Region.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Memory.h>
  7. #include <AK/StringView.h>
  8. #include <Kernel/Debug.h>
  9. #include <Kernel/FileSystem/Inode.h>
  10. #include <Kernel/Panic.h>
  11. #include <Kernel/Process.h>
  12. #include <Kernel/Thread.h>
  13. #include <Kernel/VM/AnonymousVMObject.h>
  14. #include <Kernel/VM/MemoryManager.h>
  15. #include <Kernel/VM/PageDirectory.h>
  16. #include <Kernel/VM/Region.h>
  17. #include <Kernel/VM/SharedInodeVMObject.h>
  18. namespace Kernel {
  19. Region::Region(const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  20. : PurgeablePageRanges(vmobject)
  21. , m_range(range)
  22. , m_offset_in_vmobject(offset_in_vmobject)
  23. , m_vmobject(move(vmobject))
  24. , m_name(move(name))
  25. , m_access(access | ((access & 0x7) << 4))
  26. , m_shared(shared)
  27. , m_cacheable(cacheable == Cacheable::Yes)
  28. {
  29. VERIFY(m_range.base().is_page_aligned());
  30. VERIFY(m_range.size());
  31. VERIFY((m_range.size() % PAGE_SIZE) == 0);
  32. m_vmobject->ref_region();
  33. register_purgeable_page_ranges();
  34. MM.register_region(*this);
  35. }
  36. Region::~Region()
  37. {
  38. m_vmobject->unref_region();
  39. unregister_purgeable_page_ranges();
  40. // Make sure we disable interrupts so we don't get interrupted between unmapping and unregistering.
  41. // Unmapping the region will give the VM back to the RangeAllocator, so an interrupt handler would
  42. // find the address<->region mappings in an invalid state there.
  43. ScopedSpinLock lock(s_mm_lock);
  44. if (m_page_directory) {
  45. unmap(ShouldDeallocateVirtualMemoryRange::Yes);
  46. VERIFY(!m_page_directory);
  47. }
  48. MM.unregister_region(*this);
  49. }
  50. void Region::register_purgeable_page_ranges()
  51. {
  52. if (m_vmobject->is_anonymous()) {
  53. auto& vmobject = static_cast<AnonymousVMObject&>(*m_vmobject);
  54. vmobject.register_purgeable_page_ranges(*this);
  55. }
  56. }
  57. void Region::unregister_purgeable_page_ranges()
  58. {
  59. if (m_vmobject->is_anonymous()) {
  60. auto& vmobject = static_cast<AnonymousVMObject&>(*m_vmobject);
  61. vmobject.unregister_purgeable_page_ranges(*this);
  62. }
  63. }
  64. OwnPtr<Region> Region::clone(Process& new_owner)
  65. {
  66. VERIFY(Process::current());
  67. ScopedSpinLock lock(s_mm_lock);
  68. if (m_shared) {
  69. VERIFY(!m_stack);
  70. if (vmobject().is_inode())
  71. VERIFY(vmobject().is_shared_inode());
  72. // Create a new region backed by the same VMObject.
  73. auto region = Region::create_user_accessible(
  74. &new_owner, m_range, m_vmobject, m_offset_in_vmobject, m_name ? m_name->try_clone() : OwnPtr<KString> {}, access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared);
  75. if (m_vmobject->is_anonymous())
  76. region->copy_purgeable_page_ranges(*this);
  77. region->set_mmap(m_mmap);
  78. region->set_shared(m_shared);
  79. region->set_syscall_region(is_syscall_region());
  80. return region;
  81. }
  82. if (vmobject().is_inode())
  83. VERIFY(vmobject().is_private_inode());
  84. auto vmobject_clone = vmobject().clone();
  85. if (!vmobject_clone)
  86. return {};
  87. // Set up a COW region. The parent (this) region becomes COW as well!
  88. remap();
  89. auto clone_region = Region::create_user_accessible(
  90. &new_owner, m_range, vmobject_clone.release_nonnull(), m_offset_in_vmobject, m_name ? m_name->try_clone() : OwnPtr<KString> {}, access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared);
  91. if (m_vmobject->is_anonymous())
  92. clone_region->copy_purgeable_page_ranges(*this);
  93. if (m_stack) {
  94. VERIFY(is_readable());
  95. VERIFY(is_writable());
  96. VERIFY(vmobject().is_anonymous());
  97. clone_region->set_stack(true);
  98. }
  99. clone_region->set_syscall_region(is_syscall_region());
  100. clone_region->set_mmap(m_mmap);
  101. return clone_region;
  102. }
  103. void Region::set_vmobject(NonnullRefPtr<VMObject>&& obj)
  104. {
  105. if (m_vmobject.ptr() == obj.ptr())
  106. return;
  107. unregister_purgeable_page_ranges();
  108. m_vmobject->unref_region();
  109. m_vmobject = move(obj);
  110. m_vmobject->ref_region();
  111. register_purgeable_page_ranges();
  112. }
  113. bool Region::is_volatile(VirtualAddress vaddr, size_t size) const
  114. {
  115. if (!m_vmobject->is_anonymous())
  116. return false;
  117. auto offset_in_vmobject = vaddr.get() - (this->vaddr().get() - m_offset_in_vmobject);
  118. size_t first_page_index = page_round_down(offset_in_vmobject) / PAGE_SIZE;
  119. size_t last_page_index = page_round_up(offset_in_vmobject + size) / PAGE_SIZE;
  120. return is_volatile_range({ first_page_index, last_page_index - first_page_index });
  121. }
  122. auto Region::set_volatile(VirtualAddress vaddr, size_t size, bool is_volatile, bool& was_purged) -> SetVolatileError
  123. {
  124. was_purged = false;
  125. if (!m_vmobject->is_anonymous())
  126. return SetVolatileError::NotPurgeable;
  127. auto offset_in_vmobject = vaddr.get() - (this->vaddr().get() - m_offset_in_vmobject);
  128. if (is_volatile) {
  129. // If marking pages as volatile, be prudent by not marking
  130. // partial pages volatile to prevent potentially non-volatile
  131. // data to be discarded. So rund up the first page and round
  132. // down the last page.
  133. size_t first_page_index = page_round_up(offset_in_vmobject) / PAGE_SIZE;
  134. size_t last_page_index = page_round_down(offset_in_vmobject + size) / PAGE_SIZE;
  135. if (first_page_index != last_page_index)
  136. add_volatile_range({ first_page_index, last_page_index - first_page_index });
  137. } else {
  138. // If marking pages as non-volatile, round down the first page
  139. // and round up the last page to make sure the beginning and
  140. // end of the range doesn't inadvertedly get discarded.
  141. size_t first_page_index = page_round_down(offset_in_vmobject) / PAGE_SIZE;
  142. size_t last_page_index = page_round_up(offset_in_vmobject + size) / PAGE_SIZE;
  143. switch (remove_volatile_range({ first_page_index, last_page_index - first_page_index }, was_purged)) {
  144. case PurgeablePageRanges::RemoveVolatileError::Success:
  145. case PurgeablePageRanges::RemoveVolatileError::SuccessNoChange:
  146. break;
  147. case PurgeablePageRanges::RemoveVolatileError::OutOfMemory:
  148. return SetVolatileError::OutOfMemory;
  149. }
  150. }
  151. return SetVolatileError::Success;
  152. }
  153. size_t Region::cow_pages() const
  154. {
  155. if (!vmobject().is_anonymous())
  156. return 0;
  157. return static_cast<const AnonymousVMObject&>(vmobject()).cow_pages();
  158. }
  159. size_t Region::amount_dirty() const
  160. {
  161. if (!vmobject().is_inode())
  162. return amount_resident();
  163. return static_cast<const InodeVMObject&>(vmobject()).amount_dirty();
  164. }
  165. size_t Region::amount_resident() const
  166. {
  167. size_t bytes = 0;
  168. for (size_t i = 0; i < page_count(); ++i) {
  169. auto* page = physical_page(i);
  170. if (page && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  171. bytes += PAGE_SIZE;
  172. }
  173. return bytes;
  174. }
  175. size_t Region::amount_shared() const
  176. {
  177. size_t bytes = 0;
  178. for (size_t i = 0; i < page_count(); ++i) {
  179. auto* page = physical_page(i);
  180. if (page && page->ref_count() > 1 && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  181. bytes += PAGE_SIZE;
  182. }
  183. return bytes;
  184. }
  185. NonnullOwnPtr<Region> Region::create_user_accessible(Process* owner, const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  186. {
  187. auto region = adopt_own_if_nonnull(new Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, shared));
  188. if (region && owner)
  189. region->m_owner = owner->make_weak_ptr();
  190. // FIXME: Return OwnPtr and propagate failure, currently there are too many assumptions made by down stream callers.
  191. return region.release_nonnull();
  192. }
  193. OwnPtr<Region> Region::create_kernel_only(const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable)
  194. {
  195. return adopt_own_if_nonnull(new Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, false));
  196. }
  197. bool Region::should_cow(size_t page_index) const
  198. {
  199. if (!vmobject().is_anonymous())
  200. return false;
  201. return static_cast<const AnonymousVMObject&>(vmobject()).should_cow(first_page_index() + page_index, m_shared);
  202. }
  203. void Region::set_should_cow(size_t page_index, bool cow)
  204. {
  205. VERIFY(!m_shared);
  206. if (vmobject().is_anonymous())
  207. static_cast<AnonymousVMObject&>(vmobject()).set_should_cow(first_page_index() + page_index, cow);
  208. }
  209. bool Region::map_individual_page_impl(size_t page_index)
  210. {
  211. VERIFY(m_page_directory->get_lock().own_lock());
  212. auto page_vaddr = vaddr_from_page_index(page_index);
  213. bool user_allowed = page_vaddr.get() >= 0x00800000 && is_user_address(page_vaddr);
  214. if (is_mmap() && !user_allowed) {
  215. PANIC("About to map mmap'ed page at a kernel address");
  216. }
  217. auto* pte = MM.ensure_pte(*m_page_directory, page_vaddr);
  218. if (!pte)
  219. return false;
  220. auto* page = physical_page(page_index);
  221. if (!page || (!is_readable() && !is_writable())) {
  222. pte->clear();
  223. } else {
  224. pte->set_cache_disabled(!m_cacheable);
  225. pte->set_physical_page_base(page->paddr().get());
  226. pte->set_present(true);
  227. if (page->is_shared_zero_page() || page->is_lazy_committed_page() || should_cow(page_index))
  228. pte->set_writable(false);
  229. else
  230. pte->set_writable(is_writable());
  231. if (Processor::current().has_feature(CPUFeature::NX))
  232. pte->set_execute_disabled(!is_executable());
  233. pte->set_user_allowed(user_allowed);
  234. }
  235. return true;
  236. }
  237. bool Region::do_remap_vmobject_page_range(size_t page_index, size_t page_count)
  238. {
  239. bool success = true;
  240. VERIFY(s_mm_lock.own_lock());
  241. if (!m_page_directory)
  242. return success; // not an error, region may have not yet mapped it
  243. if (!translate_vmobject_page_range(page_index, page_count))
  244. return success; // not an error, region doesn't map this page range
  245. ScopedSpinLock page_lock(m_page_directory->get_lock());
  246. size_t index = page_index;
  247. while (index < page_index + page_count) {
  248. if (!map_individual_page_impl(index)) {
  249. success = false;
  250. break;
  251. }
  252. index++;
  253. }
  254. if (index > page_index)
  255. MM.flush_tlb(m_page_directory, vaddr_from_page_index(page_index), index - page_index);
  256. return success;
  257. }
  258. bool Region::remap_vmobject_page_range(size_t page_index, size_t page_count)
  259. {
  260. bool success = true;
  261. ScopedSpinLock lock(s_mm_lock);
  262. auto& vmobject = this->vmobject();
  263. if (vmobject.is_shared_by_multiple_regions()) {
  264. vmobject.for_each_region([&](auto& region) {
  265. if (!region.do_remap_vmobject_page_range(page_index, page_count))
  266. success = false;
  267. });
  268. } else {
  269. if (!do_remap_vmobject_page_range(page_index, page_count))
  270. success = false;
  271. }
  272. return success;
  273. }
  274. bool Region::do_remap_vmobject_page(size_t page_index, bool with_flush)
  275. {
  276. ScopedSpinLock lock(s_mm_lock);
  277. if (!m_page_directory)
  278. return true; // not an error, region may have not yet mapped it
  279. if (!translate_vmobject_page(page_index))
  280. return true; // not an error, region doesn't map this page
  281. ScopedSpinLock page_lock(m_page_directory->get_lock());
  282. VERIFY(physical_page(page_index));
  283. bool success = map_individual_page_impl(page_index);
  284. if (with_flush)
  285. MM.flush_tlb(m_page_directory, vaddr_from_page_index(page_index));
  286. return success;
  287. }
  288. bool Region::remap_vmobject_page(size_t page_index, bool with_flush)
  289. {
  290. bool success = true;
  291. ScopedSpinLock lock(s_mm_lock);
  292. auto& vmobject = this->vmobject();
  293. if (vmobject.is_shared_by_multiple_regions()) {
  294. vmobject.for_each_region([&](auto& region) {
  295. if (!region.do_remap_vmobject_page(page_index, with_flush))
  296. success = false;
  297. });
  298. } else {
  299. if (!do_remap_vmobject_page(page_index, with_flush))
  300. success = false;
  301. }
  302. return success;
  303. }
  304. void Region::unmap(ShouldDeallocateVirtualMemoryRange deallocate_range)
  305. {
  306. ScopedSpinLock lock(s_mm_lock);
  307. if (!m_page_directory)
  308. return;
  309. ScopedSpinLock page_lock(m_page_directory->get_lock());
  310. size_t count = page_count();
  311. for (size_t i = 0; i < count; ++i) {
  312. auto vaddr = vaddr_from_page_index(i);
  313. MM.release_pte(*m_page_directory, vaddr, i == count - 1);
  314. }
  315. MM.flush_tlb(m_page_directory, vaddr(), page_count());
  316. if (deallocate_range == ShouldDeallocateVirtualMemoryRange::Yes) {
  317. if (m_page_directory->range_allocator().contains(range()))
  318. m_page_directory->range_allocator().deallocate(range());
  319. else
  320. m_page_directory->identity_range_allocator().deallocate(range());
  321. }
  322. m_page_directory = nullptr;
  323. }
  324. void Region::set_page_directory(PageDirectory& page_directory)
  325. {
  326. VERIFY(!m_page_directory || m_page_directory == &page_directory);
  327. VERIFY(s_mm_lock.own_lock());
  328. m_page_directory = page_directory;
  329. }
  330. bool Region::map(PageDirectory& page_directory, ShouldFlushTLB should_flush_tlb)
  331. {
  332. ScopedSpinLock lock(s_mm_lock);
  333. ScopedSpinLock page_lock(page_directory.get_lock());
  334. // FIXME: Find a better place for this sanity check(?)
  335. if (is_user() && !is_shared()) {
  336. VERIFY(!vmobject().is_shared_inode());
  337. }
  338. set_page_directory(page_directory);
  339. size_t page_index = 0;
  340. while (page_index < page_count()) {
  341. if (!map_individual_page_impl(page_index))
  342. break;
  343. ++page_index;
  344. }
  345. if (page_index > 0) {
  346. if (should_flush_tlb == ShouldFlushTLB::Yes)
  347. MM.flush_tlb(m_page_directory, vaddr(), page_index);
  348. return page_index == page_count();
  349. }
  350. return false;
  351. }
  352. void Region::remap()
  353. {
  354. VERIFY(m_page_directory);
  355. map(*m_page_directory);
  356. }
  357. PageFaultResponse Region::handle_fault(const PageFault& fault, ScopedSpinLock<RecursiveSpinLock>& mm_lock)
  358. {
  359. auto page_index_in_region = page_index_from_address(fault.vaddr());
  360. if (fault.type() == PageFault::Type::PageNotPresent) {
  361. if (fault.is_read() && !is_readable()) {
  362. dbgln("NP(non-readable) fault in Region({})[{}]", this, page_index_in_region);
  363. return PageFaultResponse::ShouldCrash;
  364. }
  365. if (fault.is_write() && !is_writable()) {
  366. dbgln("NP(non-writable) write fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  367. return PageFaultResponse::ShouldCrash;
  368. }
  369. if (vmobject().is_inode()) {
  370. dbgln_if(PAGE_FAULT_DEBUG, "NP(inode) fault in Region({})[{}]", this, page_index_in_region);
  371. return handle_inode_fault(page_index_in_region, mm_lock);
  372. }
  373. auto& page_slot = physical_page_slot(page_index_in_region);
  374. if (page_slot->is_lazy_committed_page()) {
  375. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  376. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page(page_index_in_vmobject);
  377. remap_vmobject_page(page_index_in_vmobject);
  378. return PageFaultResponse::Continue;
  379. }
  380. #ifdef MAP_SHARED_ZERO_PAGE_LAZILY
  381. if (fault.is_read()) {
  382. page_slot = MM.shared_zero_page();
  383. remap_vmobject_page(translate_to_vmobject_page(page_index_in_region));
  384. return PageFaultResponse::Continue;
  385. }
  386. return handle_zero_fault(page_index_in_region);
  387. #else
  388. dbgln("BUG! Unexpected NP fault at {}", fault.vaddr());
  389. return PageFaultResponse::ShouldCrash;
  390. #endif
  391. }
  392. VERIFY(fault.type() == PageFault::Type::ProtectionViolation);
  393. if (fault.access() == PageFault::Access::Write && is_writable() && should_cow(page_index_in_region)) {
  394. dbgln_if(PAGE_FAULT_DEBUG, "PV(cow) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  395. auto* phys_page = physical_page(page_index_in_region);
  396. if (phys_page->is_shared_zero_page() || phys_page->is_lazy_committed_page()) {
  397. dbgln_if(PAGE_FAULT_DEBUG, "NP(zero) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  398. return handle_zero_fault(page_index_in_region);
  399. }
  400. return handle_cow_fault(page_index_in_region);
  401. }
  402. dbgln("PV(error) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  403. return PageFaultResponse::ShouldCrash;
  404. }
  405. PageFaultResponse Region::handle_zero_fault(size_t page_index_in_region)
  406. {
  407. VERIFY_INTERRUPTS_DISABLED();
  408. VERIFY(vmobject().is_anonymous());
  409. Locker locker(vmobject().m_paging_lock);
  410. auto& page_slot = physical_page_slot(page_index_in_region);
  411. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  412. if (!page_slot.is_null() && !page_slot->is_shared_zero_page() && !page_slot->is_lazy_committed_page()) {
  413. dbgln_if(PAGE_FAULT_DEBUG, "MM: zero_page() but page already present. Fine with me!");
  414. if (!remap_vmobject_page(page_index_in_vmobject))
  415. return PageFaultResponse::OutOfMemory;
  416. return PageFaultResponse::Continue;
  417. }
  418. auto current_thread = Thread::current();
  419. if (current_thread != nullptr)
  420. current_thread->did_zero_fault();
  421. if (page_slot->is_lazy_committed_page()) {
  422. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page(page_index_in_vmobject);
  423. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED COMMITTED {}", page_slot->paddr());
  424. } else {
  425. page_slot = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
  426. if (page_slot.is_null()) {
  427. dmesgln("MM: handle_zero_fault was unable to allocate a physical page");
  428. return PageFaultResponse::OutOfMemory;
  429. }
  430. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED {}", page_slot->paddr());
  431. }
  432. if (!remap_vmobject_page(page_index_in_vmobject)) {
  433. dmesgln("MM: handle_zero_fault was unable to allocate a page table to map {}", page_slot);
  434. return PageFaultResponse::OutOfMemory;
  435. }
  436. return PageFaultResponse::Continue;
  437. }
  438. PageFaultResponse Region::handle_cow_fault(size_t page_index_in_region)
  439. {
  440. VERIFY_INTERRUPTS_DISABLED();
  441. auto current_thread = Thread::current();
  442. if (current_thread)
  443. current_thread->did_cow_fault();
  444. if (!vmobject().is_anonymous())
  445. return PageFaultResponse::ShouldCrash;
  446. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  447. auto response = reinterpret_cast<AnonymousVMObject&>(vmobject()).handle_cow_fault(page_index_in_vmobject, vaddr().offset(page_index_in_region * PAGE_SIZE));
  448. if (!remap_vmobject_page(page_index_in_vmobject))
  449. return PageFaultResponse::OutOfMemory;
  450. return response;
  451. }
  452. PageFaultResponse Region::handle_inode_fault(size_t page_index_in_region, ScopedSpinLock<RecursiveSpinLock>& mm_lock)
  453. {
  454. VERIFY_INTERRUPTS_DISABLED();
  455. VERIFY(vmobject().is_inode());
  456. mm_lock.unlock();
  457. VERIFY(!s_mm_lock.own_lock());
  458. VERIFY(!g_scheduler_lock.own_lock());
  459. Locker locker(vmobject().m_paging_lock);
  460. mm_lock.lock();
  461. VERIFY_INTERRUPTS_DISABLED();
  462. auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject());
  463. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  464. auto& vmobject_physical_page_entry = inode_vmobject.physical_pages()[page_index_in_vmobject];
  465. dbgln_if(PAGE_FAULT_DEBUG, "Inode fault in {} page index: {}", name(), page_index_in_region);
  466. if (!vmobject_physical_page_entry.is_null()) {
  467. dbgln_if(PAGE_FAULT_DEBUG, "MM: page_in_from_inode() but page already present. Fine with me!");
  468. if (!remap_vmobject_page(page_index_in_vmobject))
  469. return PageFaultResponse::OutOfMemory;
  470. return PageFaultResponse::Continue;
  471. }
  472. auto current_thread = Thread::current();
  473. if (current_thread)
  474. current_thread->did_inode_fault();
  475. u8 page_buffer[PAGE_SIZE];
  476. auto& inode = inode_vmobject.inode();
  477. // Reading the page may block, so release the MM lock temporarily
  478. mm_lock.unlock();
  479. KResultOr<size_t> result(KSuccess);
  480. {
  481. ScopedLockRelease release_paging_lock(vmobject().m_paging_lock);
  482. auto buffer = UserOrKernelBuffer::for_kernel_buffer(page_buffer);
  483. result = inode.read_bytes(page_index_in_vmobject * PAGE_SIZE, PAGE_SIZE, buffer, nullptr);
  484. }
  485. mm_lock.lock();
  486. if (result.is_error()) {
  487. dmesgln("MM: handle_inode_fault had error ({}) while reading!", result.error());
  488. return PageFaultResponse::ShouldCrash;
  489. }
  490. auto nread = result.value();
  491. if (nread < PAGE_SIZE) {
  492. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  493. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  494. }
  495. vmobject_physical_page_entry = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
  496. if (vmobject_physical_page_entry.is_null()) {
  497. dmesgln("MM: handle_inode_fault was unable to allocate a physical page");
  498. return PageFaultResponse::OutOfMemory;
  499. }
  500. u8* dest_ptr = MM.quickmap_page(*vmobject_physical_page_entry);
  501. {
  502. void* fault_at;
  503. if (!safe_memcpy(dest_ptr, page_buffer, PAGE_SIZE, fault_at)) {
  504. if ((u8*)fault_at >= dest_ptr && (u8*)fault_at <= dest_ptr + PAGE_SIZE)
  505. dbgln(" >> inode fault: error copying data to {}/{}, failed at {}",
  506. vmobject_physical_page_entry->paddr(),
  507. VirtualAddress(dest_ptr),
  508. VirtualAddress(fault_at));
  509. else
  510. VERIFY_NOT_REACHED();
  511. }
  512. }
  513. MM.unquickmap_page();
  514. remap_vmobject_page(page_index_in_vmobject);
  515. return PageFaultResponse::Continue;
  516. }
  517. RefPtr<Process> Region::get_owner()
  518. {
  519. return m_owner.strong_ref();
  520. }
  521. }