123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453 |
- /*
- * Copyright (c) 2022, Michiel Visser <opensource@webmichiel.nl>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #include <AK/ByteReader.h>
- #include <AK/Endian.h>
- #include <AK/Random.h>
- #include <AK/StringBuilder.h>
- #include <AK/UFixedBigInt.h>
- #include <LibCrypto/Curves/SECP256r1.h>
- namespace Crypto::Curves {
- static constexpr u256 REDUCE_PRIME { u128 { 0x0000000000000001ull, 0xffffffff00000000ull }, u128 { 0xffffffffffffffffull, 0x00000000fffffffe } };
- static constexpr u256 REDUCE_ORDER { u128 { 0x0c46353d039cdaafull, 0x4319055258e8617bull }, u128 { 0x0000000000000000ull, 0x00000000ffffffff } };
- static constexpr u256 PRIME_INVERSE_MOD_R { u128 { 0x0000000000000001ull, 0x0000000100000000ull }, u128 { 0x0000000000000000ull, 0xffffffff00000002ull } };
- static constexpr u256 PRIME { u128 { 0xffffffffffffffffull, 0x00000000ffffffffull }, u128 { 0x0000000000000000ull, 0xffffffff00000001ull } };
- static constexpr u256 R2_MOD_PRIME { u128 { 0x0000000000000003ull, 0xfffffffbffffffffull }, u128 { 0xfffffffffffffffeull, 0x00000004fffffffdull } };
- static constexpr u256 ONE { 1u };
- static constexpr u256 B_MONTGOMERY { u128 { 0xd89cdf6229c4bddfull, 0xacf005cd78843090ull }, u128 { 0xe5a220abf7212ed6ull, 0xdc30061d04874834ull } };
- static u256 import_big_endian(ReadonlyBytes data)
- {
- VERIFY(data.size() == 32);
- u64 d = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(0 * sizeof(u64))));
- u64 c = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(1 * sizeof(u64))));
- u64 b = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(2 * sizeof(u64))));
- u64 a = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(3 * sizeof(u64))));
- return u256 { u128 { a, b }, u128 { c, d } };
- }
- static void export_big_endian(u256 const& value, Bytes data)
- {
- u64 a = AK::convert_between_host_and_big_endian(value.low().low());
- u64 b = AK::convert_between_host_and_big_endian(value.low().high());
- u64 c = AK::convert_between_host_and_big_endian(value.high().low());
- u64 d = AK::convert_between_host_and_big_endian(value.high().high());
- ByteReader::store(data.offset_pointer(0 * sizeof(u64)), d);
- ByteReader::store(data.offset_pointer(1 * sizeof(u64)), c);
- ByteReader::store(data.offset_pointer(2 * sizeof(u64)), b);
- ByteReader::store(data.offset_pointer(3 * sizeof(u64)), a);
- }
- static u256 select(u256 const& left, u256 const& right, bool condition)
- {
- // If condition = 0 return left else right
- u256 mask = (u256)condition - 1;
- return (left & mask) | (right & ~mask);
- }
- static u512 multiply(u256 const& left, u256 const& right)
- {
- return left.wide_multiply(right);
- }
- static u256 modular_reduce(u256 const& value)
- {
- // Add -prime % 2^256 = 2^224-2^192-2^96+1
- bool carry = false;
- u256 other = value.addc(REDUCE_PRIME, carry);
- // Check for overflow
- return select(value, other, carry);
- }
- static u256 modular_reduce_order(u256 const& value)
- {
- // Add -order % 2^256
- bool carry = false;
- u256 other = value.addc(REDUCE_ORDER, carry);
- // Check for overflow
- return select(value, other, carry);
- }
- static u256 modular_add(u256 const& left, u256 const& right, bool carry_in = false)
- {
- bool carry = carry_in;
- u256 output = left.addc(right, carry);
- // If there is left carry, subtract p by adding 2^256 - p
- u64 t = carry;
- carry = false;
- u256 addend { u128 { t, -(t << 32) }, u128 { -t, (t << 32) - (t << 1) } };
- output = output.addc(addend, carry);
- // If there is still left carry, subtract p by adding 2^256 - p
- t = carry;
- addend = { u128 { t, -(t << 32) }, u128 { -t, (t << 32) - (t << 1) } };
- return output + addend;
- }
- static u256 modular_sub(u256 const& left, u256 const& right)
- {
- bool borrow = false;
- u256 output = left.subc(right, borrow);
- // If there is left borrow, add p by subtracting 2^256 - p
- u64 t = borrow;
- borrow = false;
- u256 sub { u128 { t, -(t << 32) }, u128 { -t, (t << 32) - (t << 1) } };
- output = output.subc(sub, borrow);
- // If there is still left borrow, add p by subtracting 2^256 - p
- t = borrow;
- sub = { u128 { t, -(t << 32) }, u128 { -t, (t << 32) - (t << 1) } };
- return output - sub;
- }
- static u256 modular_multiply(u256 const& left, u256 const& right)
- {
- // Modular multiplication using the Montgomery method: https://en.wikipedia.org/wiki/Montgomery_modular_multiplication
- // This requires that the inputs to this function are in Montgomery form.
- // T = left * right
- u512 mult = multiply(left, right);
- // m = ((T mod R) * curve_p')
- u512 m = multiply(mult.low(), PRIME_INVERSE_MOD_R);
- // mp = (m mod R) * curve_p
- u512 mp = multiply(m.low(), PRIME);
- // t = (T + mp)
- bool carry = false;
- mult.low().addc(mp.low(), carry);
- // output = t / R
- return modular_add(mult.high(), mp.high(), carry);
- }
- static u256 modular_square(u256 const& value)
- {
- return modular_multiply(value, value);
- }
- static u256 to_montgomery(u256 const& value)
- {
- return modular_multiply(value, R2_MOD_PRIME);
- }
- static u256 from_montgomery(u256 const& value)
- {
- return modular_multiply(value, ONE);
- }
- static u256 modular_inverse(u256 const& value)
- {
- // Modular inverse modulo the curve prime can be computed using Fermat's little theorem: a^(p-2) mod p = a^-1 mod p.
- // Calculating a^(p-2) mod p can be done using the square-and-multiply exponentiation method, as p-2 is constant.
- //
- // p-2 = 2^256 - 2^224 + 2^192 + 2^96 - 3, or written as binary:
- // 1111111111111111111111111111111100000000000000000000000000000001
- // 0000000000000000000000000000000000000000000000000000000000000000
- // 0000000000000000000000000000000011111111111111111111111111111111
- // 1111111111111111111111111111111111111111111111111111111111111101
- u256 base = value;
- // 1
- u256 result = value;
- base = modular_square(base);
- // 0
- base = modular_square(base);
- // 94*1
- for (auto i = 0; i < 94; i++) {
- result = modular_multiply(result, base);
- base = modular_square(base);
- }
- // 96*0
- for (auto i = 0; i < 96; i++) {
- base = modular_square(base);
- }
- // 1
- result = modular_multiply(result, base);
- base = modular_square(base);
- // 31*0
- for (auto i = 0; i < 31; i++) {
- base = modular_square(base);
- }
- // 32*1
- for (auto i = 0; i < 32; i++) {
- result = modular_multiply(result, base);
- base = modular_square(base);
- }
- return result;
- }
- static void point_double(JacobianPoint& output_point, JacobianPoint const& point)
- {
- // Based on "Point Doubling" from http://point-at-infinity.org/ecc/Prime_Curve_Jacobian_Coordinates.html
- // if (Y == 0)
- // return POINT_AT_INFINITY
- if (point.y.is_zero_constant_time()) {
- VERIFY_NOT_REACHED();
- }
- u256 temp;
- // Y2 = Y^2
- u256 y2 = modular_square(point.y);
- // S = 4*X*Y2
- u256 s = modular_multiply(point.x, y2);
- s = modular_add(s, s);
- s = modular_add(s, s);
- // M = 3*X^2 + a*Z^4 = 3*(X + Z^2)*(X - Z^2)
- // This specific equation from https://github.com/earlephilhower/bearssl-esp8266/blob/6105635531027f5b298aa656d44be2289b2d434f/src/ec/ec_p256_m64.c#L811-L816
- // This simplification only works because a = -3 mod p
- temp = modular_square(point.z);
- u256 m = modular_add(point.x, temp);
- temp = modular_sub(point.x, temp);
- m = modular_multiply(m, temp);
- temp = modular_add(m, m);
- m = modular_add(m, temp);
- // X' = M^2 - 2*S
- u256 xp = modular_square(m);
- xp = modular_sub(xp, s);
- xp = modular_sub(xp, s);
- // Y' = M*(S - X') - 8*Y2^2
- u256 yp = modular_sub(s, xp);
- yp = modular_multiply(yp, m);
- temp = modular_square(y2);
- temp = modular_add(temp, temp);
- temp = modular_add(temp, temp);
- temp = modular_add(temp, temp);
- yp = modular_sub(yp, temp);
- // Z' = 2*Y*Z
- u256 zp = modular_multiply(point.y, point.z);
- zp = modular_add(zp, zp);
- // return (X', Y', Z')
- output_point.x = xp;
- output_point.y = yp;
- output_point.z = zp;
- }
- static void point_add(JacobianPoint& output_point, JacobianPoint const& point_a, JacobianPoint const& point_b)
- {
- // Based on "Point Addition" from http://point-at-infinity.org/ecc/Prime_Curve_Jacobian_Coordinates.html
- if (point_a.x.is_zero_constant_time() && point_a.y.is_zero_constant_time() && point_a.z.is_zero_constant_time()) {
- output_point.x = point_b.x;
- output_point.y = point_b.y;
- output_point.z = point_b.z;
- return;
- }
- u256 temp;
- temp = modular_square(point_b.z);
- // U1 = X1*Z2^2
- u256 u1 = modular_multiply(point_a.x, temp);
- // S1 = Y1*Z2^3
- u256 s1 = modular_multiply(point_a.y, temp);
- s1 = modular_multiply(s1, point_b.z);
- temp = modular_square(point_a.z);
- // U2 = X2*Z1^2
- u256 u2 = modular_multiply(point_b.x, temp);
- // S2 = Y2*Z1^3
- u256 s2 = modular_multiply(point_b.y, temp);
- s2 = modular_multiply(s2, point_a.z);
- // if (U1 == U2)
- // if (S1 != S2)
- // return POINT_AT_INFINITY
- // else
- // return POINT_DOUBLE(X1, Y1, Z1)
- if (u1.is_equal_to_constant_time(u2)) {
- if (s1.is_equal_to_constant_time(s2)) {
- point_double(output_point, point_a);
- return;
- } else {
- VERIFY_NOT_REACHED();
- }
- }
- // H = U2 - U1
- u256 h = modular_sub(u2, u1);
- u256 h2 = modular_square(h);
- u256 h3 = modular_multiply(h2, h);
- // R = S2 - S1
- u256 r = modular_sub(s2, s1);
- // X3 = R^2 - H^3 - 2*U1*H^2
- u256 x3 = modular_square(r);
- x3 = modular_sub(x3, h3);
- temp = modular_multiply(u1, h2);
- temp = modular_add(temp, temp);
- x3 = modular_sub(x3, temp);
- // Y3 = R*(U1*H^2 - X3) - S1*H^3
- u256 y3 = modular_multiply(u1, h2);
- y3 = modular_sub(y3, x3);
- y3 = modular_multiply(y3, r);
- temp = modular_multiply(s1, h3);
- y3 = modular_sub(y3, temp);
- // Z3 = H*Z1*Z2
- u256 z3 = modular_multiply(h, point_a.z);
- z3 = modular_multiply(z3, point_b.z);
- // return (X3, Y3, Z3)
- output_point.x = x3;
- output_point.y = y3;
- output_point.z = z3;
- }
- static void convert_jacobian_to_affine(JacobianPoint& point)
- {
- u256 temp;
- // X' = X/Z^2
- temp = modular_square(point.z);
- temp = modular_inverse(temp);
- point.x = modular_multiply(point.x, temp);
- // Y' = Y/Z^3
- temp = modular_square(point.z);
- temp = modular_multiply(temp, point.z);
- temp = modular_inverse(temp);
- point.y = modular_multiply(point.y, temp);
- }
- static bool is_point_on_curve(JacobianPoint const& point)
- {
- // This check requires the point to be in Montgomery form, with Z=1
- u256 temp, temp2;
- // Calulcate Y^2 - X^3 - a*X - b = Y^2 - X^3 + 3*X - b
- temp = modular_square(point.y);
- temp2 = modular_square(point.x);
- temp2 = modular_multiply(temp2, point.x);
- temp = modular_sub(temp, temp2);
- temp = modular_add(temp, point.x);
- temp = modular_add(temp, point.x);
- temp = modular_add(temp, point.x);
- temp = modular_sub(temp, B_MONTGOMERY);
- temp = modular_reduce(temp);
- return temp.is_zero_constant_time();
- }
- ErrorOr<ByteBuffer> SECP256r1::generate_private_key()
- {
- auto buffer = TRY(ByteBuffer::create_uninitialized(32));
- fill_with_random(buffer);
- return buffer;
- }
- ErrorOr<ByteBuffer> SECP256r1::generate_public_key(ReadonlyBytes a)
- {
- // clang-format off
- u8 generator_bytes[65] {
- 0x04,
- 0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8, 0xBC, 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2,
- 0x77, 0x03, 0x7D, 0x81, 0x2D, 0xEB, 0x33, 0xA0, 0xF4, 0xA1, 0x39, 0x45, 0xD8, 0x98, 0xC2, 0x96,
- 0x4F, 0xE3, 0x42, 0xE2, 0xFE, 0x1A, 0x7F, 0x9B, 0x8E, 0xE7, 0xEB, 0x4A, 0x7C, 0x0F, 0x9E, 0x16,
- 0x2B, 0xCE, 0x33, 0x57, 0x6B, 0x31, 0x5E, 0xCE, 0xCB, 0xB6, 0x40, 0x68, 0x37, 0xBF, 0x51, 0xF5,
- };
- // clang-format on
- return compute_coordinate(a, { generator_bytes, 65 });
- }
- ErrorOr<ByteBuffer> SECP256r1::compute_coordinate(ReadonlyBytes scalar_bytes, ReadonlyBytes point_bytes)
- {
- VERIFY(scalar_bytes.size() == 32);
- u256 scalar = import_big_endian(scalar_bytes);
- // FIXME: This will slightly bias the distribution of client secrets
- scalar = modular_reduce_order(scalar);
- if (scalar.is_zero_constant_time())
- return Error::from_string_literal("SECP256r1: scalar is zero");
- // Make sure the point is uncompressed
- if (point_bytes.size() != 65 || point_bytes[0] != 0x04)
- return Error::from_string_literal("SECP256r1: point is not uncompressed format");
- JacobianPoint point {
- import_big_endian(point_bytes.slice(1, 32)),
- import_big_endian(point_bytes.slice(33, 32)),
- 1u,
- };
- // Convert the input point into Montgomery form
- point.x = to_montgomery(point.x);
- point.y = to_montgomery(point.y);
- point.z = to_montgomery(point.z);
- // Check that the point is on the curve
- if (!is_point_on_curve(point))
- return Error::from_string_literal("SECP256r1: point is not on the curve");
- JacobianPoint result;
- JacobianPoint temp_result;
- // Calculate the scalar times point multiplication in constant time
- for (auto i = 0; i < 256; i++) {
- point_add(temp_result, result, point);
- auto condition = (scalar & 1u) == 1u;
- result.x = select(result.x, temp_result.x, condition);
- result.y = select(result.y, temp_result.y, condition);
- result.z = select(result.z, temp_result.z, condition);
- point_double(point, point);
- scalar >>= 1u;
- }
- // Convert from Jacobian coordinates back to Affine coordinates
- convert_jacobian_to_affine(result);
- // Make sure the resulting point is on the curve
- VERIFY(is_point_on_curve(result));
- // Convert the result back from Montgomery form
- result.x = from_montgomery(result.x);
- result.y = from_montgomery(result.y);
- // Final modular reduction on the coordinates
- result.x = modular_reduce(result.x);
- result.y = modular_reduce(result.y);
- // Export the values into an output buffer
- auto buf = TRY(ByteBuffer::create_uninitialized(65));
- buf[0] = 0x04;
- export_big_endian(result.x, buf.bytes().slice(1, 32));
- export_big_endian(result.y, buf.bytes().slice(33, 32));
- return buf;
- }
- ErrorOr<ByteBuffer> SECP256r1::derive_premaster_key(ReadonlyBytes shared_point)
- {
- VERIFY(shared_point.size() == 65);
- VERIFY(shared_point[0] == 0x04);
- ByteBuffer premaster_key = TRY(ByteBuffer::create_uninitialized(32));
- premaster_key.overwrite(0, shared_point.data() + 1, 32);
- return premaster_key;
- }
- }
|