MemoryManager.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762
  1. #include "CMOS.h"
  2. #include "Process.h"
  3. #include "StdLib.h"
  4. #include <AK/Assertions.h>
  5. #include <AK/kstdio.h>
  6. #include <Kernel/Arch/i386/CPU.h>
  7. #include <Kernel/FileSystem/Inode.h>
  8. #include <Kernel/Multiboot.h>
  9. #include <Kernel/VM/AnonymousVMObject.h>
  10. #include <Kernel/VM/InodeVMObject.h>
  11. #include <Kernel/VM/MemoryManager.h>
  12. #include <Kernel/VM/PurgeableVMObject.h>
  13. //#define MM_DEBUG
  14. //#define PAGE_FAULT_DEBUG
  15. static MemoryManager* s_the;
  16. MemoryManager& MM
  17. {
  18. return *s_the;
  19. }
  20. MemoryManager::MemoryManager()
  21. {
  22. m_kernel_page_directory = PageDirectory::create_kernel_page_directory();
  23. initialize_paging();
  24. kprintf("MM initialized.\n");
  25. }
  26. MemoryManager::~MemoryManager()
  27. {
  28. }
  29. void MemoryManager::initialize_paging()
  30. {
  31. if (!g_cpu_supports_pae) {
  32. kprintf("x86: Cannot boot on machines without PAE support.\n");
  33. hang();
  34. }
  35. #ifdef MM_DEBUG
  36. dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
  37. #endif
  38. // Disable execution from 0MB through 2MB (BIOS data, legacy things, ...)
  39. if (g_cpu_supports_nx)
  40. quickmap_pd(kernel_page_directory(), 0)[0].set_execute_disabled(true);
  41. #if 0
  42. // Disable writing to the kernel text and rodata segments.
  43. extern u32 start_of_kernel_text;
  44. extern u32 start_of_kernel_data;
  45. for (size_t i = (u32)&start_of_kernel_text; i < (u32)&start_of_kernel_data; i += PAGE_SIZE) {
  46. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  47. pte.set_writable(false);
  48. }
  49. if (g_cpu_supports_nx) {
  50. // Disable execution of the kernel data and bss segments.
  51. extern u32 end_of_kernel_bss;
  52. for (size_t i = (u32)&start_of_kernel_data; i < (u32)&end_of_kernel_bss; i += PAGE_SIZE) {
  53. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  54. pte.set_execute_disabled(true);
  55. }
  56. }
  57. #endif
  58. // Basic virtual memory map:
  59. // 0 -> 4 KB Null page (so nullptr dereferences crash!)
  60. // 4 KB -> 8 MB Identity mapped.
  61. // 8 MB -> 3 GB Available to userspace.
  62. // 3GB -> 4 GB Kernel-only virtual address space (>0xc0000000)
  63. m_quickmap_addr = VirtualAddress(0xffe00000);
  64. #ifdef MM_DEBUG
  65. dbgprintf("MM: Quickmap will use %p\n", m_quickmap_addr.get());
  66. #endif
  67. RefPtr<PhysicalRegion> region;
  68. bool region_is_super = false;
  69. auto* mmap = (multiboot_memory_map_t*)(0xc0000000 + multiboot_info_ptr->mmap_addr);
  70. for (; (unsigned long)mmap < (0xc0000000 + multiboot_info_ptr->mmap_addr) + (multiboot_info_ptr->mmap_length); mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  71. kprintf("MM: Multiboot mmap: base_addr = 0x%x%08x, length = 0x%x%08x, type = 0x%x\n",
  72. (u32)(mmap->addr >> 32),
  73. (u32)(mmap->addr & 0xffffffff),
  74. (u32)(mmap->len >> 32),
  75. (u32)(mmap->len & 0xffffffff),
  76. (u32)mmap->type);
  77. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  78. continue;
  79. // FIXME: Maybe make use of stuff below the 1MB mark?
  80. if (mmap->addr < (1 * MB))
  81. continue;
  82. if ((mmap->addr + mmap->len) > 0xffffffff)
  83. continue;
  84. auto diff = (u32)mmap->addr % PAGE_SIZE;
  85. if (diff != 0) {
  86. kprintf("MM: got an unaligned region base from the bootloader; correcting %p by %d bytes\n", mmap->addr, diff);
  87. diff = PAGE_SIZE - diff;
  88. mmap->addr += diff;
  89. mmap->len -= diff;
  90. }
  91. if ((mmap->len % PAGE_SIZE) != 0) {
  92. kprintf("MM: got an unaligned region length from the bootloader; correcting %d by %d bytes\n", mmap->len, mmap->len % PAGE_SIZE);
  93. mmap->len -= mmap->len % PAGE_SIZE;
  94. }
  95. if (mmap->len < PAGE_SIZE) {
  96. kprintf("MM: memory region from bootloader is too small; we want >= %d bytes, but got %d bytes\n", PAGE_SIZE, mmap->len);
  97. continue;
  98. }
  99. #ifdef MM_DEBUG
  100. kprintf("MM: considering memory at %p - %p\n",
  101. (u32)mmap->addr, (u32)(mmap->addr + mmap->len));
  102. #endif
  103. for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  104. auto addr = PhysicalAddress(page_base);
  105. if (page_base < 7 * MB) {
  106. // nothing
  107. } else if (page_base >= 7 * MB && page_base < 8 * MB) {
  108. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  109. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  110. region = m_super_physical_regions.last();
  111. region_is_super = true;
  112. } else {
  113. region->expand(region->lower(), addr);
  114. }
  115. } else {
  116. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  117. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  118. region = m_user_physical_regions.last();
  119. region_is_super = false;
  120. } else {
  121. region->expand(region->lower(), addr);
  122. }
  123. }
  124. }
  125. }
  126. for (auto& region : m_super_physical_regions)
  127. m_super_physical_pages += region.finalize_capacity();
  128. for (auto& region : m_user_physical_regions)
  129. m_user_physical_pages += region.finalize_capacity();
  130. #ifdef MM_DEBUG
  131. dbgprintf("MM: Installing page directory\n");
  132. #endif
  133. // Turn on CR4.PAE
  134. asm volatile(
  135. "mov %cr4, %eax\n"
  136. "orl $0x20, %eax\n"
  137. "mov %eax, %cr4\n");
  138. if (g_cpu_supports_pge) {
  139. // Turn on CR4.PGE so the CPU will respect the G bit in page tables.
  140. asm volatile(
  141. "mov %cr4, %eax\n"
  142. "orl $0x80, %eax\n"
  143. "mov %eax, %cr4\n");
  144. kprintf("x86: PGE support enabled\n");
  145. } else {
  146. kprintf("x86: PGE support not detected\n");
  147. }
  148. if (g_cpu_supports_smep) {
  149. // Turn on CR4.SMEP
  150. asm volatile(
  151. "mov %cr4, %eax\n"
  152. "orl $0x100000, %eax\n"
  153. "mov %eax, %cr4\n");
  154. kprintf("x86: SMEP support enabled\n");
  155. } else {
  156. kprintf("x86: SMEP support not detected\n");
  157. }
  158. if (g_cpu_supports_smap) {
  159. // Turn on CR4.SMAP
  160. kprintf("x86: Enabling SMAP\n");
  161. asm volatile(
  162. "mov %cr4, %eax\n"
  163. "orl $0x200000, %eax\n"
  164. "mov %eax, %cr4\n");
  165. kprintf("x86: SMAP support enabled\n");
  166. } else {
  167. kprintf("x86: SMAP support not detected\n");
  168. }
  169. if (g_cpu_supports_nx) {
  170. // Turn on IA32_EFER.NXE
  171. asm volatile(
  172. "movl $0xc0000080, %ecx\n"
  173. "rdmsr\n"
  174. "orl $0x800, %eax\n"
  175. "wrmsr\n");
  176. kprintf("x86: NX support enabled\n");
  177. } else {
  178. kprintf("x86: NX support not detected\n");
  179. }
  180. asm volatile("movl %%eax, %%cr3" ::"a"(kernel_page_directory().cr3()));
  181. asm volatile(
  182. "movl %%cr0, %%eax\n"
  183. "orl $0x80010001, %%eax\n"
  184. "movl %%eax, %%cr0\n" ::
  185. : "%eax", "memory");
  186. #ifdef MM_DEBUG
  187. dbgprintf("MM: Paging initialized.\n");
  188. #endif
  189. }
  190. PageTableEntry& MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  191. {
  192. ASSERT_INTERRUPTS_DISABLED();
  193. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  194. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  195. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  196. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  197. PageDirectoryEntry& pde = pd[page_directory_index];
  198. if (!pde.is_present()) {
  199. #ifdef MM_DEBUG
  200. dbgprintf("MM: PDE %u not present (requested for V%p), allocating\n", page_directory_index, vaddr.get());
  201. #endif
  202. auto page_table = allocate_supervisor_physical_page();
  203. #ifdef MM_DEBUG
  204. dbgprintf("MM: PD K%p (%s) at P%p allocated page table #%u (for V%p) at P%p\n",
  205. &page_directory,
  206. &page_directory == m_kernel_page_directory ? "Kernel" : "User",
  207. page_directory.cr3(),
  208. page_directory_index,
  209. vaddr.get(),
  210. page_table->paddr().get());
  211. #endif
  212. pde.set_page_table_base(page_table->paddr().get());
  213. pde.set_user_allowed(true);
  214. pde.set_present(true);
  215. pde.set_writable(true);
  216. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  217. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  218. }
  219. return quickmap_pt(PhysicalAddress((u32)pde.page_table_base()))[page_table_index];
  220. }
  221. void MemoryManager::map_protected(VirtualAddress vaddr, size_t length)
  222. {
  223. InterruptDisabler disabler;
  224. ASSERT(vaddr.is_page_aligned());
  225. for (u32 offset = 0; offset < length; offset += PAGE_SIZE) {
  226. auto pte_address = vaddr.offset(offset);
  227. auto& pte = ensure_pte(kernel_page_directory(), pte_address);
  228. pte.set_physical_page_base(pte_address.get());
  229. pte.set_user_allowed(false);
  230. pte.set_present(false);
  231. pte.set_writable(false);
  232. flush_tlb(pte_address);
  233. }
  234. }
  235. void MemoryManager::create_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
  236. {
  237. InterruptDisabler disabler;
  238. ASSERT((vaddr.get() & ~PAGE_MASK) == 0);
  239. for (u32 offset = 0; offset < size; offset += PAGE_SIZE) {
  240. auto pte_address = vaddr.offset(offset);
  241. auto& pte = ensure_pte(page_directory, pte_address);
  242. pte.set_physical_page_base(pte_address.get());
  243. pte.set_user_allowed(false);
  244. pte.set_present(true);
  245. pte.set_writable(true);
  246. flush_tlb(pte_address);
  247. }
  248. }
  249. void MemoryManager::initialize()
  250. {
  251. s_the = new MemoryManager;
  252. }
  253. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  254. {
  255. if (vaddr.get() < 0xc0000000)
  256. return nullptr;
  257. for (auto& region : MM.m_kernel_regions) {
  258. if (region.contains(vaddr))
  259. return &region;
  260. }
  261. return nullptr;
  262. }
  263. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  264. {
  265. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  266. for (auto& region : process.m_regions) {
  267. if (region.contains(vaddr))
  268. return &region;
  269. }
  270. dbg() << process << " Couldn't find user region for " << vaddr;
  271. if (auto* kreg = kernel_region_from_vaddr(vaddr)) {
  272. dbg() << process << " OTOH, there is a kernel region: " << kreg->range() << ": " << kreg->name();
  273. } else {
  274. dbg() << process << " AND no kernel region either";
  275. }
  276. process.dump_regions();
  277. kprintf("Kernel regions:\n");
  278. kprintf("BEGIN END SIZE ACCESS NAME\n");
  279. for (auto& region : MM.m_kernel_regions) {
  280. kprintf("%08x -- %08x %08x %c%c%c%c%c%c %s\n",
  281. region.vaddr().get(),
  282. region.vaddr().offset(region.size() - 1).get(),
  283. region.size(),
  284. region.is_readable() ? 'R' : ' ',
  285. region.is_writable() ? 'W' : ' ',
  286. region.is_executable() ? 'X' : ' ',
  287. region.is_shared() ? 'S' : ' ',
  288. region.is_stack() ? 'T' : ' ',
  289. region.vmobject().is_purgeable() ? 'P' : ' ',
  290. region.name().characters());
  291. }
  292. return nullptr;
  293. }
  294. Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
  295. {
  296. if (auto* region = kernel_region_from_vaddr(vaddr))
  297. return region;
  298. return user_region_from_vaddr(process, vaddr);
  299. }
  300. const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
  301. {
  302. if (auto* region = kernel_region_from_vaddr(vaddr))
  303. return region;
  304. return user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  305. }
  306. Region* MemoryManager::region_from_vaddr(VirtualAddress vaddr)
  307. {
  308. if (auto* region = kernel_region_from_vaddr(vaddr))
  309. return region;
  310. auto page_directory = PageDirectory::find_by_cr3(cpu_cr3());
  311. if (!page_directory)
  312. return nullptr;
  313. ASSERT(page_directory->process());
  314. return user_region_from_vaddr(*page_directory->process(), vaddr);
  315. }
  316. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  317. {
  318. ASSERT_INTERRUPTS_DISABLED();
  319. ASSERT(current);
  320. #ifdef PAGE_FAULT_DEBUG
  321. dbgprintf("MM: handle_page_fault(%w) at V%p\n", fault.code(), fault.vaddr().get());
  322. #endif
  323. ASSERT(fault.vaddr() != m_quickmap_addr);
  324. auto* region = region_from_vaddr(fault.vaddr());
  325. if (!region) {
  326. kprintf("NP(error) fault at invalid address V%p\n", fault.vaddr().get());
  327. return PageFaultResponse::ShouldCrash;
  328. }
  329. return region->handle_fault(fault);
  330. }
  331. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool should_commit, bool cacheable)
  332. {
  333. InterruptDisabler disabler;
  334. ASSERT(!(size % PAGE_SIZE));
  335. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  336. ASSERT(range.is_valid());
  337. OwnPtr<Region> region;
  338. if (user_accessible)
  339. region = Region::create_user_accessible(range, name, access, cacheable);
  340. else
  341. region = Region::create_kernel_only(range, name, access, cacheable);
  342. region->set_page_directory(kernel_page_directory());
  343. // FIXME: It would be cool if these could zero-fill on demand instead.
  344. if (should_commit)
  345. region->commit();
  346. return region;
  347. }
  348. OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  349. {
  350. InterruptDisabler disabler;
  351. ASSERT(!(size % PAGE_SIZE));
  352. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  353. ASSERT(range.is_valid());
  354. OwnPtr<Region> region;
  355. if (user_accessible)
  356. region = Region::create_user_accessible(range, AnonymousVMObject::create_for_physical_range(paddr, size), 0, name, access, cacheable);
  357. else
  358. region = Region::create_kernel_only(range, AnonymousVMObject::create_for_physical_range(paddr, size), 0, name, access, cacheable);
  359. region->map(kernel_page_directory());
  360. return region;
  361. }
  362. OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name, u8 access, bool cacheable)
  363. {
  364. return allocate_kernel_region(size, name, access, true, true, cacheable);
  365. }
  366. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  367. {
  368. InterruptDisabler disabler;
  369. ASSERT(!(size % PAGE_SIZE));
  370. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  371. ASSERT(range.is_valid());
  372. OwnPtr<Region> region;
  373. if (user_accessible)
  374. region = Region::create_user_accessible(range, vmobject, 0, name, access, cacheable);
  375. else
  376. region = Region::create_kernel_only(range, vmobject, 0, name, access, cacheable);
  377. region->map(kernel_page_directory());
  378. return region;
  379. }
  380. void MemoryManager::deallocate_user_physical_page(PhysicalPage&& page)
  381. {
  382. for (auto& region : m_user_physical_regions) {
  383. if (!region.contains(page)) {
  384. kprintf(
  385. "MM: deallocate_user_physical_page: %p not in %p -> %p\n",
  386. page.paddr().get(), region.lower().get(), region.upper().get());
  387. continue;
  388. }
  389. region.return_page(move(page));
  390. --m_user_physical_pages_used;
  391. return;
  392. }
  393. kprintf("MM: deallocate_user_physical_page couldn't figure out region for user page @ %p\n", page.paddr().get());
  394. ASSERT_NOT_REACHED();
  395. }
  396. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page()
  397. {
  398. RefPtr<PhysicalPage> page;
  399. for (auto& region : m_user_physical_regions) {
  400. page = region.take_free_page(false);
  401. if (!page.is_null())
  402. break;
  403. }
  404. return page;
  405. }
  406. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
  407. {
  408. InterruptDisabler disabler;
  409. RefPtr<PhysicalPage> page = find_free_user_physical_page();
  410. if (!page) {
  411. if (m_user_physical_regions.is_empty()) {
  412. kprintf("MM: no user physical regions available (?)\n");
  413. }
  414. for_each_vmobject([&](auto& vmobject) {
  415. if (vmobject.is_purgeable()) {
  416. auto& purgeable_vmobject = static_cast<PurgeableVMObject&>(vmobject);
  417. int purged_page_count = purgeable_vmobject.purge_with_interrupts_disabled({});
  418. if (purged_page_count) {
  419. kprintf("MM: Purge saved the day! Purged %d pages from PurgeableVMObject{%p}\n", purged_page_count, &purgeable_vmobject);
  420. page = find_free_user_physical_page();
  421. ASSERT(page);
  422. return IterationDecision::Break;
  423. }
  424. }
  425. return IterationDecision::Continue;
  426. });
  427. if (!page) {
  428. kprintf("MM: no user physical pages available\n");
  429. ASSERT_NOT_REACHED();
  430. return {};
  431. }
  432. }
  433. #ifdef MM_DEBUG
  434. dbgprintf("MM: allocate_user_physical_page vending P%p\n", page->paddr().get());
  435. #endif
  436. if (should_zero_fill == ShouldZeroFill::Yes) {
  437. auto* ptr = (u32*)quickmap_page(*page);
  438. memset(ptr, 0, PAGE_SIZE);
  439. unquickmap_page();
  440. }
  441. ++m_user_physical_pages_used;
  442. return page;
  443. }
  444. void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage&& page)
  445. {
  446. for (auto& region : m_super_physical_regions) {
  447. if (!region.contains(page)) {
  448. kprintf(
  449. "MM: deallocate_supervisor_physical_page: %p not in %p -> %p\n",
  450. page.paddr().get(), region.lower().get(), region.upper().get());
  451. continue;
  452. }
  453. region.return_page(move(page));
  454. --m_super_physical_pages_used;
  455. return;
  456. }
  457. kprintf("MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ %p\n", page.paddr().get());
  458. ASSERT_NOT_REACHED();
  459. }
  460. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  461. {
  462. InterruptDisabler disabler;
  463. RefPtr<PhysicalPage> page;
  464. for (auto& region : m_super_physical_regions) {
  465. page = region.take_free_page(true);
  466. if (page.is_null())
  467. continue;
  468. }
  469. if (!page) {
  470. if (m_super_physical_regions.is_empty()) {
  471. kprintf("MM: no super physical regions available (?)\n");
  472. }
  473. kprintf("MM: no super physical pages available\n");
  474. ASSERT_NOT_REACHED();
  475. return {};
  476. }
  477. #ifdef MM_DEBUG
  478. dbgprintf("MM: allocate_supervisor_physical_page vending P%p\n", page->paddr().get());
  479. #endif
  480. fast_u32_fill((u32*)page->paddr().offset(0xc0000000).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  481. ++m_super_physical_pages_used;
  482. return page;
  483. }
  484. void MemoryManager::enter_process_paging_scope(Process& process)
  485. {
  486. ASSERT(current);
  487. InterruptDisabler disabler;
  488. current->tss().cr3 = process.page_directory().cr3();
  489. asm volatile("movl %%eax, %%cr3" ::"a"(process.page_directory().cr3())
  490. : "memory");
  491. }
  492. void MemoryManager::flush_entire_tlb()
  493. {
  494. asm volatile(
  495. "mov %%cr3, %%eax\n"
  496. "mov %%eax, %%cr3\n" ::
  497. : "%eax", "memory");
  498. }
  499. void MemoryManager::flush_tlb(VirtualAddress vaddr)
  500. {
  501. #ifdef MM_DEBUG
  502. dbgprintf("MM: Flush page V%p\n", vaddr.get());
  503. #endif
  504. asm volatile("invlpg %0"
  505. :
  506. : "m"(*(char*)vaddr.get())
  507. : "memory");
  508. }
  509. extern "C" PageTableEntry boot_pd3_pde1023_pt[1024];
  510. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  511. {
  512. auto& pte = boot_pd3_pde1023_pt[4];
  513. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  514. if (pte.physical_page_base() != pd_paddr.as_ptr()) {
  515. //dbgprintf("quickmap_pd: Mapping P%p at 0xffe04000 in pte @ %p\n", directory.m_directory_pages[pdpt_index]->paddr().as_ptr(), &pte);
  516. pte.set_physical_page_base(pd_paddr.get());
  517. pte.set_present(true);
  518. pte.set_writable(true);
  519. pte.set_user_allowed(false);
  520. flush_tlb(VirtualAddress(0xffe04000));
  521. }
  522. return (PageDirectoryEntry*)0xffe04000;
  523. }
  524. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  525. {
  526. auto& pte = boot_pd3_pde1023_pt[8];
  527. if (pte.physical_page_base() != pt_paddr.as_ptr()) {
  528. //dbgprintf("quickmap_pt: Mapping P%p at 0xffe08000 in pte @ %p\n", pt_paddr.as_ptr(), &pte);
  529. pte.set_physical_page_base(pt_paddr.get());
  530. pte.set_present(true);
  531. pte.set_writable(true);
  532. pte.set_user_allowed(false);
  533. flush_tlb(VirtualAddress(0xffe08000));
  534. }
  535. return (PageTableEntry*)0xffe08000;
  536. }
  537. void MemoryManager::map_for_kernel(VirtualAddress vaddr, PhysicalAddress paddr, bool cache_disabled)
  538. {
  539. auto& pte = ensure_pte(kernel_page_directory(), vaddr);
  540. pte.set_physical_page_base(paddr.get());
  541. pte.set_present(true);
  542. pte.set_writable(true);
  543. pte.set_user_allowed(false);
  544. pte.set_cache_disabled(cache_disabled);
  545. flush_tlb(vaddr);
  546. }
  547. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  548. {
  549. ASSERT_INTERRUPTS_DISABLED();
  550. ASSERT(!m_quickmap_in_use);
  551. m_quickmap_in_use = true;
  552. auto page_vaddr = m_quickmap_addr;
  553. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  554. pte.set_physical_page_base(physical_page.paddr().get());
  555. pte.set_present(true);
  556. pte.set_writable(true);
  557. pte.set_user_allowed(false);
  558. flush_tlb(page_vaddr);
  559. ASSERT((u32)pte.physical_page_base() == physical_page.paddr().get());
  560. #ifdef MM_DEBUG
  561. dbg() << "MM: >> quickmap_page " << page_vaddr << " => " << physical_page.paddr() << " @ PTE=" << (void*)pte.raw() << " {" << &pte << "}";
  562. #endif
  563. return page_vaddr.as_ptr();
  564. }
  565. void MemoryManager::unquickmap_page()
  566. {
  567. ASSERT_INTERRUPTS_DISABLED();
  568. ASSERT(m_quickmap_in_use);
  569. auto page_vaddr = m_quickmap_addr;
  570. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  571. #ifdef MM_DEBUG
  572. auto old_physical_address = pte.physical_page_base();
  573. #endif
  574. pte.set_physical_page_base(0);
  575. pte.set_present(false);
  576. pte.set_writable(false);
  577. flush_tlb(page_vaddr);
  578. #ifdef MM_DEBUG
  579. dbg() << "MM: >> unquickmap_page " << page_vaddr << " =/> " << old_physical_address;
  580. #endif
  581. m_quickmap_in_use = false;
  582. }
  583. template<MemoryManager::AccessSpace space, MemoryManager::AccessType access_type>
  584. bool MemoryManager::validate_range(const Process& process, VirtualAddress base_vaddr, size_t size) const
  585. {
  586. ASSERT(size);
  587. VirtualAddress vaddr = base_vaddr.page_base();
  588. VirtualAddress end_vaddr = base_vaddr.offset(size - 1).page_base();
  589. if (end_vaddr < vaddr) {
  590. dbg() << *current << " Shenanigans! Asked to validate " << base_vaddr << " size=" << size;
  591. return false;
  592. }
  593. const Region* region = nullptr;
  594. while (vaddr <= end_vaddr) {
  595. if (!region || !region->contains(vaddr)) {
  596. if (space == AccessSpace::Kernel)
  597. region = kernel_region_from_vaddr(vaddr);
  598. if (!region || !region->contains(vaddr))
  599. region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  600. if (!region
  601. || (space == AccessSpace::User && !region->is_user_accessible())
  602. || (access_type == AccessType::Read && !region->is_readable())
  603. || (access_type == AccessType::Write && !region->is_writable())) {
  604. return false;
  605. }
  606. }
  607. vaddr = vaddr.offset(PAGE_SIZE);
  608. }
  609. return true;
  610. }
  611. bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
  612. {
  613. if (!is_user_address(vaddr))
  614. return false;
  615. auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  616. return region && region->is_user_accessible() && region->is_stack();
  617. }
  618. bool MemoryManager::validate_kernel_read(const Process& process, VirtualAddress vaddr, size_t size) const
  619. {
  620. return validate_range<AccessSpace::Kernel, AccessType::Read>(process, vaddr, size);
  621. }
  622. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr, size_t size) const
  623. {
  624. if (!is_user_address(vaddr))
  625. return false;
  626. return validate_range<AccessSpace::User, AccessType::Read>(process, vaddr, size);
  627. }
  628. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr, size_t size) const
  629. {
  630. if (!is_user_address(vaddr))
  631. return false;
  632. return validate_range<AccessSpace::User, AccessType::Write>(process, vaddr, size);
  633. }
  634. void MemoryManager::register_vmobject(VMObject& vmobject)
  635. {
  636. InterruptDisabler disabler;
  637. m_vmobjects.append(&vmobject);
  638. }
  639. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  640. {
  641. InterruptDisabler disabler;
  642. m_vmobjects.remove(&vmobject);
  643. }
  644. void MemoryManager::register_region(Region& region)
  645. {
  646. InterruptDisabler disabler;
  647. if (region.vaddr().get() >= 0xc0000000)
  648. m_kernel_regions.append(&region);
  649. else
  650. m_user_regions.append(&region);
  651. }
  652. void MemoryManager::unregister_region(Region& region)
  653. {
  654. InterruptDisabler disabler;
  655. if (region.vaddr().get() >= 0xc0000000)
  656. m_kernel_regions.remove(&region);
  657. else
  658. m_user_regions.remove(&region);
  659. }
  660. ProcessPagingScope::ProcessPagingScope(Process& process)
  661. {
  662. ASSERT(current);
  663. MM.enter_process_paging_scope(process);
  664. }
  665. ProcessPagingScope::~ProcessPagingScope()
  666. {
  667. MM.enter_process_paging_scope(current->process());
  668. }