_name = TRY(KString::try_create(parts.last()));
  368. auto new_main_thread_name = TRY(new_process_name->try_clone());
  369. auto load_result = TRY(load(main_program_description, interpreter_description, main_program_header));
  370. // NOTE: We don't need the interpreter executable description after this point.
  371. // We destroy it here to prevent it from getting destroyed when we return from this function.
  372. // That's important because when we're returning from this function, we're in a very delicate
  373. // state where we can't block (e.g by trying to acquire a mutex in description teardown.)
  374. bool has_interpreter = interpreter_description;
  375. interpreter_description = nullptr;
  376. auto signal_trampoline_range = TRY(load_result.space->try_allocate_range({}, PAGE_SIZE));
  377. auto* signal_trampoline_region = TRY(load_result.space->allocate_region_with_vmobject(signal_trampoline_range, g_signal_trampoline_region->vmobject(), 0, "Signal trampoline", PROT_READ | PROT_EXEC, true));
  378. signal_trampoline_region->set_syscall_region(true);
  379. // (For dynamically linked executable) Allocate an FD for passing the main executable to the dynamic loader.
  380. Optional<ScopedDescriptionAllocation> main_program_fd_allocation;
  381. if (has_interpreter)
  382. main_program_fd_allocation = TRY(m_fds.allocate());
  383. // We commit to the new executable at this point. There is no turning back!
  384. // Prevent other processes from attaching to us with ptrace while we're doing this.
  385. MutexLocker ptrace_locker(ptrace_lock());
  386. // Disable profiling temporarily in case it's running on this process.
  387. auto was_profiling = m_profiling;
  388. TemporaryChange profiling_disabler(m_profiling, false);
  389. kill_threads_except_self();
  390. bool executable_is_setid = false;
  391. if (!(main_program_description->custody()->mount_flags() & MS_NOSUID)) {
  392. auto main_program_metadata = main_program_description->metadata();
  393. if (main_program_metadata.is_setuid()) {
  394. executable_is_setid = true;
  395. ProtectedDataMutationScope scope { *this };
  396. m_protected_values.euid = main_program_metadata.uid;
  397. m_protected_values.suid = main_program_metadata.uid;
  398. }
  399. if (main_program_metadata.is_setgid()) {
  400. executable_is_setid = true;
  401. ProtectedDataMutationScope scope { *this };
  402. m_protected_values.egid = main_program_metadata.gid;
  403. m_protected_values.sgid = main_program_metadata.gid;
  404. }
  405. }
  406. set_dumpable(!executable_is_setid);
  407. // We make sure to enter the new address space before destroying the old one.
  408. // This ensures that the process always has a valid page directory.
  409. Memory::MemoryManager::enter_address_space(*load_result.space);
  410. m_space = load_result.space.release_nonnull();
  411. m_executable = main_program_description->custody();
  412. m_arguments = move(arguments);
  413. m_environment = move(environment);
  414. m_veil_state = VeilState::None;
  415. m_unveiled_paths.clear();
  416. m_unveiled_paths.set_metadata({ "/", UnveilAccess::None, false });
  417. for (auto& property : m_coredump_properties)
  418. property = {};
  419. auto* current_thread = Thread::current();
  420. current_thread->reset_signals_for_exec();
  421. clear_futex_queues_on_exec();
  422. fds().change_each([&](auto& file_description_metadata) {
  423. if (file_description_metadata.is_valid() && file_description_metadata.flags() & FD_CLOEXEC)
  424. file_description_metadata = {};
  425. });
  426. if (main_program_fd_allocation.has_value()) {
  427. main_program_description->set_readable(true);
  428. m_fds[main_program_fd_allocation->fd].set(move(main_program_description), FD_CLOEXEC);
  429. }
  430. new_main_thread = nullptr;
  431. if (&current_thread->process() == this) {
  432. new_main_thread = current_thread;
  433. } else {
  434. for_each_thread([&](auto& thread) {
  435. new_main_thread = &thread;
  436. return IterationDecision::Break;
  437. });
  438. }
  439. VERIFY(new_main_thread);
  440. auto auxv = generate_auxiliary_vector(load_result.load_base, load_result.entry_eip, uid(), euid(), gid(), egid(), path->view(), main_program_fd_allocation);
  441. // NOTE: We create the new stack before disabling interrupts since it will zero-fault
  442. // and we don't want to deal with faults after this point.
  443. auto new_userspace_sp = TRY(make_userspace_context_for_main_thread(new_main_thread->regs(), *load_result.stack_region.unsafe_ptr(), m_arguments, m_environment, move(auxv)));
  444. if (wait_for_tracer_at_next_execve()) {
  445. // Make sure we release the ptrace lock here or the tracer will block forever.
  446. ptrace_locker.unlock();
  447. Thread::current()->send_urgent_signal_to_self(SIGSTOP);
  448. } else {
  449. // Unlock regardless before disabling interrupts.
  450. // Ensure we always unlock after checking ptrace status to avoid TOCTOU ptrace issues
  451. ptrace_locker.unlock();
  452. }
  453. // We enter a critical section here because we don't want to get interrupted between do_exec()
  454. // and Processor::assume_context() or the next context switch.
  455. // If we used an InterruptDisabler that sti()'d on exit, we might timer tick'd too soon in exec().
  456. Processor::enter_critical();
  457. prev_flags = cpu_flags();
  458. cli();
  459. // NOTE: Be careful to not trigger any page faults below!
  460. m_name = move(new_process_name);
  461. new_main_thread->set_name(move(new_main_thread_name));
  462. {
  463. ProtectedDataMutationScope scope { *this };
  464. m_protected_values.promises = m_protected_values.execpromises.load();
  465. m_protected_values.has_promises = m_protected_values.has_execpromises.load();
  466. m_protected_values.execpromises = 0;
  467. m_protected_values.has_execpromises = false;
  468. m_protected_values.signal_trampoline = signal_trampoline_region->vaddr();
  469. // FIXME: PID/TID ISSUE
  470. m_protected_values.pid = new_main_thread->tid().value();
  471. }
  472. auto tsr_result = new_main_thread->make_thread_specific_region({});
  473. if (tsr_result.is_error()) {
  474. // FIXME: We cannot fail this late. Refactor this so the allocation happens before we commit to the new executable.
  475. VERIFY_NOT_REACHED();
  476. }
  477. new_main_thread->reset_fpu_state();
  478. auto& regs = new_main_thread->m_regs;
  479. #if ARCH(I386)
  480. regs.cs = GDT_SELECTOR_CODE3 | 3;
  481. regs.ds = GDT_SELECTOR_DATA3 | 3;
  482. regs.es = GDT_SELECTOR_DATA3 | 3;
  483. regs.ss = GDT_SELECTOR_DATA3 | 3;
  484. regs.fs = GDT_SELECTOR_DATA3 | 3;
  485. regs.gs = GDT_SELECTOR_TLS | 3;
  486. regs.eip = load_result.entry_eip;
  487. regs.esp = new_userspace_sp;
  488. #else
  489. regs.rip = load_result.entry_eip;
  490. regs.rsp = new_userspace_sp;
  491. #endif
  492. regs.cr3 = address_space().page_directory().cr3();
  493. {
  494. TemporaryChange profiling_disabler(m_profiling, was_profiling);
  495. PerformanceManager::add_process_exec_event(*this);
  496. }
  497. {
  498. SpinlockLocker lock(g_scheduler_lock);
  499. new_main_thread->set_state(Thread::State::Runnable);
  500. }
  501. u32 lock_count_to_restore;
  502. [[maybe_unused]] auto rc = big_lock().force_unlock_if_locked(lock_count_to_restore);
  503. VERIFY_INTERRUPTS_DISABLED();
  504. VERIFY(Processor::in_critical());
  505. return {};
  506. }
  507. static Vector<ELF::AuxiliaryValue> generate_auxiliary_vector(FlatPtr load_base, FlatPtr entry_eip, UserID uid, UserID euid, GroupID gid, GroupID egid, StringView executable_path, Optional<Process::ScopedDescriptionAllocation> const& main_program_fd_allocation)
  508. {
  509. Vector<ELF::AuxiliaryValue> auxv;
  510. // PHDR/EXECFD
  511. // PH*
  512. auxv.append({ ELF::AuxiliaryValue::PageSize, PAGE_SIZE });
  513. auxv.append({ ELF::AuxiliaryValue::BaseAddress, (void*)load_base });
  514. auxv.append({ ELF::AuxiliaryValue::Entry, (void*)entry_eip });
  515. // NOTELF
  516. auxv.append({ ELF::AuxiliaryValue::Uid, (long)uid.value() });
  517. auxv.append({ ELF::AuxiliaryValue::EUid, (long)euid.value() });
  518. auxv.append({ ELF::AuxiliaryValue::Gid, (long)gid.value() });
  519. auxv.append({ ELF::AuxiliaryValue::EGid, (long)egid.value() });
  520. auxv.append({ ELF::AuxiliaryValue::Platform, Processor::platform_string() });
  521. // FIXME: This is platform specific
  522. auxv.append({ ELF::AuxiliaryValue::HwCap, (long)CPUID(1).edx() });
  523. auxv.append({ ELF::AuxiliaryValue::ClockTick, (long)TimeManagement::the().ticks_per_second() });
  524. // FIXME: Also take into account things like extended filesystem permissions? That's what linux does...
  525. auxv.append({ ELF::AuxiliaryValue::Secure, ((uid != euid) || (gid != egid)) ? 1 : 0 });
  526. char random_bytes[16] {};
  527. get_fast_random_bytes({ (u8*)random_bytes, sizeof(random_bytes) });
  528. auxv.append({ ELF::AuxiliaryValue::Random, String(random_bytes, sizeof(random_bytes)) });
  529. auxv.append({ ELF::AuxiliaryValue::ExecFilename, executable_path });
  530. if (main_program_fd_allocation.has_value())
  531. auxv.append({ ELF::AuxiliaryValue::ExecFileDescriptor, main_program_fd_allocation->fd });
  532. auxv.append({ ELF::AuxiliaryValue::Null, 0L });
  533. return auxv;
  534. }
  535. static ErrorOr<NonnullOwnPtrVector<KString>> find_shebang_interpreter_for_executable(char const first_page[], size_t nread)
  536. {
  537. int word_start = 2;
  538. size_t word_length = 0;
  539. if (nread > 2 && first_page[0] == '#' && first_page[1] == '!') {
  540. NonnullOwnPtrVector<KString> interpreter_words;
  541. for (size_t i = 2; i < nread; ++i) {
  542. if (first_page[i] == '\n') {
  543. break;
  544. }
  545. if (first_page[i] != ' ') {
  546. ++word_length;
  547. }
  548. if (first_page[i] == ' ') {
  549. if (word_length > 0) {
  550. auto word = TRY(KString::try_create(StringView { &first_page[word_start], word_length }));
  551. interpreter_words.append(move(word));
  552. }
  553. word_length = 0;
  554. word_start = i + 1;
  555. }
  556. }
  557. if (word_length > 0) {
  558. auto word = TRY(KString::try_create(StringView { &first_page[word_start], word_length }));
  559. interpreter_words.append(move(word));
  560. }
  561. if (!interpreter_words.is_empty())
  562. return interpreter_words;
  563. }
  564. return ENOEXEC;
  565. }
  566. ErrorOr<RefPtr<OpenFileDescription>> Process::find_elf_interpreter_for_executable(StringView path, ElfW(Ehdr) const& main_executable_header, size_t main_executable_header_size, size_t file_size)
  567. {
  568. // Not using ErrorOr here because we'll want to do the same thing in userspace in the RTLD
  569. String interpreter_path;
  570. if (!ELF::validate_program_headers(main_executable_header, file_size, (u8 const*)&main_executable_header, main_executable_header_size, &interpreter_path)) {
  571. dbgln("exec({}): File has invalid ELF Program headers", path);
  572. return ENOEXEC;
  573. }
  574. if (!interpreter_path.is_empty()) {
  575. dbgln_if(EXEC_DEBUG, "exec({}): Using program interpreter {}", path, interpreter_path);
  576. auto interpreter_description = TRY(VirtualFileSystem::the().open(interpreter_path, O_EXEC, 0, current_directory()));
  577. auto interp_metadata = interpreter_description->metadata();
  578. VERIFY(interpreter_description->inode());
  579. // Validate the program interpreter as a valid elf binary.
  580. // If your program interpreter is a #! file or something, it's time to stop playing games :)
  581. if (interp_metadata.size < (int)sizeof(ElfW(Ehdr)))
  582. return ENOEXEC;
  583. char first_page[PAGE_SIZE] = {};
  584. auto first_page_buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&first_page);
  585. auto nread = TRY(interpreter_description->read(first_page_buffer, sizeof(first_page)));
  586. if (nread < sizeof(ElfW(Ehdr)))
  587. return ENOEXEC;
  588. auto* elf_header = (ElfW(Ehdr)*)first_page;
  589. if (!ELF::validate_elf_header(*elf_header, interp_metadata.size)) {
  590. dbgln("exec({}): Interpreter ({}) has invalid ELF header", path, interpreter_path);
  591. return ENOEXEC;
  592. }
  593. // Not using ErrorOr here because we'll want to do the same thing in userspace in the RTLD
  594. String interpreter_interpreter_path;
  595. if (!ELF::validate_program_headers(*elf_header, interp_metadata.size, (u8*)first_page, nread, &interpreter_interpreter_path)) {
  596. dbgln("exec({}): Interpreter ({}) has invalid ELF Program headers", path, interpreter_path);
  597. return ENOEXEC;
  598. }
  599. if (!interpreter_interpreter_path.is_empty()) {
  600. dbgln("exec({}): Interpreter ({}) has its own interpreter ({})! No thank you!", path, interpreter_path, interpreter_interpreter_path);
  601. return ELOOP;
  602. }
  603. return interpreter_description;
  604. }
  605. if (main_executable_header.e_type == ET_REL) {
  606. // We can't exec an ET_REL, that's just an object file from the compiler
  607. return ENOEXEC;
  608. }
  609. if (main_executable_header.e_type == ET_DYN) {
  610. // If it's ET_DYN with no PT_INTERP, then it's a dynamic executable responsible
  611. // for its own relocation (i.e. it's /usr/lib/Loader.so)
  612. if (path != "/usr/lib/Loader.so")
  613. dbgln("exec({}): WARNING - Dynamic ELF executable without a PT_INTERP header, and isn't /usr/lib/Loader.so", path);
  614. return nullptr;
  615. }
  616. // No interpreter, but, path refers to a valid elf image
  617. return nullptr;
  618. }
  619. ErrorOr<void> Process::exec(NonnullOwnPtr<KString> path, NonnullOwnPtrVector<KString> arguments, NonnullOwnPtrVector<KString> environment, int recursion_depth)
  620. {
  621. if (recursion_depth > 2) {
  622. dbgln("exec({}): SHENANIGANS! recursed too far trying to find #! interpreter", path);
  623. return ELOOP;
  624. }
  625. // Open the file to check what kind of binary format it is
  626. // Currently supported formats:
  627. // - #! interpreted file
  628. // - ELF32
  629. // * ET_EXEC binary that just gets loaded
  630. // * ET_DYN binary that requires a program interpreter
  631. //
  632. auto description = TRY(VirtualFileSystem::the().open(path->view(), O_EXEC, 0, current_directory()));
  633. auto metadata = description->metadata();
  634. if (!metadata.is_regular_file())
  635. return EACCES;
  636. // Always gonna need at least 3 bytes. these are for #!X
  637. if (metadata.size < 3)
  638. return ENOEXEC;
  639. VERIFY(description->inode());
  640. // Read the first page of the program into memory so we can validate the binfmt of it
  641. char first_page[PAGE_SIZE];
  642. auto first_page_buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&first_page);
  643. auto nread = TRY(description->read(first_page_buffer, sizeof(first_page)));
  644. // 1) #! interpreted file
  645. auto shebang_result = find_shebang_interpreter_for_executable(first_page, nread);
  646. if (!shebang_result.is_error()) {
  647. auto shebang_words = shebang_result.release_value();
  648. auto shebang_path = TRY(shebang_words.first().try_clone());
  649. arguments.ptr_at(0) = move(path);
  650. TRY(arguments.try_prepend(move(shebang_words)));
  651. return exec(move(shebang_path), move(arguments), move(environment), ++recursion_depth);
  652. }
  653. // #2) ELF32 for i386
  654. if (nread < sizeof(ElfW(Ehdr)))
  655. return ENOEXEC;
  656. auto const* main_program_header = (ElfW(Ehdr)*)first_page;
  657. if (!ELF::validate_elf_header(*main_program_header, metadata.size)) {
  658. dbgln("exec({}): File has invalid ELF header", path);
  659. return ENOEXEC;
  660. }
  661. // The bulk of exec() is done by do_exec(), which ensures that all locals
  662. // are cleaned up by the time we yield-teleport below.
  663. Thread* new_main_thread = nullptr;
  664. u32 prev_flags = 0;
  665. auto interpreter_description = TRY(find_elf_interpreter_for_executable(path->view(), *main_program_header, nread, metadata.size));
  666. TRY(do_exec(move(description), move(arguments), move(environment), move(interpreter_description), new_main_thread, prev_flags, *main_program_header));
  667. VERIFY_INTERRUPTS_DISABLED();
  668. VERIFY(Processor::in_critical());
  669. auto* current_thread = Thread::current();
  670. if (current_thread == new_main_thread) {
  671. // We need to enter the scheduler lock before changing the state
  672. // and it will be released after the context switch into that
  673. // thread. We should also still be in our critical section
  674. VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
  675. VERIFY(Processor::in_critical() == 1);
  676. g_scheduler_lock.lock();
  677. current_thread->set_state(Thread::State::Running);
  678. Processor::assume_context(*current_thread, prev_flags);
  679. VERIFY_NOT_REACHED();
  680. }
  681. // NOTE: This code path is taken in the non-syscall case, i.e when the kernel spawns
  682. // a userspace process directly (such as /bin/SystemServer on startup)
  683. if (prev_flags & 0x200)
  684. sti();
  685. Processor::leave_critical();
  686. return {};
  687. }
  688. ErrorOr<FlatPtr> Process::sys$execve(Userspace<const Syscall::SC_execve_params*> user_params)
  689. {
  690. VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
  691. TRY(require_promise(Pledge::exec));
  692. // NOTE: Be extremely careful with allocating any kernel memory in exec().
  693. // On success, the kernel stack will be lost.
  694. auto params = TRY(copy_typed_from_user(user_params));
  695. if (params.arguments.length > ARG_MAX || params.environment.length > ARG_MAX)
  696. return E2BIG;
  697. auto path = TRY(get_syscall_path_argument(params.path));
  698. auto copy_user_strings = [](const auto& list, auto& output) -> ErrorOr<void> {
  699. if (!list.length)
  700. return {};
  701. Checked<size_t> size = sizeof(*list.strings);
  702. size *= list.length;
  703. if (size.has_overflow())
  704. return EOVERFLOW;
  705. Vector<Syscall::StringArgument, 32> strings;
  706. TRY(strings.try_resize(list.length));
  707. TRY(copy_from_user(strings.data(), list.strings, size.value()));
  708. for (size_t i = 0; i < list.length; ++i) {
  709. auto string = TRY(try_copy_kstring_from_user(strings[i]));
  710. TRY(output.try_append(move(string)));
  711. }
  712. return {};
  713. };
  714. NonnullOwnPtrVector<KString> arguments;
  715. TRY(copy_user_strings(params.arguments, arguments));
  716. NonnullOwnPtrVector<KString> environment;
  717. TRY(copy_user_strings(params.environment, environment));
  718. TRY(exec(move(path), move(arguments), move(environment)));
  719. // We should never continue after a successful exec!
  720. VERIFY_NOT_REACHED();
  721. }
  722. }