MathObject.cpp 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2020, Linus Groh <mail@linusgroh.de>
  4. * All rights reserved.
  5. *
  6. * Redistribution and use in source and binary forms, with or without
  7. * modification, are permitted provided that the following conditions are met:
  8. *
  9. * 1. Redistributions of source code must retain the above copyright notice, this
  10. * list of conditions and the following disclaimer.
  11. *
  12. * 2. Redistributions in binary form must reproduce the above copyright notice,
  13. * this list of conditions and the following disclaimer in the documentation
  14. * and/or other materials provided with the distribution.
  15. *
  16. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  19. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  20. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  21. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  22. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  23. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  24. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  25. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. */
  27. #include <AK/FlyString.h>
  28. #include <AK/Function.h>
  29. #include <LibJS/Interpreter.h>
  30. #include <LibJS/Runtime/GlobalObject.h>
  31. #include <LibJS/Runtime/MathObject.h>
  32. #include <math.h>
  33. namespace JS {
  34. MathObject::MathObject(GlobalObject& global_object)
  35. : Object(*global_object.object_prototype())
  36. {
  37. }
  38. void MathObject::initialize(Interpreter& interpreter, GlobalObject& global_object)
  39. {
  40. Object::initialize(interpreter, global_object);
  41. u8 attr = Attribute::Writable | Attribute::Configurable;
  42. define_native_function("abs", abs, 1, attr);
  43. define_native_function("random", random, 0, attr);
  44. define_native_function("sqrt", sqrt, 1, attr);
  45. define_native_function("floor", floor, 1, attr);
  46. define_native_function("ceil", ceil, 1, attr);
  47. define_native_function("round", round, 1, attr);
  48. define_native_function("max", max, 2, attr);
  49. define_native_function("min", min, 2, attr);
  50. define_native_function("trunc", trunc, 1, attr);
  51. define_native_function("sin", sin, 1, attr);
  52. define_native_function("cos", cos, 1, attr);
  53. define_native_function("tan", tan, 1, attr);
  54. define_native_function("pow", pow, 2, attr);
  55. define_native_function("exp", exp, 1, attr);
  56. define_native_function("expm1", expm1, 1, attr);
  57. define_native_function("sign", sign, 1, attr);
  58. define_native_function("clz32", clz32, 1, attr);
  59. define_native_function("acosh", acosh, 1, attr);
  60. define_native_function("asinh", asinh, 1, attr);
  61. define_native_function("atanh", atanh, 1, attr);
  62. define_native_function("log1p", log1p, 1, attr);
  63. define_native_function("cbrt", cbrt, 1, attr);
  64. define_property("E", Value(M_E), 0);
  65. define_property("LN2", Value(M_LN2), 0);
  66. define_property("LN10", Value(M_LN10), 0);
  67. define_property("LOG2E", Value(log2(M_E)), 0);
  68. define_property("LOG10E", Value(log10(M_E)), 0);
  69. define_property("PI", Value(M_PI), 0);
  70. define_property("SQRT1_2", Value(M_SQRT1_2), 0);
  71. define_property("SQRT2", Value(M_SQRT2), 0);
  72. }
  73. MathObject::~MathObject()
  74. {
  75. }
  76. JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
  77. {
  78. auto number = interpreter.argument(0).to_number(interpreter);
  79. if (interpreter.exception())
  80. return {};
  81. if (number.is_nan())
  82. return js_nan();
  83. return Value(number.as_double() >= 0 ? number.as_double() : -number.as_double());
  84. }
  85. Value MathObject::random(Interpreter&, GlobalObject&)
  86. {
  87. #ifdef __serenity__
  88. double r = (double)arc4random() / (double)UINT32_MAX;
  89. #else
  90. double r = (double)rand() / (double)RAND_MAX;
  91. #endif
  92. return Value(r);
  93. }
  94. JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
  95. {
  96. auto number = interpreter.argument(0).to_number(interpreter);
  97. if (interpreter.exception())
  98. return {};
  99. if (number.is_nan())
  100. return js_nan();
  101. return Value(::sqrt(number.as_double()));
  102. }
  103. JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
  104. {
  105. auto number = interpreter.argument(0).to_number(interpreter);
  106. if (interpreter.exception())
  107. return {};
  108. if (number.is_nan())
  109. return js_nan();
  110. return Value(::floor(number.as_double()));
  111. }
  112. JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
  113. {
  114. auto number = interpreter.argument(0).to_number(interpreter);
  115. if (interpreter.exception())
  116. return {};
  117. if (number.is_nan())
  118. return js_nan();
  119. return Value(::ceil(number.as_double()));
  120. }
  121. JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
  122. {
  123. auto number = interpreter.argument(0).to_number(interpreter);
  124. if (interpreter.exception())
  125. return {};
  126. if (number.is_nan())
  127. return js_nan();
  128. return Value(::round(number.as_double()));
  129. }
  130. JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
  131. {
  132. if (!interpreter.argument_count())
  133. return js_negative_infinity();
  134. auto max = interpreter.argument(0).to_number(interpreter);
  135. if (interpreter.exception())
  136. return {};
  137. for (size_t i = 1; i < interpreter.argument_count(); ++i) {
  138. auto cur = interpreter.argument(i).to_number(interpreter);
  139. if (interpreter.exception())
  140. return {};
  141. max = Value(cur.as_double() > max.as_double() ? cur : max);
  142. }
  143. return max;
  144. }
  145. JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
  146. {
  147. if (!interpreter.argument_count())
  148. return js_infinity();
  149. auto min = interpreter.argument(0).to_number(interpreter);
  150. if (interpreter.exception())
  151. return {};
  152. for (size_t i = 1; i < interpreter.argument_count(); ++i) {
  153. auto cur = interpreter.argument(i).to_number(interpreter);
  154. if (interpreter.exception())
  155. return {};
  156. min = Value(cur.as_double() < min.as_double() ? cur : min);
  157. }
  158. return min;
  159. }
  160. JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
  161. {
  162. auto number = interpreter.argument(0).to_number(interpreter);
  163. if (interpreter.exception())
  164. return {};
  165. if (number.is_nan())
  166. return js_nan();
  167. if (number.as_double() < 0)
  168. return MathObject::ceil(interpreter, global_object);
  169. return MathObject::floor(interpreter, global_object);
  170. }
  171. JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
  172. {
  173. auto number = interpreter.argument(0).to_number(interpreter);
  174. if (interpreter.exception())
  175. return {};
  176. if (number.is_nan())
  177. return js_nan();
  178. return Value(::sin(number.as_double()));
  179. }
  180. JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
  181. {
  182. auto number = interpreter.argument(0).to_number(interpreter);
  183. if (interpreter.exception())
  184. return {};
  185. if (number.is_nan())
  186. return js_nan();
  187. return Value(::cos(number.as_double()));
  188. }
  189. JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
  190. {
  191. auto number = interpreter.argument(0).to_number(interpreter);
  192. if (interpreter.exception())
  193. return {};
  194. if (number.is_nan())
  195. return js_nan();
  196. return Value(::tan(number.as_double()));
  197. }
  198. JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
  199. {
  200. return JS::exp(interpreter, interpreter.argument(0), interpreter.argument(1));
  201. }
  202. JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
  203. {
  204. auto number = interpreter.argument(0).to_number(interpreter);
  205. if (interpreter.exception())
  206. return {};
  207. if (number.is_nan())
  208. return js_nan();
  209. return Value(::exp(number.as_double()));
  210. }
  211. JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
  212. {
  213. auto number = interpreter.argument(0).to_number(interpreter);
  214. if (interpreter.exception())
  215. return {};
  216. if (number.is_nan())
  217. return js_nan();
  218. return Value(::expm1(number.as_double()));
  219. }
  220. JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
  221. {
  222. auto number = interpreter.argument(0).to_number(interpreter);
  223. if (interpreter.exception())
  224. return {};
  225. if (number.is_positive_zero())
  226. return Value(0);
  227. if (number.is_negative_zero())
  228. return Value(-0.0);
  229. if (number.as_double() > 0)
  230. return Value(1);
  231. if (number.as_double() < 0)
  232. return Value(-1);
  233. return js_nan();
  234. }
  235. JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
  236. {
  237. auto number = interpreter.argument(0).to_number(interpreter);
  238. if (interpreter.exception())
  239. return {};
  240. if (!number.is_finite_number() || (unsigned)number.as_double() == 0)
  241. return Value(32);
  242. return Value(__builtin_clz((unsigned)number.as_double()));
  243. }
  244. JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
  245. {
  246. auto number = interpreter.argument(0).to_number(interpreter);
  247. if (interpreter.exception())
  248. return {};
  249. if (number.as_double() < 1)
  250. return JS::js_nan();
  251. return Value(::acosh(number.as_double()));
  252. }
  253. JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
  254. {
  255. auto number = interpreter.argument(0).to_number(interpreter);
  256. if (interpreter.exception())
  257. return {};
  258. return Value(::asinh(number.as_double()));
  259. }
  260. JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
  261. {
  262. auto number = interpreter.argument(0).to_number(interpreter);
  263. if (interpreter.exception())
  264. return {};
  265. if (number.as_double() > 1 || number.as_double() < -1)
  266. return JS::js_nan();
  267. return Value(::atanh(number.as_double()));
  268. }
  269. JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
  270. {
  271. auto number = interpreter.argument(0).to_number(interpreter);
  272. if (interpreter.exception())
  273. return {};
  274. if (number.as_double() < -1)
  275. return JS::js_nan();
  276. return Value(::log1p(number.as_double()));
  277. }
  278. JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
  279. {
  280. auto number = interpreter.argument(0).to_number(interpreter);
  281. if (interpreter.exception())
  282. return {};
  283. return Value(::cbrt(number.as_double()));
  284. }
  285. }