EventLoop.cpp 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2022, kleines Filmröllchen <malu.bertsch@gmail.com>
  4. * Copyright (c) 2022, the SerenityOS developers.
  5. *
  6. * SPDX-License-Identifier: BSD-2-Clause
  7. */
  8. #include <AK/Assertions.h>
  9. #include <AK/Badge.h>
  10. #include <AK/Debug.h>
  11. #include <AK/Format.h>
  12. #include <AK/IDAllocator.h>
  13. #include <AK/JsonObject.h>
  14. #include <AK/JsonValue.h>
  15. #include <AK/NeverDestroyed.h>
  16. #include <AK/Singleton.h>
  17. #include <AK/TemporaryChange.h>
  18. #include <AK/Time.h>
  19. #include <LibCore/Event.h>
  20. #include <LibCore/EventLoop.h>
  21. #include <LibCore/LocalServer.h>
  22. #include <LibCore/Notifier.h>
  23. #include <LibCore/Object.h>
  24. #include <LibCore/Promise.h>
  25. #include <LibCore/SessionManagement.h>
  26. #include <LibCore/Socket.h>
  27. #include <LibThreading/Mutex.h>
  28. #include <LibThreading/MutexProtected.h>
  29. #include <errno.h>
  30. #include <fcntl.h>
  31. #include <signal.h>
  32. #include <stdio.h>
  33. #include <string.h>
  34. #include <sys/select.h>
  35. #include <sys/socket.h>
  36. #include <sys/time.h>
  37. #include <sys/types.h>
  38. #include <time.h>
  39. #include <unistd.h>
  40. #ifdef AK_OS_SERENITY
  41. # include <LibCore/Account.h>
  42. extern bool s_global_initializers_ran;
  43. #endif
  44. namespace Core {
  45. class InspectorServerConnection;
  46. [[maybe_unused]] static bool connect_to_inspector_server();
  47. struct EventLoopTimer {
  48. int timer_id { 0 };
  49. Time interval;
  50. Time fire_time;
  51. bool should_reload { false };
  52. TimerShouldFireWhenNotVisible fire_when_not_visible { TimerShouldFireWhenNotVisible::No };
  53. WeakPtr<Object> owner;
  54. void reload(Time const& now);
  55. bool has_expired(Time const& now) const;
  56. };
  57. struct EventLoop::Private {
  58. Threading::Mutex lock;
  59. };
  60. static Threading::MutexProtected<NeverDestroyed<IDAllocator>> s_id_allocator;
  61. static Threading::MutexProtected<RefPtr<InspectorServerConnection>> s_inspector_server_connection;
  62. // Each thread has its own event loop stack, its own timers, notifiers and a wake pipe.
  63. static thread_local Vector<EventLoop&>* s_event_loop_stack;
  64. static thread_local HashMap<int, NonnullOwnPtr<EventLoopTimer>>* s_timers;
  65. static thread_local HashTable<Notifier*>* s_notifiers;
  66. // The wake pipe is both responsible for notifying us when someone calls wake(), as well as POSIX signals.
  67. // While wake() pushes zero into the pipe, signal numbers (by defintion nonzero, see signal_numbers.h) are pushed into the pipe verbatim.
  68. thread_local int EventLoop::s_wake_pipe_fds[2];
  69. thread_local bool EventLoop::s_wake_pipe_initialized { false };
  70. thread_local bool s_warned_promise_count { false };
  71. void EventLoop::initialize_wake_pipes()
  72. {
  73. if (!s_wake_pipe_initialized) {
  74. #if defined(SOCK_NONBLOCK)
  75. int rc = pipe2(s_wake_pipe_fds, O_CLOEXEC);
  76. #else
  77. int rc = pipe(s_wake_pipe_fds);
  78. fcntl(s_wake_pipe_fds[0], F_SETFD, FD_CLOEXEC);
  79. fcntl(s_wake_pipe_fds[1], F_SETFD, FD_CLOEXEC);
  80. #endif
  81. VERIFY(rc == 0);
  82. s_wake_pipe_initialized = true;
  83. }
  84. }
  85. bool EventLoop::has_been_instantiated()
  86. {
  87. return s_event_loop_stack != nullptr && !s_event_loop_stack->is_empty();
  88. }
  89. class SignalHandlers : public RefCounted<SignalHandlers> {
  90. AK_MAKE_NONCOPYABLE(SignalHandlers);
  91. AK_MAKE_NONMOVABLE(SignalHandlers);
  92. public:
  93. SignalHandlers(int signo, void (*handle_signal)(int));
  94. ~SignalHandlers();
  95. void dispatch();
  96. int add(Function<void(int)>&& handler);
  97. bool remove(int handler_id);
  98. bool is_empty() const
  99. {
  100. if (m_calling_handlers) {
  101. for (auto& handler : m_handlers_pending) {
  102. if (handler.value)
  103. return false; // an add is pending
  104. }
  105. }
  106. return m_handlers.is_empty();
  107. }
  108. bool have(int handler_id) const
  109. {
  110. if (m_calling_handlers) {
  111. auto it = m_handlers_pending.find(handler_id);
  112. if (it != m_handlers_pending.end()) {
  113. if (!it->value)
  114. return false; // a deletion is pending
  115. }
  116. }
  117. return m_handlers.contains(handler_id);
  118. }
  119. int m_signo;
  120. void (*m_original_handler)(int); // TODO: can't use sighandler_t?
  121. HashMap<int, Function<void(int)>> m_handlers;
  122. HashMap<int, Function<void(int)>> m_handlers_pending;
  123. bool m_calling_handlers { false };
  124. };
  125. struct SignalHandlersInfo {
  126. HashMap<int, NonnullRefPtr<SignalHandlers>> signal_handlers;
  127. int next_signal_id { 0 };
  128. };
  129. static Singleton<SignalHandlersInfo> s_signals;
  130. template<bool create_if_null = true>
  131. inline SignalHandlersInfo* signals_info()
  132. {
  133. return s_signals.ptr();
  134. }
  135. pid_t EventLoop::s_pid;
  136. class InspectorServerConnection : public Object {
  137. C_OBJECT(InspectorServerConnection)
  138. private:
  139. explicit InspectorServerConnection(NonnullOwnPtr<LocalSocket> socket)
  140. : m_socket(move(socket))
  141. , m_client_id(s_id_allocator.with_locked([](auto& allocator) {
  142. return allocator->allocate();
  143. }))
  144. {
  145. #ifdef AK_OS_SERENITY
  146. m_socket->on_ready_to_read = [this] {
  147. u32 length;
  148. auto maybe_bytes_read = m_socket->read_some({ (u8*)&length, sizeof(length) });
  149. if (maybe_bytes_read.is_error()) {
  150. dbgln("InspectorServerConnection: Failed to read message length from inspector server connection: {}", maybe_bytes_read.error());
  151. shutdown();
  152. return;
  153. }
  154. auto bytes_read = maybe_bytes_read.release_value();
  155. if (bytes_read.is_empty()) {
  156. dbgln_if(EVENTLOOP_DEBUG, "RPC client disconnected");
  157. shutdown();
  158. return;
  159. }
  160. VERIFY(bytes_read.size() == sizeof(length));
  161. auto request_buffer = ByteBuffer::create_uninitialized(length).release_value();
  162. maybe_bytes_read = m_socket->read_some(request_buffer.bytes());
  163. if (maybe_bytes_read.is_error()) {
  164. dbgln("InspectorServerConnection: Failed to read message content from inspector server connection: {}", maybe_bytes_read.error());
  165. shutdown();
  166. return;
  167. }
  168. bytes_read = maybe_bytes_read.release_value();
  169. auto request_json = JsonValue::from_string(request_buffer);
  170. if (request_json.is_error() || !request_json.value().is_object()) {
  171. dbgln("RPC client sent invalid request");
  172. shutdown();
  173. return;
  174. }
  175. handle_request(request_json.value().as_object());
  176. };
  177. #else
  178. warnln("RPC Client constructed outside serenity, this is very likely a bug!");
  179. #endif
  180. }
  181. virtual ~InspectorServerConnection() override
  182. {
  183. if (auto inspected_object = m_inspected_object.strong_ref())
  184. inspected_object->decrement_inspector_count({});
  185. }
  186. public:
  187. void send_response(JsonObject const& response)
  188. {
  189. auto serialized = response.to_deprecated_string();
  190. auto bytes_to_send = serialized.bytes();
  191. u32 length = bytes_to_send.size();
  192. // FIXME: Propagate errors
  193. MUST(m_socket->write_value(length));
  194. while (!bytes_to_send.is_empty()) {
  195. size_t bytes_sent = MUST(m_socket->write_some(bytes_to_send));
  196. bytes_to_send = bytes_to_send.slice(bytes_sent);
  197. }
  198. }
  199. void handle_request(JsonObject const& request)
  200. {
  201. auto type = request.get_deprecated_string("type"sv);
  202. if (!type.has_value()) {
  203. dbgln("RPC client sent request without type field");
  204. return;
  205. }
  206. if (type == "Identify") {
  207. JsonObject response;
  208. response.set("type", type.value());
  209. response.set("pid", getpid());
  210. #ifdef AK_OS_SERENITY
  211. char buffer[1024];
  212. if (get_process_name(buffer, sizeof(buffer)) >= 0) {
  213. response.set("process_name", buffer);
  214. } else {
  215. response.set("process_name", JsonValue());
  216. }
  217. #endif
  218. send_response(response);
  219. return;
  220. }
  221. if (type == "GetAllObjects") {
  222. JsonObject response;
  223. response.set("type", type.value());
  224. JsonArray objects;
  225. for (auto& object : Object::all_objects()) {
  226. JsonObject json_object;
  227. object.save_to(json_object);
  228. objects.append(move(json_object));
  229. }
  230. response.set("objects", move(objects));
  231. send_response(response);
  232. return;
  233. }
  234. if (type == "SetInspectedObject") {
  235. auto address = request.get_addr("address"sv);
  236. for (auto& object : Object::all_objects()) {
  237. if ((FlatPtr)&object == address) {
  238. if (auto inspected_object = m_inspected_object.strong_ref())
  239. inspected_object->decrement_inspector_count({});
  240. m_inspected_object = object;
  241. object.increment_inspector_count({});
  242. break;
  243. }
  244. }
  245. return;
  246. }
  247. if (type == "SetProperty") {
  248. auto address = request.get_addr("address"sv);
  249. for (auto& object : Object::all_objects()) {
  250. if ((FlatPtr)&object == address) {
  251. bool success = object.set_property(request.get_deprecated_string("name"sv).value(), request.get("value"sv).value());
  252. JsonObject response;
  253. response.set("type", "SetProperty");
  254. response.set("success", success);
  255. send_response(response);
  256. break;
  257. }
  258. }
  259. return;
  260. }
  261. if (type == "Disconnect") {
  262. shutdown();
  263. return;
  264. }
  265. }
  266. void shutdown()
  267. {
  268. s_id_allocator.with_locked([this](auto& allocator) { allocator->deallocate(m_client_id); });
  269. }
  270. private:
  271. NonnullOwnPtr<LocalSocket> m_socket;
  272. WeakPtr<Object> m_inspected_object;
  273. int m_client_id { -1 };
  274. };
  275. EventLoop::EventLoop([[maybe_unused]] MakeInspectable make_inspectable)
  276. : m_wake_pipe_fds(&s_wake_pipe_fds)
  277. , m_private(make<Private>())
  278. {
  279. #ifdef AK_OS_SERENITY
  280. if (!s_global_initializers_ran) {
  281. // NOTE: Trying to have an event loop as a global variable will lead to initialization-order fiascos,
  282. // as the event loop constructor accesses and/or sets other global variables.
  283. // Therefore, we crash the program before ASAN catches us.
  284. // If you came here because of the assertion failure, please redesign your program to not have global event loops.
  285. // The common practice is to initialize the main event loop in the main function, and if necessary,
  286. // pass event loop references around or access them with EventLoop::with_main_locked() and EventLoop::current().
  287. VERIFY_NOT_REACHED();
  288. }
  289. #endif
  290. if (!s_event_loop_stack) {
  291. s_event_loop_stack = new Vector<EventLoop&>;
  292. s_timers = new HashMap<int, NonnullOwnPtr<EventLoopTimer>>;
  293. s_notifiers = new HashTable<Notifier*>;
  294. }
  295. if (s_event_loop_stack->is_empty()) {
  296. s_pid = getpid();
  297. s_event_loop_stack->append(*this);
  298. #ifdef AK_OS_SERENITY
  299. if (getuid() != 0) {
  300. if (getenv("MAKE_INSPECTABLE") == "1"sv)
  301. make_inspectable = Core::EventLoop::MakeInspectable::Yes;
  302. if (make_inspectable == MakeInspectable::Yes
  303. && !s_inspector_server_connection.with_locked([](auto inspector_server_connection) { return inspector_server_connection; })) {
  304. if (!connect_to_inspector_server())
  305. dbgln("Core::EventLoop: Failed to connect to InspectorServer");
  306. }
  307. }
  308. #endif
  309. }
  310. initialize_wake_pipes();
  311. dbgln_if(EVENTLOOP_DEBUG, "{} Core::EventLoop constructed :)", getpid());
  312. }
  313. EventLoop::~EventLoop()
  314. {
  315. if (!s_event_loop_stack->is_empty() && &s_event_loop_stack->last() == this)
  316. s_event_loop_stack->take_last();
  317. }
  318. bool connect_to_inspector_server()
  319. {
  320. #ifdef AK_OS_SERENITY
  321. auto maybe_path = SessionManagement::parse_path_with_sid("/tmp/session/%sid/portal/inspectables"sv);
  322. if (maybe_path.is_error()) {
  323. dbgln("connect_to_inspector_server: {}", maybe_path.error());
  324. return false;
  325. }
  326. auto inspector_server_path = maybe_path.value();
  327. auto maybe_socket = LocalSocket::connect(inspector_server_path, Socket::PreventSIGPIPE::Yes);
  328. if (maybe_socket.is_error()) {
  329. dbgln("connect_to_inspector_server: Failed to connect: {}", maybe_socket.error());
  330. return false;
  331. }
  332. s_inspector_server_connection.with_locked([&](auto& inspector_server_connection) {
  333. inspector_server_connection = InspectorServerConnection::construct(maybe_socket.release_value());
  334. });
  335. return true;
  336. #else
  337. VERIFY_NOT_REACHED();
  338. #endif
  339. }
  340. #define VERIFY_EVENT_LOOP_INITIALIZED() \
  341. do { \
  342. if (!s_event_loop_stack) { \
  343. warnln("EventLoop static API was called without prior EventLoop init!"); \
  344. VERIFY_NOT_REACHED(); \
  345. } \
  346. } while (0)
  347. EventLoop& EventLoop::current()
  348. {
  349. VERIFY_EVENT_LOOP_INITIALIZED();
  350. return s_event_loop_stack->last();
  351. }
  352. void EventLoop::quit(int code)
  353. {
  354. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop::quit({})", code);
  355. m_exit_requested = true;
  356. m_exit_code = code;
  357. }
  358. void EventLoop::unquit()
  359. {
  360. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop::unquit()");
  361. m_exit_requested = false;
  362. m_exit_code = 0;
  363. }
  364. struct EventLoopPusher {
  365. public:
  366. EventLoopPusher(EventLoop& event_loop)
  367. : m_event_loop(event_loop)
  368. {
  369. if (EventLoop::has_been_instantiated()) {
  370. m_event_loop.take_pending_events_from(EventLoop::current());
  371. s_event_loop_stack->append(event_loop);
  372. }
  373. }
  374. ~EventLoopPusher()
  375. {
  376. if (EventLoop::has_been_instantiated()) {
  377. s_event_loop_stack->take_last();
  378. for (auto& job : m_event_loop.m_pending_promises) {
  379. // When this event loop was not running below another event loop, the jobs may very well have finished in the meantime.
  380. if (!job->is_resolved())
  381. job->cancel(Error::from_string_view("EventLoop is exiting"sv));
  382. }
  383. EventLoop::current().take_pending_events_from(m_event_loop);
  384. }
  385. }
  386. private:
  387. EventLoop& m_event_loop;
  388. };
  389. int EventLoop::exec()
  390. {
  391. EventLoopPusher pusher(*this);
  392. for (;;) {
  393. if (m_exit_requested)
  394. return m_exit_code;
  395. pump();
  396. }
  397. VERIFY_NOT_REACHED();
  398. }
  399. void EventLoop::spin_until(Function<bool()> goal_condition)
  400. {
  401. EventLoopPusher pusher(*this);
  402. while (!goal_condition())
  403. pump();
  404. }
  405. size_t EventLoop::pump(WaitMode mode)
  406. {
  407. wait_for_event(mode);
  408. decltype(m_queued_events) events;
  409. {
  410. Threading::MutexLocker locker(m_private->lock);
  411. events = move(m_queued_events);
  412. }
  413. m_pending_promises.remove_all_matching([](auto& job) { return job->is_resolved() || job->is_canceled(); });
  414. size_t processed_events = 0;
  415. for (size_t i = 0; i < events.size(); ++i) {
  416. auto& queued_event = events.at(i);
  417. auto receiver = queued_event.receiver.strong_ref();
  418. auto& event = *queued_event.event;
  419. if (receiver)
  420. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: {} event {}", *receiver, event.type());
  421. if (!receiver) {
  422. switch (event.type()) {
  423. case Event::Quit:
  424. VERIFY_NOT_REACHED();
  425. default:
  426. dbgln_if(EVENTLOOP_DEBUG, "Event type {} with no receiver :(", event.type());
  427. break;
  428. }
  429. } else if (event.type() == Event::Type::DeferredInvoke) {
  430. dbgln_if(DEFERRED_INVOKE_DEBUG, "DeferredInvoke: receiver = {}", *receiver);
  431. static_cast<DeferredInvocationEvent&>(event).m_invokee();
  432. } else {
  433. NonnullRefPtr<Object> protector(*receiver);
  434. receiver->dispatch_event(event);
  435. }
  436. ++processed_events;
  437. if (m_exit_requested) {
  438. Threading::MutexLocker locker(m_private->lock);
  439. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: Exit requested. Rejigging {} events.", events.size() - i);
  440. decltype(m_queued_events) new_event_queue;
  441. new_event_queue.ensure_capacity(m_queued_events.size() + events.size());
  442. for (++i; i < events.size(); ++i)
  443. new_event_queue.unchecked_append(move(events[i]));
  444. new_event_queue.extend(move(m_queued_events));
  445. m_queued_events = move(new_event_queue);
  446. break;
  447. }
  448. }
  449. if (m_pending_promises.size() > 30 && !s_warned_promise_count) {
  450. s_warned_promise_count = true;
  451. dbgln("EventLoop {:p} warning: Job queue wasn't designed for this load ({} promises). Please begin optimizing EventLoop::pump() -> m_pending_promises.remove_all_matching", this, m_pending_promises.size());
  452. }
  453. return processed_events;
  454. }
  455. void EventLoop::post_event(Object& receiver, NonnullOwnPtr<Event>&& event, ShouldWake should_wake)
  456. {
  457. Threading::MutexLocker lock(m_private->lock);
  458. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop::post_event: ({}) << receiver={}, event={}", m_queued_events.size(), receiver, event);
  459. m_queued_events.empend(receiver, move(event));
  460. if (should_wake == ShouldWake::Yes)
  461. wake();
  462. }
  463. void EventLoop::wake_once(Object& receiver, int custom_event_type)
  464. {
  465. Threading::MutexLocker lock(m_private->lock);
  466. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop::wake_once: event type {}", custom_event_type);
  467. auto identical_events = m_queued_events.find_if([&](auto& queued_event) {
  468. if (queued_event.receiver.is_null())
  469. return false;
  470. auto const& event = queued_event.event;
  471. auto is_receiver_identical = queued_event.receiver.ptr() == &receiver;
  472. auto event_id_matches = event->type() == Event::Type::Custom && static_cast<CustomEvent const*>(event.ptr())->custom_type() == custom_event_type;
  473. return is_receiver_identical && event_id_matches;
  474. });
  475. // Event is not in the queue yet, so we want to wake.
  476. if (identical_events.is_end())
  477. post_event(receiver, make<CustomEvent>(custom_event_type), ShouldWake::Yes);
  478. }
  479. void EventLoop::add_job(NonnullRefPtr<Promise<NonnullRefPtr<Object>>> job_promise)
  480. {
  481. m_pending_promises.append(move(job_promise));
  482. }
  483. SignalHandlers::SignalHandlers(int signo, void (*handle_signal)(int))
  484. : m_signo(signo)
  485. , m_original_handler(signal(signo, handle_signal))
  486. {
  487. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: Registered handler for signal {}", m_signo);
  488. }
  489. SignalHandlers::~SignalHandlers()
  490. {
  491. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: Unregistering handler for signal {}", m_signo);
  492. signal(m_signo, m_original_handler);
  493. }
  494. void SignalHandlers::dispatch()
  495. {
  496. TemporaryChange change(m_calling_handlers, true);
  497. for (auto& handler : m_handlers)
  498. handler.value(m_signo);
  499. if (!m_handlers_pending.is_empty()) {
  500. // Apply pending adds/removes
  501. for (auto& handler : m_handlers_pending) {
  502. if (handler.value) {
  503. auto result = m_handlers.set(handler.key, move(handler.value));
  504. VERIFY(result == AK::HashSetResult::InsertedNewEntry);
  505. } else {
  506. m_handlers.remove(handler.key);
  507. }
  508. }
  509. m_handlers_pending.clear();
  510. }
  511. }
  512. int SignalHandlers::add(Function<void(int)>&& handler)
  513. {
  514. int id = ++signals_info()->next_signal_id; // TODO: worry about wrapping and duplicates?
  515. if (m_calling_handlers)
  516. m_handlers_pending.set(id, move(handler));
  517. else
  518. m_handlers.set(id, move(handler));
  519. return id;
  520. }
  521. bool SignalHandlers::remove(int handler_id)
  522. {
  523. VERIFY(handler_id != 0);
  524. if (m_calling_handlers) {
  525. auto it = m_handlers.find(handler_id);
  526. if (it != m_handlers.end()) {
  527. // Mark pending remove
  528. m_handlers_pending.set(handler_id, {});
  529. return true;
  530. }
  531. it = m_handlers_pending.find(handler_id);
  532. if (it != m_handlers_pending.end()) {
  533. if (!it->value)
  534. return false; // already was marked as deleted
  535. it->value = nullptr;
  536. return true;
  537. }
  538. return false;
  539. }
  540. return m_handlers.remove(handler_id);
  541. }
  542. void EventLoop::dispatch_signal(int signo)
  543. {
  544. auto& info = *signals_info();
  545. auto handlers = info.signal_handlers.find(signo);
  546. if (handlers != info.signal_handlers.end()) {
  547. // Make sure we bump the ref count while dispatching the handlers!
  548. // This allows a handler to unregister/register while the handlers
  549. // are being called!
  550. auto handler = handlers->value;
  551. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: dispatching signal {}", signo);
  552. handler->dispatch();
  553. }
  554. }
  555. void EventLoop::handle_signal(int signo)
  556. {
  557. VERIFY(signo != 0);
  558. // We MUST check if the current pid still matches, because there
  559. // is a window between fork() and exec() where a signal delivered
  560. // to our fork could be inadvertently routed to the parent process!
  561. if (getpid() == s_pid) {
  562. int nwritten = write(s_wake_pipe_fds[1], &signo, sizeof(signo));
  563. if (nwritten < 0) {
  564. perror("EventLoop::register_signal: write");
  565. VERIFY_NOT_REACHED();
  566. }
  567. } else {
  568. // We're a fork who received a signal, reset s_pid
  569. s_pid = 0;
  570. }
  571. }
  572. int EventLoop::register_signal(int signo, Function<void(int)> handler)
  573. {
  574. VERIFY(signo != 0);
  575. auto& info = *signals_info();
  576. auto handlers = info.signal_handlers.find(signo);
  577. if (handlers == info.signal_handlers.end()) {
  578. auto signal_handlers = adopt_ref(*new SignalHandlers(signo, EventLoop::handle_signal));
  579. auto handler_id = signal_handlers->add(move(handler));
  580. info.signal_handlers.set(signo, move(signal_handlers));
  581. return handler_id;
  582. } else {
  583. return handlers->value->add(move(handler));
  584. }
  585. }
  586. void EventLoop::unregister_signal(int handler_id)
  587. {
  588. VERIFY(handler_id != 0);
  589. int remove_signo = 0;
  590. auto& info = *signals_info();
  591. for (auto& h : info.signal_handlers) {
  592. auto& handlers = *h.value;
  593. if (handlers.remove(handler_id)) {
  594. if (handlers.is_empty())
  595. remove_signo = handlers.m_signo;
  596. break;
  597. }
  598. }
  599. if (remove_signo != 0)
  600. info.signal_handlers.remove(remove_signo);
  601. }
  602. void EventLoop::notify_forked(ForkEvent event)
  603. {
  604. VERIFY_EVENT_LOOP_INITIALIZED();
  605. switch (event) {
  606. case ForkEvent::Child:
  607. s_event_loop_stack->clear();
  608. s_timers->clear();
  609. s_notifiers->clear();
  610. s_wake_pipe_initialized = false;
  611. initialize_wake_pipes();
  612. if (auto* info = signals_info<false>()) {
  613. info->signal_handlers.clear();
  614. info->next_signal_id = 0;
  615. }
  616. s_pid = 0;
  617. return;
  618. }
  619. VERIFY_NOT_REACHED();
  620. }
  621. void EventLoop::wait_for_event(WaitMode mode)
  622. {
  623. fd_set rfds;
  624. fd_set wfds;
  625. retry:
  626. // Set up the file descriptors for select().
  627. // Basically, we translate high-level event information into low-level selectable file descriptors.
  628. FD_ZERO(&rfds);
  629. FD_ZERO(&wfds);
  630. int max_fd = 0;
  631. auto add_fd_to_set = [&max_fd](int fd, fd_set& set) {
  632. FD_SET(fd, &set);
  633. if (fd > max_fd)
  634. max_fd = fd;
  635. };
  636. int max_fd_added = -1;
  637. // The wake pipe informs us of POSIX signals as well as manual calls to wake()
  638. add_fd_to_set(s_wake_pipe_fds[0], rfds);
  639. max_fd = max(max_fd, max_fd_added);
  640. for (auto& notifier : *s_notifiers) {
  641. if (notifier->event_mask() & Notifier::Read)
  642. add_fd_to_set(notifier->fd(), rfds);
  643. if (notifier->event_mask() & Notifier::Write)
  644. add_fd_to_set(notifier->fd(), wfds);
  645. if (notifier->event_mask() & Notifier::Exceptional)
  646. VERIFY_NOT_REACHED();
  647. }
  648. bool queued_events_is_empty;
  649. {
  650. Threading::MutexLocker locker(m_private->lock);
  651. queued_events_is_empty = m_queued_events.is_empty();
  652. }
  653. // Figure out how long to wait at maximum.
  654. // This mainly depends on the WaitMode and whether we have pending events, but also the next expiring timer.
  655. Time now;
  656. struct timeval timeout = { 0, 0 };
  657. bool should_wait_forever = false;
  658. if (mode == WaitMode::WaitForEvents && queued_events_is_empty) {
  659. auto next_timer_expiration = get_next_timer_expiration();
  660. if (next_timer_expiration.has_value()) {
  661. now = Time::now_monotonic_coarse();
  662. auto computed_timeout = next_timer_expiration.value() - now;
  663. if (computed_timeout.is_negative())
  664. computed_timeout = Time::zero();
  665. timeout = computed_timeout.to_timeval();
  666. } else {
  667. should_wait_forever = true;
  668. }
  669. }
  670. try_select_again:
  671. // select() and wait for file system events, calls to wake(), POSIX signals, or timer expirations.
  672. int marked_fd_count = select(max_fd + 1, &rfds, &wfds, nullptr, should_wait_forever ? nullptr : &timeout);
  673. // Because POSIX, we might spuriously return from select() with EINTR; just select again.
  674. if (marked_fd_count < 0) {
  675. int saved_errno = errno;
  676. if (saved_errno == EINTR) {
  677. if (m_exit_requested)
  678. return;
  679. goto try_select_again;
  680. }
  681. dbgln("Core::EventLoop::wait_for_event: {} ({}: {})", marked_fd_count, saved_errno, strerror(saved_errno));
  682. VERIFY_NOT_REACHED();
  683. }
  684. // We woke up due to a call to wake() or a POSIX signal.
  685. // Handle signals and see whether we need to handle events as well.
  686. if (FD_ISSET(s_wake_pipe_fds[0], &rfds)) {
  687. int wake_events[8];
  688. ssize_t nread;
  689. // We might receive another signal while read()ing here. The signal will go to the handle_signal properly,
  690. // but we get interrupted. Therefore, just retry while we were interrupted.
  691. do {
  692. errno = 0;
  693. nread = read(s_wake_pipe_fds[0], wake_events, sizeof(wake_events));
  694. if (nread == 0)
  695. break;
  696. } while (nread < 0 && errno == EINTR);
  697. if (nread < 0) {
  698. perror("Core::EventLoop::wait_for_event: read from wake pipe");
  699. VERIFY_NOT_REACHED();
  700. }
  701. VERIFY(nread > 0);
  702. bool wake_requested = false;
  703. int event_count = nread / sizeof(wake_events[0]);
  704. for (int i = 0; i < event_count; i++) {
  705. if (wake_events[i] != 0)
  706. dispatch_signal(wake_events[i]);
  707. else
  708. wake_requested = true;
  709. }
  710. if (!wake_requested && nread == sizeof(wake_events))
  711. goto retry;
  712. }
  713. if (!s_timers->is_empty()) {
  714. now = Time::now_monotonic_coarse();
  715. }
  716. // Handle expired timers.
  717. for (auto& it : *s_timers) {
  718. auto& timer = *it.value;
  719. if (!timer.has_expired(now))
  720. continue;
  721. auto owner = timer.owner.strong_ref();
  722. if (timer.fire_when_not_visible == TimerShouldFireWhenNotVisible::No
  723. && owner && !owner->is_visible_for_timer_purposes()) {
  724. continue;
  725. }
  726. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: Timer {} has expired, sending Core::TimerEvent to {}", timer.timer_id, *owner);
  727. if (owner)
  728. post_event(*owner, make<TimerEvent>(timer.timer_id));
  729. if (timer.should_reload) {
  730. timer.reload(now);
  731. } else {
  732. // FIXME: Support removing expired timers that don't want to reload.
  733. VERIFY_NOT_REACHED();
  734. }
  735. }
  736. if (!marked_fd_count)
  737. return;
  738. // Handle file system notifiers by making them normal events.
  739. for (auto& notifier : *s_notifiers) {
  740. if (FD_ISSET(notifier->fd(), &rfds)) {
  741. if (notifier->event_mask() & Notifier::Event::Read)
  742. post_event(*notifier, make<NotifierReadEvent>(notifier->fd()));
  743. }
  744. if (FD_ISSET(notifier->fd(), &wfds)) {
  745. if (notifier->event_mask() & Notifier::Event::Write)
  746. post_event(*notifier, make<NotifierWriteEvent>(notifier->fd()));
  747. }
  748. }
  749. }
  750. bool EventLoopTimer::has_expired(Time const& now) const
  751. {
  752. return now > fire_time;
  753. }
  754. void EventLoopTimer::reload(Time const& now)
  755. {
  756. fire_time = now + interval;
  757. }
  758. Optional<Time> EventLoop::get_next_timer_expiration()
  759. {
  760. auto now = Time::now_monotonic_coarse();
  761. Optional<Time> soonest {};
  762. for (auto& it : *s_timers) {
  763. auto& fire_time = it.value->fire_time;
  764. auto owner = it.value->owner.strong_ref();
  765. if (it.value->fire_when_not_visible == TimerShouldFireWhenNotVisible::No
  766. && owner && !owner->is_visible_for_timer_purposes()) {
  767. continue;
  768. }
  769. // OPTIMIZATION: If we have a timer that needs to fire right away, we can stop looking here.
  770. // FIXME: This whole operation could be O(1) with a better data structure.
  771. if (fire_time < now)
  772. return now;
  773. if (!soonest.has_value() || fire_time < soonest.value())
  774. soonest = fire_time;
  775. }
  776. return soonest;
  777. }
  778. int EventLoop::register_timer(Object& object, int milliseconds, bool should_reload, TimerShouldFireWhenNotVisible fire_when_not_visible)
  779. {
  780. VERIFY_EVENT_LOOP_INITIALIZED();
  781. VERIFY(milliseconds >= 0);
  782. auto timer = make<EventLoopTimer>();
  783. timer->owner = object;
  784. timer->interval = Time::from_milliseconds(milliseconds);
  785. timer->reload(Time::now_monotonic_coarse());
  786. timer->should_reload = should_reload;
  787. timer->fire_when_not_visible = fire_when_not_visible;
  788. int timer_id = s_id_allocator.with_locked([](auto& allocator) { return allocator->allocate(); });
  789. timer->timer_id = timer_id;
  790. s_timers->set(timer_id, move(timer));
  791. return timer_id;
  792. }
  793. bool EventLoop::unregister_timer(int timer_id)
  794. {
  795. VERIFY_EVENT_LOOP_INITIALIZED();
  796. s_id_allocator.with_locked([&](auto& allocator) { allocator->deallocate(timer_id); });
  797. auto it = s_timers->find(timer_id);
  798. if (it == s_timers->end())
  799. return false;
  800. s_timers->remove(it);
  801. return true;
  802. }
  803. void EventLoop::register_notifier(Badge<Notifier>, Notifier& notifier)
  804. {
  805. VERIFY_EVENT_LOOP_INITIALIZED();
  806. s_notifiers->set(&notifier);
  807. }
  808. void EventLoop::unregister_notifier(Badge<Notifier>, Notifier& notifier)
  809. {
  810. VERIFY_EVENT_LOOP_INITIALIZED();
  811. s_notifiers->remove(&notifier);
  812. }
  813. void EventLoop::wake_current()
  814. {
  815. EventLoop::current().wake();
  816. }
  817. void EventLoop::wake()
  818. {
  819. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop::wake()");
  820. int wake_event = 0;
  821. int nwritten = write((*m_wake_pipe_fds)[1], &wake_event, sizeof(wake_event));
  822. if (nwritten < 0) {
  823. perror("EventLoop::wake: write");
  824. VERIFY_NOT_REACHED();
  825. }
  826. }
  827. EventLoop::QueuedEvent::QueuedEvent(Object& receiver, NonnullOwnPtr<Event> event)
  828. : receiver(receiver)
  829. , event(move(event))
  830. {
  831. }
  832. EventLoop::QueuedEvent::QueuedEvent(QueuedEvent&& other)
  833. : receiver(other.receiver)
  834. , event(move(other.event))
  835. {
  836. }
  837. }