123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413 |
- /*
- * Copyright (c) 2022, Matthew Olsson <mattco@serenityos.org>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #include <AK/ByteBuffer.h>
- #include <LibCrypto/Hash/MD5.h>
- #include <LibPDF/CommonNames.h>
- #include <LibPDF/Document.h>
- #include <LibPDF/Encryption.h>
- namespace PDF {
- static constexpr Array<u8, 32> standard_encryption_key_padding_bytes = {
- 0x28,
- 0xBF,
- 0x4E,
- 0x5E,
- 0x4E,
- 0x75,
- 0x8A,
- 0x41,
- 0x64,
- 0x00,
- 0x4E,
- 0x56,
- 0xFF,
- 0xFA,
- 0x01,
- 0x08,
- 0x2E,
- 0x2E,
- 0x00,
- 0xB6,
- 0xD0,
- 0x68,
- 0x3E,
- 0x80,
- 0x2F,
- 0x0C,
- 0xA9,
- 0xFE,
- 0x64,
- 0x53,
- 0x69,
- 0x7A,
- };
- PDFErrorOr<NonnullRefPtr<SecurityHandler>> SecurityHandler::create(Document* document, NonnullRefPtr<DictObject> encryption_dict)
- {
- auto filter = TRY(encryption_dict->get_name(document, CommonNames::Filter))->name();
- if (filter == "Standard")
- return TRY(StandardSecurityHandler::create(document, encryption_dict));
- dbgln("Unrecognized security handler filter: {}", filter);
- TODO();
- }
- PDFErrorOr<NonnullRefPtr<StandardSecurityHandler>> StandardSecurityHandler::create(Document* document, NonnullRefPtr<DictObject> encryption_dict)
- {
- auto revision = encryption_dict->get_value(CommonNames::R).get<int>();
- auto o = TRY(encryption_dict->get_string(document, CommonNames::O))->string();
- auto u = TRY(encryption_dict->get_string(document, CommonNames::U))->string();
- auto p = encryption_dict->get_value(CommonNames::P).get<int>();
- // V, number: [...] 1 "Algorithm 1 Encryption of data using the RC4 or AES algorithms" in 7.6.2,
- // "General Encryption Algorithm," with an encryption key length of 40 bits, see below [...]
- // Lenght, integer: (Optional; PDF 1.4; only if V is 2 or 3) The length of the encryption key, in bits.
- // The value shall be a multiple of 8, in the range 40 to 128. Default value: 40.
- int length_in_bits;
- auto v = encryption_dict->get_value(CommonNames::V).get<int>();
- if (encryption_dict->contains(CommonNames::Length))
- length_in_bits = encryption_dict->get_value(CommonNames::Length).get<int>();
- else if (v == 1)
- length_in_bits = 40;
- else
- return Error(Error::Type::Parse, "Can't determine length of encryption key");
- auto length = length_in_bits / 8;
- bool encrypt_metadata = true;
- if (encryption_dict->contains(CommonNames::EncryptMetadata))
- encryption_dict->get_value(CommonNames::EncryptMetadata).get<bool>();
- return adopt_ref(*new StandardSecurityHandler(document, revision, o, u, p, encrypt_metadata, length));
- }
- StandardSecurityHandler::StandardSecurityHandler(Document* document, size_t revision, DeprecatedString const& o_entry, DeprecatedString const& u_entry, u32 flags, bool encrypt_metadata, size_t length)
- : m_document(document)
- , m_revision(revision)
- , m_o_entry(o_entry)
- , m_u_entry(u_entry)
- , m_flags(flags)
- , m_encrypt_metadata(encrypt_metadata)
- , m_length(length)
- {
- }
- template<>
- ByteBuffer StandardSecurityHandler::compute_user_password_value<true>(ByteBuffer password_string)
- {
- // Algorithm 4: Computing the encryption dictionary's U (user password)
- // value (Security handlers of revision 2)
- // a) Create an encryption key based on the user password string, as
- // described in [Algorithm 2]
- auto encryption_key = compute_encryption_key(password_string);
- // b) Encrypt the 32-byte padding string shown in step (a) of [Algorithm 2],
- // using an RC4 encryption function with the encryption key from the
- // preceding step.
- RC4 rc4(encryption_key);
- auto output = rc4.encrypt(standard_encryption_key_padding_bytes);
- // c) Store the result of step (b) as the value of the U entry in the
- // encryption dictionary.
- return output;
- }
- template<>
- ByteBuffer StandardSecurityHandler::compute_user_password_value<false>(ByteBuffer password_string)
- {
- // Algorithm 5: Computing the encryption dictionary's U (user password)
- // value (Security handlers of revision 3 or greater)
- // a) Create an encryption key based on the user password string, as
- // described in [Algorithm 2]
- auto encryption_key = compute_encryption_key(password_string);
- // b) Initialize the MD5 hash function and pass the 32-byte padding string
- // shown in step (a) of [Algorithm 2] as input to this function
- Crypto::Hash::MD5 md5;
- md5.update(standard_encryption_key_padding_bytes);
- // e) Pass the first element of the file's file identifier array to the MD5
- // hash function.
- auto id_array = MUST(m_document->trailer()->get_array(m_document, CommonNames::ID));
- auto first_element_string = MUST(id_array->get_string_at(m_document, 0))->string();
- md5.update(first_element_string);
- // d) Encrypt the 16-byte result of the hash, using an RC4 encryption function
- // with the encryption key from step (a).
- RC4 rc4(encryption_key);
- auto out = md5.peek();
- auto buffer = rc4.encrypt(out.bytes());
- // e) Do the following 19 times:
- //
- // Take the output from the previous invocation of the RC4 function and pass
- // it as input to a new invocation of the function; use an encryption key generated
- // by taking each byte of the original encryption key obtained in step (a) and
- // performing an XOR operation between the that byte and the single-byte value of
- // the iteration counter (from 1 to 19).
- auto new_encryption_key = MUST(ByteBuffer::create_uninitialized(encryption_key.size()));
- for (size_t i = 1; i <= 19; i++) {
- for (size_t j = 0; j < encryption_key.size(); j++)
- new_encryption_key[j] = encryption_key[j] ^ i;
- RC4 new_rc4(new_encryption_key);
- buffer = new_rc4.encrypt(buffer);
- }
- // f) Append 16 bytes of the arbitrary padding to the output from the final invocation
- // of the RC4 function and store the 32-byte result as the value of the U entry in
- // the encryption dictionary.
- VERIFY(buffer.size() == 16);
- for (size_t i = 0; i < 16; i++)
- buffer.append(0xab);
- return buffer;
- }
- bool StandardSecurityHandler::try_provide_user_password(StringView password_string)
- {
- // Algorithm 6: Authenticating the user password
- // a) Perform all but the last step of [Algorithm 4] or [Algorithm 5] using the
- // supplied password string.
- ByteBuffer password_buffer = MUST(ByteBuffer::copy(password_string.bytes()));
- if (m_revision == 2) {
- password_buffer = compute_user_password_value<true>(password_buffer);
- } else {
- password_buffer = compute_user_password_value<false>(password_buffer);
- }
- // b) If the result of step (a) is equal to the value of the encryption
- // dictionary's "U" entry (comparing the first 16 bytes in the case of security
- // handlers of revision 3 or greater), the password supplied is the correct user
- // password.
- auto u_bytes = m_u_entry.bytes();
- bool has_user_password;
- if (m_revision >= 3)
- has_user_password = u_bytes.slice(0, 16) == password_buffer.bytes().slice(0, 16);
- else
- has_user_password = u_bytes == password_buffer.bytes();
- if (!has_user_password)
- m_encryption_key = {};
- return has_user_password;
- }
- ByteBuffer StandardSecurityHandler::compute_encryption_key(ByteBuffer password_string)
- {
- // This function should never be called after we have a valid encryption key.
- VERIFY(!m_encryption_key.has_value());
- // 7.6.3.3 Encryption Key Algorithm
- // Algorithm 2: Computing an encryption key
- // a) Pad or truncate the password string to exactly 32 bytes. If the password string
- // is more than 32 bytes long, use only its first 32 bytes; if it is less than 32
- // bytes long, pad it by appending the required number of additional bytes from the
- // beginning of the following padding string: [omitted]
- if (password_string.size() > 32) {
- password_string.resize(32);
- } else {
- password_string.append(standard_encryption_key_padding_bytes.data(), 32 - password_string.size());
- }
- // b) Initialize the MD5 hash function and pass the result of step (a) as input to
- // this function.
- Crypto::Hash::MD5 md5;
- md5.update(password_string);
- // c) Pass the value of the encryption dictionary's "O" entry to the MD5 hash function.
- md5.update(m_o_entry);
- // d) Convert the integer value of the P entry to a 32-bit unsigned binary number and pass
- // these bytes to the MD5 hash function, low-order byte first.
- md5.update(reinterpret_cast<u8 const*>(&m_flags), sizeof(m_flags));
- // e) Pass the first element of the file's file identifier array to the MD5 hash function.
- auto id_array = MUST(m_document->trailer()->get_array(m_document, CommonNames::ID));
- auto first_element_string = MUST(id_array->get_string_at(m_document, 0))->string();
- md5.update(first_element_string);
- // f) (Security handlers of revision 4 or greater) if the document metadata is not being
- // encrypted, pass 4 bytes with the value 0xffffffff to the MD5 hash function.
- if (m_revision >= 4 && !m_encrypt_metadata) {
- u32 value = 0xffffffff;
- md5.update(reinterpret_cast<u8 const*>(&value), 4);
- }
- // g) Finish the hash.
- // h) (Security handlers of revision 3 or greater) Do the following 50 times:
- //
- // Take the output from the previous MD5 hash and pass the first n bytes
- // of the output as input into a new MD5 hash, where n is the number of
- // bytes of the encryption key as defined by the value of the encryption
- // dictionary's Length entry.
- if (m_revision >= 3) {
- ByteBuffer n_bytes;
- for (u32 i = 0; i < 50; i++) {
- Crypto::Hash::MD5 new_md5;
- n_bytes.ensure_capacity(m_length);
- while (n_bytes.size() < m_length) {
- auto out = md5.peek();
- for (size_t j = 0; j < out.data_length() && n_bytes.size() < m_length; j++)
- n_bytes.append(out.data[j]);
- }
- VERIFY(n_bytes.size() == m_length);
- new_md5.update(n_bytes);
- md5 = move(new_md5);
- n_bytes.clear();
- }
- }
- // i) Set the encryption key to the first n bytes of the output from the final MD5
- // hash, where n shall always be 5 for security handlers of revision 2 but, for
- // security handlers of revision 3 or greater, shall depend on the value of the
- // encryption dictionary's Length entry.
- size_t n;
- if (m_revision == 2) {
- n = 5;
- } else if (m_revision >= 3) {
- n = m_length;
- } else {
- VERIFY_NOT_REACHED();
- }
- ByteBuffer encryption_key;
- encryption_key.ensure_capacity(n);
- while (encryption_key.size() < n) {
- auto out = md5.peek();
- for (size_t i = 0; encryption_key.size() < n && i < out.data_length(); i++)
- encryption_key.append(out.bytes()[i]);
- }
- m_encryption_key = encryption_key;
- return encryption_key;
- }
- void StandardSecurityHandler::encrypt(NonnullRefPtr<Object> object, Reference reference) const
- {
- // 7.6.2 General Encryption Algorithm
- // Algorithm 1: Encryption of data using the RC3 or AES algorithms
- // FIXME: Support AES
- VERIFY(m_encryption_key.has_value());
- // a) Obtain the object number and generation number from the object identifier of
- // the string or stream to be encrypted. If the string is a direct object, use
- // the identifier of the indirect object containing it.
- //
- // Note: This is always passed in at parse time because objects don't know their own
- // object number.
- // b) For all strings and streams with crypt filter specifier; treating the object
- // number as binary integers, extends the origin n-byte encryption key to n + 5
- // bytes by appending the low-order 3 bytes of the object number and the low-order
- // 2 bytes of the generation number in that order, low-order byte first. ...
- auto encryption_key = m_encryption_key.value();
- ReadonlyBytes bytes;
- Function<void(ByteBuffer const&)> assign;
- if (object->is<StreamObject>()) {
- auto stream = object->cast<StreamObject>();
- bytes = stream->bytes();
- assign = [&stream](ByteBuffer const& buffer) {
- stream->buffer() = buffer;
- };
- if (stream->dict()->contains(CommonNames::Filter)) {
- auto filter = MUST(stream->dict()->get_name(m_document, CommonNames::Filter))->name();
- if (filter == "Crypt")
- TODO();
- }
- } else if (object->is<StringObject>()) {
- auto string = object->cast<StringObject>();
- bytes = string->string().bytes();
- assign = [&string](ByteBuffer const& buffer) {
- string->set_string(DeprecatedString(buffer.bytes()));
- };
- } else {
- VERIFY_NOT_REACHED();
- }
- auto index = reference.as_ref_index();
- auto generation = reference.as_ref_generation_index();
- encryption_key.append(index & 0xff);
- encryption_key.append((index >> 8) & 0xff);
- encryption_key.append((index >> 16) & 0xff);
- encryption_key.append(generation & 0xff);
- encryption_key.append((generation >> 8) & 0xff);
- // c) Initialize the MD5 hash function and pass the result of step (b) as input to this
- // function.
- Crypto::Hash::MD5 md5;
- md5.update(encryption_key);
- // d) Use the first (n + 5) bytes, up to a maximum of 16, of the output from the MD5
- // hash as the key for the RC4 or AES symmetric key algorithms, along with the string
- // or stream data to be encrypted.
- auto key = MUST(ByteBuffer::copy(md5.peek().bytes()));
- if (key.size() > min(encryption_key.size(), 16))
- key.resize(encryption_key.size());
- RC4 rc4(key);
- auto output = rc4.encrypt(bytes);
- assign(output);
- }
- void StandardSecurityHandler::decrypt(NonnullRefPtr<Object> object, Reference reference) const
- {
- // AES and RC4 are both symmetric, so decryption is the same as encryption
- encrypt(object, reference);
- }
- static constexpr auto identity_permutation = iota_array<size_t, 256>(0);
- RC4::RC4(ReadonlyBytes key)
- : m_bytes(identity_permutation)
- {
- size_t j = 0;
- for (size_t i = 0; i < 256; i++) {
- j = (j + m_bytes[i] + key[i % key.size()]) & 0xff;
- swap(m_bytes[i], m_bytes[j]);
- }
- }
- void RC4::generate_bytes(ByteBuffer& bytes)
- {
- size_t i = 0;
- size_t j = 0;
- for (size_t count = 0; count < bytes.size(); count++) {
- i = (i + 1) % 256;
- j = (j + m_bytes[i]) % 256;
- swap(m_bytes[i], m_bytes[j]);
- bytes[count] = m_bytes[(m_bytes[i] + m_bytes[j]) % 256];
- }
- }
- ByteBuffer RC4::encrypt(ReadonlyBytes bytes)
- {
- auto output = MUST(ByteBuffer::create_uninitialized(bytes.size()));
- generate_bytes(output);
- for (size_t i = 0; i < bytes.size(); i++)
- output[i] ^= bytes[i];
- return output;
- }
- }
|