123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121 |
- /*
- * Copyright (c) 2020, the SerenityOS developers.
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #pragma once
- #include "Color.h"
- #include <AK/Math.h>
- #ifdef __SSE__
- # include <xmmintrin.h>
- #endif
- #include <AK/SIMD.h>
- #include <AK/SIMDMath.h>
- #define GAMMA 2.2
- // Most computer graphics are stored in the sRGB color space, which stores something close to
- // the square root of the display intensity of each color channel. This is problematic for most
- // operations that we want to perform on colors, since they typically assume that color scales
- // linearly (e.g. rgb(127, 0, 0) is half as bright as rgb(255, 0, 0)). This causes incorrect
- // results that look more gray than they should, to fix this we have to convert colors to the linear
- // color space before performing these operations, then convert back before displaying.
- //
- // Conversion between linear and sRGB spaces are somewhat expensive to do on the CPU, so we instead
- // interpret sRGB colors as gamma2.2 colors, which are close enough in most cases to be indistinguishable.
- // Gamma 2.2 colors follow the simple rule of `display_intensity = pow(stored_intensity, 2.2)`.
- // This module implements some fast color space transforms between the gamma2.2 and linear color spaces, plus
- // some common primitive operations like blending.
- //
- // For a more in-depth overview of how gamma-adjustment works, check out:
- // https://blog.johnnovak.net/2016/09/21/what-every-coder-should-know-about-gamma/
- namespace Gfx {
- using AK::SIMD::f32x4;
- #ifdef __SSE__
- // Transform f32x4 from gamma2.2 space to linear space
- // Assumes x is in range [0, 1]
- constexpr f32x4 gamma_to_linear4(f32x4 x)
- {
- return (0.8f + 0.2f * x) * x * x;
- }
- // Transform f32x4 from linear space to gamma2.2 space
- // Assumes x is in range [0, 1]
- inline f32x4 linear_to_gamma4(f32x4 x)
- {
- // Source for approximation: https://mimosa-pudica.net/fast-gamma/
- constexpr float a = 0.00279491f;
- constexpr float b = 1.15907984f;
- float c = (b * AK::rsqrt(1.0f + a)) - 1;
- return ((b * AK::SIMD::rsqrt(x + a)) - c) * x;
- }
- // Linearize v1 and v2, lerp them by mix factor, then convert back.
- // The output is entirely v1 when mix = 0 and entirely v2 when mix = 1
- inline f32x4 gamma_accurate_lerp4(f32x4 v1, f32x4 v2, float mix)
- {
- return linear_to_gamma4(gamma_to_linear4(v1) * (1 - mix) + gamma_to_linear4(v2) * mix);
- }
- #endif
- // Transform scalar from gamma2.2 space to linear space
- // Assumes x is in range [0, 1]
- constexpr float gamma_to_linear(float x)
- {
- return (0.8f + 0.2f * x) * x * x;
- }
- // Transform scalar from linear space to gamma2.2 space
- // Assumes x is in range [0, 1]
- inline float linear_to_gamma(float x)
- {
- // Source for approximation: https://mimosa-pudica.net/fast-gamma/
- constexpr float a = 0.00279491;
- constexpr float b = 1.15907984;
- float c = (b * AK::rsqrt(1 + a)) - 1;
- return ((b * AK::rsqrt(x + a)) - c) * x;
- }
- // Linearize v1 and v2, lerp them by mix factor, then convert back.
- // The output is entirely v1 when mix = 0 and entirely v2 when mix = 1
- inline float gamma_accurate_lerp(float v1, float v2, float mix)
- {
- return linear_to_gamma(gamma_to_linear(v1) * (1 - mix) + gamma_to_linear(v2) * mix);
- }
- // Convert a and b to linear space, blend them by mix factor, then convert back.
- // The output is entirely a when mix = 0 and entirely b when mix = 1
- inline Color gamma_accurate_blend(Color a, Color b, float mix)
- {
- #ifdef __SSE__
- f32x4 ac = {
- (float)a.red(),
- (float)a.green(),
- (float)a.blue(),
- };
- f32x4 bc = {
- (float)b.red(),
- (float)b.green(),
- (float)b.blue(),
- };
- f32x4 out = 255.f * gamma_accurate_lerp4(ac * (1.f / 255.f), bc * (1.f / 255.f), mix);
- return Color(out[0], out[1], out[2]);
- #else
- return {
- static_cast<u8>(255.f * gamma_accurate_lerp(a.red() / 255.f, b.red() / 255.f, mix)),
- static_cast<u8>(255.f * gamma_accurate_lerp(a.green() / 255.f, b.green() / 255.f, mix)),
- static_cast<u8>(255.f * gamma_accurate_lerp(a.blue() / 255.f, b.blue() / 255.f, mix)),
- };
- #endif
- }
- }
|