Process.cpp 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Singleton.h>
  7. #include <AK/StdLibExtras.h>
  8. #include <AK/StringBuilder.h>
  9. #include <AK/Time.h>
  10. #include <AK/Types.h>
  11. #include <Kernel/API/Syscall.h>
  12. #include <Kernel/Arch/x86/InterruptDisabler.h>
  13. #include <Kernel/Coredump.h>
  14. #include <Kernel/Debug.h>
  15. #include <Kernel/Devices/DeviceManagement.h>
  16. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  17. # include <Kernel/Devices/KCOVDevice.h>
  18. #endif
  19. #include <Kernel/Devices/NullDevice.h>
  20. #include <Kernel/FileSystem/Custody.h>
  21. #include <Kernel/FileSystem/OpenFileDescription.h>
  22. #include <Kernel/FileSystem/VirtualFileSystem.h>
  23. #include <Kernel/KBufferBuilder.h>
  24. #include <Kernel/KSyms.h>
  25. #include <Kernel/Memory/AnonymousVMObject.h>
  26. #include <Kernel/Memory/PageDirectory.h>
  27. #include <Kernel/Memory/SharedInodeVMObject.h>
  28. #include <Kernel/PerformanceEventBuffer.h>
  29. #include <Kernel/PerformanceManager.h>
  30. #include <Kernel/Process.h>
  31. #include <Kernel/ProcessExposed.h>
  32. #include <Kernel/Sections.h>
  33. #include <Kernel/StdLib.h>
  34. #include <Kernel/TTY/TTY.h>
  35. #include <Kernel/Thread.h>
  36. #include <Kernel/ThreadTracer.h>
  37. #include <LibC/errno_numbers.h>
  38. #include <LibC/limits.h>
  39. namespace Kernel {
  40. static void create_signal_trampoline();
  41. RecursiveSpinlock g_profiling_lock;
  42. static Atomic<pid_t> next_pid;
  43. static Singleton<SpinlockProtected<Process::List>> s_processes;
  44. READONLY_AFTER_INIT Memory::Region* g_signal_trampoline_region;
  45. static Singleton<MutexProtected<String>> s_hostname;
  46. MutexProtected<String>& hostname()
  47. {
  48. return *s_hostname;
  49. }
  50. SpinlockProtected<Process::List>& processes()
  51. {
  52. return *s_processes;
  53. }
  54. ProcessID Process::allocate_pid()
  55. {
  56. // Overflow is UB, and negative PIDs wreck havoc.
  57. // TODO: Handle PID overflow
  58. // For example: Use an Atomic<u32>, mask the most significant bit,
  59. // retry if PID is already taken as a PID, taken as a TID,
  60. // takes as a PGID, taken as a SID, or zero.
  61. return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
  62. }
  63. UNMAP_AFTER_INIT void Process::initialize()
  64. {
  65. next_pid.store(0, AK::MemoryOrder::memory_order_release);
  66. // Note: This is called before scheduling is initialized, and before APs are booted.
  67. // So we can "safely" bypass the lock here.
  68. reinterpret_cast<String&>(hostname()) = "courage";
  69. create_signal_trampoline();
  70. }
  71. NonnullRefPtrVector<Process> Process::all_processes()
  72. {
  73. NonnullRefPtrVector<Process> output;
  74. processes().with([&](const auto& list) {
  75. output.ensure_capacity(list.size_slow());
  76. for (const auto& process : list)
  77. output.append(NonnullRefPtr<Process>(process));
  78. });
  79. return output;
  80. }
  81. bool Process::in_group(GroupID gid) const
  82. {
  83. return this->gid() == gid || extra_gids().contains_slow(gid);
  84. }
  85. void Process::kill_threads_except_self()
  86. {
  87. InterruptDisabler disabler;
  88. if (thread_count() <= 1)
  89. return;
  90. auto current_thread = Thread::current();
  91. for_each_thread([&](Thread& thread) {
  92. if (&thread == current_thread)
  93. return;
  94. if (auto state = thread.state(); state == Thread::State::Dead
  95. || state == Thread::State::Dying)
  96. return;
  97. // We need to detach this thread in case it hasn't been joined
  98. thread.detach();
  99. thread.set_should_die();
  100. });
  101. u32 dropped_lock_count = 0;
  102. if (big_lock().force_unlock_if_locked(dropped_lock_count) != LockMode::Unlocked)
  103. dbgln("Process {} big lock had {} locks", *this, dropped_lock_count);
  104. }
  105. void Process::kill_all_threads()
  106. {
  107. for_each_thread([&](Thread& thread) {
  108. // We need to detach this thread in case it hasn't been joined
  109. thread.detach();
  110. thread.set_should_die();
  111. });
  112. }
  113. void Process::register_new(Process& process)
  114. {
  115. // Note: this is essentially the same like process->ref()
  116. RefPtr<Process> new_process = process;
  117. processes().with([&](auto& list) {
  118. list.prepend(process);
  119. });
  120. }
  121. KResultOr<NonnullRefPtr<Process>> Process::try_create_user_process(RefPtr<Thread>& first_thread, StringView path, UserID uid, GroupID gid, NonnullOwnPtrVector<KString> arguments, NonnullOwnPtrVector<KString> environment, TTY* tty)
  122. {
  123. auto parts = path.split_view('/');
  124. if (arguments.is_empty()) {
  125. auto last_part = TRY(KString::try_create(parts.last()));
  126. if (!arguments.try_append(move(last_part)))
  127. return ENOMEM;
  128. }
  129. auto path_string = TRY(KString::try_create(path));
  130. auto name = TRY(KString::try_create(parts.last()));
  131. auto process = TRY(Process::try_create(first_thread, move(name), uid, gid, ProcessID(0), false, VirtualFileSystem::the().root_custody(), nullptr, tty));
  132. if (!process->m_fds.try_resize(process->m_fds.max_open())) {
  133. first_thread = nullptr;
  134. return ENOMEM;
  135. }
  136. auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : DeviceManagement::the().null_device();
  137. auto description = TRY(device_to_use_as_tty.open(O_RDWR));
  138. auto setup_description = [&process, &description](int fd) {
  139. process->m_fds.m_fds_metadatas[fd].allocate();
  140. process->m_fds[fd].set(*description);
  141. };
  142. setup_description(0);
  143. setup_description(1);
  144. setup_description(2);
  145. if (auto result = process->exec(move(path_string), move(arguments), move(environment)); result.is_error()) {
  146. dbgln("Failed to exec {}: {}", path, result);
  147. first_thread = nullptr;
  148. return result;
  149. }
  150. register_new(*process);
  151. // NOTE: All user processes have a leaked ref on them. It's balanced by Thread::WaitBlockerSet::finalize().
  152. process->ref();
  153. return process;
  154. }
  155. RefPtr<Process> Process::create_kernel_process(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, void (*entry)(void*), void* entry_data, u32 affinity, RegisterProcess do_register)
  156. {
  157. auto process_or_error = Process::try_create(first_thread, move(name), UserID(0), GroupID(0), ProcessID(0), true);
  158. if (process_or_error.is_error())
  159. return {};
  160. auto process = process_or_error.release_value();
  161. first_thread->regs().set_ip((FlatPtr)entry);
  162. #if ARCH(I386)
  163. first_thread->regs().esp = FlatPtr(entry_data); // entry function argument is expected to be in regs.esp
  164. #else
  165. first_thread->regs().rdi = FlatPtr(entry_data); // entry function argument is expected to be in regs.rdi
  166. #endif
  167. if (do_register == RegisterProcess::Yes)
  168. register_new(*process);
  169. SpinlockLocker lock(g_scheduler_lock);
  170. first_thread->set_affinity(affinity);
  171. first_thread->set_state(Thread::State::Runnable);
  172. return process;
  173. }
  174. void Process::protect_data()
  175. {
  176. m_protected_data_refs.unref([&]() {
  177. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, false);
  178. });
  179. }
  180. void Process::unprotect_data()
  181. {
  182. m_protected_data_refs.ref([&]() {
  183. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, true);
  184. });
  185. }
  186. KResultOr<NonnullRefPtr<Process>> Process::try_create(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty, Process* fork_parent)
  187. {
  188. auto space = TRY(Memory::AddressSpace::try_create(fork_parent ? &fork_parent->address_space() : nullptr));
  189. auto process = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) Process(move(name), uid, gid, ppid, is_kernel_process, move(cwd), move(executable), tty)));
  190. TRY(process->attach_resources(move(space), first_thread, fork_parent));
  191. return process;
  192. }
  193. Process::Process(NonnullOwnPtr<KString> name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty)
  194. : m_name(move(name))
  195. , m_is_kernel_process(is_kernel_process)
  196. , m_executable(move(executable))
  197. , m_cwd(move(cwd))
  198. , m_tty(tty)
  199. , m_wait_blocker_set(*this)
  200. {
  201. // Ensure that we protect the process data when exiting the constructor.
  202. ProtectedDataMutationScope scope { *this };
  203. m_protected_values.pid = allocate_pid();
  204. m_protected_values.ppid = ppid;
  205. m_protected_values.uid = uid;
  206. m_protected_values.gid = gid;
  207. m_protected_values.euid = uid;
  208. m_protected_values.egid = gid;
  209. m_protected_values.suid = uid;
  210. m_protected_values.sgid = gid;
  211. dbgln_if(PROCESS_DEBUG, "Created new process {}({})", m_name, this->pid().value());
  212. }
  213. KResult Process::attach_resources(NonnullOwnPtr<Memory::AddressSpace>&& preallocated_space, RefPtr<Thread>& first_thread, Process* fork_parent)
  214. {
  215. m_space = move(preallocated_space);
  216. auto create_first_thread = [&] {
  217. if (fork_parent) {
  218. // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process.
  219. return Thread::current()->try_clone(*this);
  220. }
  221. // NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.)
  222. return Thread::try_create(*this);
  223. };
  224. first_thread = TRY(create_first_thread());
  225. if (!fork_parent) {
  226. // FIXME: Figure out if this is really necessary.
  227. first_thread->detach();
  228. }
  229. m_procfs_traits = TRY(ProcessProcFSTraits::try_create({}, *this));
  230. return KSuccess;
  231. }
  232. Process::~Process()
  233. {
  234. unprotect_data();
  235. VERIFY(thread_count() == 0); // all threads should have been finalized
  236. VERIFY(!m_alarm_timer);
  237. PerformanceManager::add_process_exit_event(*this);
  238. }
  239. bool Process::unref() const
  240. {
  241. // NOTE: We need to obtain the process list lock before doing anything,
  242. // because otherwise someone might get in between us lowering the
  243. // refcount and acquiring the lock.
  244. auto did_hit_zero = processes().with([&](auto& list) {
  245. auto new_ref_count = deref_base();
  246. if (new_ref_count > 0)
  247. return false;
  248. if (m_list_node.is_in_list())
  249. list.remove(*const_cast<Process*>(this));
  250. return true;
  251. });
  252. if (did_hit_zero)
  253. delete this;
  254. return did_hit_zero;
  255. }
  256. // Make sure the compiler doesn't "optimize away" this function:
  257. extern void signal_trampoline_dummy() __attribute__((used));
  258. void signal_trampoline_dummy()
  259. {
  260. #if ARCH(I386)
  261. // The trampoline preserves the current eax, pushes the signal code and
  262. // then calls the signal handler. We do this because, when interrupting a
  263. // blocking syscall, that syscall may return some special error code in eax;
  264. // This error code would likely be overwritten by the signal handler, so it's
  265. // necessary to preserve it here.
  266. asm(
  267. ".intel_syntax noprefix\n"
  268. ".globl asm_signal_trampoline\n"
  269. "asm_signal_trampoline:\n"
  270. "push ebp\n"
  271. "mov ebp, esp\n"
  272. "push eax\n" // we have to store eax 'cause it might be the return value from a syscall
  273. "sub esp, 4\n" // align the stack to 16 bytes
  274. "mov eax, [ebp+12]\n" // push the signal code
  275. "push eax\n"
  276. "call [ebp+8]\n" // call the signal handler
  277. "add esp, 8\n"
  278. "mov eax, %P0\n"
  279. "int 0x82\n" // sigreturn syscall
  280. ".globl asm_signal_trampoline_end\n"
  281. "asm_signal_trampoline_end:\n"
  282. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  283. #elif ARCH(X86_64)
  284. // The trampoline preserves the current rax, pushes the signal code and
  285. // then calls the signal handler. We do this because, when interrupting a
  286. // blocking syscall, that syscall may return some special error code in eax;
  287. // This error code would likely be overwritten by the signal handler, so it's
  288. // necessary to preserve it here.
  289. asm(
  290. ".intel_syntax noprefix\n"
  291. ".globl asm_signal_trampoline\n"
  292. "asm_signal_trampoline:\n"
  293. "push rbp\n"
  294. "mov rbp, rsp\n"
  295. "push rax\n" // we have to store rax 'cause it might be the return value from a syscall
  296. "sub rsp, 8\n" // align the stack to 16 bytes
  297. "mov rdi, [rbp+24]\n" // push the signal code
  298. "call [rbp+16]\n" // call the signal handler
  299. "add rsp, 8\n"
  300. "mov rax, %P0\n"
  301. "int 0x82\n" // sigreturn syscall
  302. ".globl asm_signal_trampoline_end\n"
  303. "asm_signal_trampoline_end:\n"
  304. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  305. #endif
  306. }
  307. extern "C" char const asm_signal_trampoline[];
  308. extern "C" char const asm_signal_trampoline_end[];
  309. void create_signal_trampoline()
  310. {
  311. // NOTE: We leak this region.
  312. g_signal_trampoline_region = MM.allocate_kernel_region(PAGE_SIZE, "Signal trampolines", Memory::Region::Access::ReadWrite).release_value().leak_ptr();
  313. g_signal_trampoline_region->set_syscall_region(true);
  314. size_t trampoline_size = asm_signal_trampoline_end - asm_signal_trampoline;
  315. u8* code_ptr = (u8*)g_signal_trampoline_region->vaddr().as_ptr();
  316. memcpy(code_ptr, asm_signal_trampoline, trampoline_size);
  317. g_signal_trampoline_region->set_writable(false);
  318. g_signal_trampoline_region->remap();
  319. }
  320. void Process::crash(int signal, FlatPtr ip, bool out_of_memory)
  321. {
  322. VERIFY(!is_dead());
  323. VERIFY(&Process::current() == this);
  324. if (out_of_memory) {
  325. dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this);
  326. } else {
  327. if (ip >= kernel_load_base && g_kernel_symbols_available) {
  328. auto* symbol = symbolicate_kernel_address(ip);
  329. dbgln("\033[31;1m{:p} {} +{}\033[0m\n", ip, (symbol ? symbol->name : "(k?)"), (symbol ? ip - symbol->address : 0));
  330. } else {
  331. dbgln("\033[31;1m{:p} (?)\033[0m\n", ip);
  332. }
  333. dump_backtrace();
  334. }
  335. {
  336. ProtectedDataMutationScope scope { *this };
  337. m_protected_values.termination_signal = signal;
  338. }
  339. set_should_generate_coredump(!out_of_memory);
  340. address_space().dump_regions();
  341. VERIFY(is_user_process());
  342. die();
  343. // We can not return from here, as there is nowhere
  344. // to unwind to, so die right away.
  345. Thread::current()->die_if_needed();
  346. VERIFY_NOT_REACHED();
  347. }
  348. RefPtr<Process> Process::from_pid(ProcessID pid)
  349. {
  350. return processes().with([&](const auto& list) -> RefPtr<Process> {
  351. for (auto& process : list) {
  352. if (process.pid() == pid)
  353. return &process;
  354. }
  355. return {};
  356. });
  357. }
  358. const Process::OpenFileDescriptionAndFlags* Process::OpenFileDescriptions::get_if_valid(size_t i) const
  359. {
  360. SpinlockLocker lock(m_fds_lock);
  361. if (m_fds_metadatas.size() <= i)
  362. return nullptr;
  363. if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
  364. return &metadata;
  365. return nullptr;
  366. }
  367. Process::OpenFileDescriptionAndFlags* Process::OpenFileDescriptions::get_if_valid(size_t i)
  368. {
  369. SpinlockLocker lock(m_fds_lock);
  370. if (m_fds_metadatas.size() <= i)
  371. return nullptr;
  372. if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
  373. return &metadata;
  374. return nullptr;
  375. }
  376. const Process::OpenFileDescriptionAndFlags& Process::OpenFileDescriptions::at(size_t i) const
  377. {
  378. SpinlockLocker lock(m_fds_lock);
  379. VERIFY(m_fds_metadatas[i].is_allocated());
  380. return m_fds_metadatas[i];
  381. }
  382. Process::OpenFileDescriptionAndFlags& Process::OpenFileDescriptions::at(size_t i)
  383. {
  384. SpinlockLocker lock(m_fds_lock);
  385. VERIFY(m_fds_metadatas[i].is_allocated());
  386. return m_fds_metadatas[i];
  387. }
  388. KResultOr<NonnullRefPtr<OpenFileDescription>> Process::OpenFileDescriptions::open_file_description(int fd) const
  389. {
  390. SpinlockLocker lock(m_fds_lock);
  391. if (fd < 0)
  392. return EBADF;
  393. if (static_cast<size_t>(fd) >= m_fds_metadatas.size())
  394. return EBADF;
  395. RefPtr description = m_fds_metadatas[fd].description();
  396. if (!description)
  397. return EBADF;
  398. return description.release_nonnull();
  399. }
  400. void Process::OpenFileDescriptions::enumerate(Function<void(const OpenFileDescriptionAndFlags&)> callback) const
  401. {
  402. SpinlockLocker lock(m_fds_lock);
  403. for (auto& file_description_metadata : m_fds_metadatas) {
  404. callback(file_description_metadata);
  405. }
  406. }
  407. void Process::OpenFileDescriptions::change_each(Function<void(OpenFileDescriptionAndFlags&)> callback)
  408. {
  409. SpinlockLocker lock(m_fds_lock);
  410. for (auto& file_description_metadata : m_fds_metadatas) {
  411. callback(file_description_metadata);
  412. }
  413. }
  414. size_t Process::OpenFileDescriptions::open_count() const
  415. {
  416. size_t count = 0;
  417. enumerate([&](auto& file_description_metadata) {
  418. if (file_description_metadata.is_valid())
  419. ++count;
  420. });
  421. return count;
  422. }
  423. KResultOr<Process::ScopedDescriptionAllocation> Process::OpenFileDescriptions::allocate(int first_candidate_fd)
  424. {
  425. SpinlockLocker lock(m_fds_lock);
  426. for (size_t i = first_candidate_fd; i < max_open(); ++i) {
  427. if (!m_fds_metadatas[i].is_allocated()) {
  428. m_fds_metadatas[i].allocate();
  429. return Process::ScopedDescriptionAllocation { static_cast<int>(i), &m_fds_metadatas[i] };
  430. }
  431. }
  432. return EMFILE;
  433. }
  434. Time kgettimeofday()
  435. {
  436. return TimeManagement::now();
  437. }
  438. siginfo_t Process::wait_info()
  439. {
  440. siginfo_t siginfo {};
  441. siginfo.si_signo = SIGCHLD;
  442. siginfo.si_pid = pid().value();
  443. siginfo.si_uid = uid().value();
  444. if (m_protected_values.termination_signal) {
  445. siginfo.si_status = m_protected_values.termination_signal;
  446. siginfo.si_code = CLD_KILLED;
  447. } else {
  448. siginfo.si_status = m_protected_values.termination_status;
  449. siginfo.si_code = CLD_EXITED;
  450. }
  451. return siginfo;
  452. }
  453. Custody& Process::current_directory()
  454. {
  455. if (!m_cwd)
  456. m_cwd = VirtualFileSystem::the().root_custody();
  457. return *m_cwd;
  458. }
  459. KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Userspace<char const*> user_path, size_t path_length) const
  460. {
  461. if (path_length == 0)
  462. return EINVAL;
  463. if (path_length > PATH_MAX)
  464. return ENAMETOOLONG;
  465. return try_copy_kstring_from_user(user_path, path_length);
  466. }
  467. KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Syscall::StringArgument const& path) const
  468. {
  469. Userspace<char const*> path_characters((FlatPtr)path.characters);
  470. return get_syscall_path_argument(path_characters, path.length);
  471. }
  472. bool Process::dump_core()
  473. {
  474. VERIFY(is_dumpable());
  475. VERIFY(should_generate_coredump());
  476. dbgln("Generating coredump for pid: {}", pid().value());
  477. auto coredump_path = String::formatted("/tmp/coredump/{}_{}_{}", name(), pid().value(), kgettimeofday().to_truncated_seconds());
  478. auto coredump_or_error = Coredump::try_create(*this, coredump_path);
  479. if (coredump_or_error.is_error())
  480. return false;
  481. return !coredump_or_error.value()->write().is_error();
  482. }
  483. bool Process::dump_perfcore()
  484. {
  485. VERIFY(is_dumpable());
  486. VERIFY(m_perf_event_buffer);
  487. dbgln("Generating perfcore for pid: {}", pid().value());
  488. // Try to generate a filename which isn't already used.
  489. auto base_filename = String::formatted("{}_{}", name(), pid().value());
  490. auto perfcore_filename = String::formatted("{}.profile", base_filename);
  491. RefPtr<OpenFileDescription> description;
  492. for (size_t attempt = 1; attempt <= 10; ++attempt) {
  493. auto description_or_error = VirtualFileSystem::the().open(perfcore_filename, O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
  494. if (!description_or_error.is_error()) {
  495. description = description_or_error.release_value();
  496. break;
  497. }
  498. perfcore_filename = String::formatted("{}.{}.profile", base_filename, attempt);
  499. }
  500. if (!description) {
  501. dbgln("Failed to generate perfcore for pid {}: Could not generate filename for the perfcore file.", pid().value());
  502. return false;
  503. }
  504. auto builder_or_error = KBufferBuilder::try_create();
  505. if (builder_or_error.is_error()) {
  506. dbgln("Failed to generate perfcore for pid {}: Could not allocate KBufferBuilder.", pid());
  507. return false;
  508. }
  509. auto builder = builder_or_error.release_value();
  510. if (m_perf_event_buffer->to_json(builder).is_error()) {
  511. dbgln("Failed to generate perfcore for pid {}: Could not serialize performance events to JSON.", pid().value());
  512. return false;
  513. }
  514. auto json = builder.build();
  515. if (!json) {
  516. dbgln("Failed to generate perfcore for pid {}: Could not allocate buffer.", pid().value());
  517. return false;
  518. }
  519. auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data());
  520. if (description->write(json_buffer, json->size()).is_error()) {
  521. dbgln("Failed to generate perfcore for pid {}: Could not write to perfcore file.", pid().value());
  522. return false;
  523. }
  524. dbgln("Wrote perfcore for pid {} to {}", pid().value(), perfcore_filename);
  525. return true;
  526. }
  527. void Process::finalize()
  528. {
  529. VERIFY(Thread::current() == g_finalizer);
  530. dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this);
  531. if (is_dumpable()) {
  532. if (m_should_generate_coredump)
  533. dump_core();
  534. if (m_perf_event_buffer) {
  535. dump_perfcore();
  536. TimeManagement::the().disable_profile_timer();
  537. }
  538. }
  539. m_threads_for_coredump.clear();
  540. if (m_alarm_timer)
  541. TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull());
  542. m_fds.clear();
  543. m_tty = nullptr;
  544. m_executable = nullptr;
  545. m_cwd = nullptr;
  546. m_arguments.clear();
  547. m_environment.clear();
  548. m_state.store(State::Dead, AK::MemoryOrder::memory_order_release);
  549. {
  550. // FIXME: PID/TID BUG
  551. if (auto parent_thread = Thread::from_tid(ppid().value())) {
  552. if (!(parent_thread->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT))
  553. parent_thread->send_signal(SIGCHLD, this);
  554. }
  555. }
  556. if (!!ppid()) {
  557. if (auto parent = Process::from_pid(ppid())) {
  558. parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children;
  559. parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children;
  560. }
  561. }
  562. unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated);
  563. m_space->remove_all_regions({});
  564. VERIFY(ref_count() > 0);
  565. // WaitBlockerSet::finalize will be in charge of dropping the last
  566. // reference if there are still waiters around, or whenever the last
  567. // waitable states are consumed. Unless there is no parent around
  568. // anymore, in which case we'll just drop it right away.
  569. m_wait_blocker_set.finalize();
  570. }
  571. void Process::disowned_by_waiter(Process& process)
  572. {
  573. m_wait_blocker_set.disowned_by_waiter(process);
  574. }
  575. void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal)
  576. {
  577. RefPtr<Process> waiter_process;
  578. if (auto* my_tracer = tracer())
  579. waiter_process = Process::from_pid(my_tracer->tracer_pid());
  580. else
  581. waiter_process = Process::from_pid(ppid());
  582. if (waiter_process)
  583. waiter_process->m_wait_blocker_set.unblock(*this, flags, signal);
  584. }
  585. void Process::die()
  586. {
  587. auto expected = State::Running;
  588. if (!m_state.compare_exchange_strong(expected, State::Dying, AK::memory_order_acquire)) {
  589. // It's possible that another thread calls this at almost the same time
  590. // as we can't always instantly kill other threads (they may be blocked)
  591. // So if we already were called then other threads should stop running
  592. // momentarily and we only really need to service the first thread
  593. return;
  594. }
  595. // Let go of the TTY, otherwise a slave PTY may keep the master PTY from
  596. // getting an EOF when the last process using the slave PTY dies.
  597. // If the master PTY owner relies on an EOF to know when to wait() on a
  598. // slave owner, we have to allow the PTY pair to be torn down.
  599. m_tty = nullptr;
  600. VERIFY(m_threads_for_coredump.is_empty());
  601. for_each_thread([&](auto& thread) {
  602. m_threads_for_coredump.append(thread);
  603. });
  604. processes().with([&](const auto& list) {
  605. for (auto it = list.begin(); it != list.end();) {
  606. auto& process = *it;
  607. ++it;
  608. if (process.has_tracee_thread(pid())) {
  609. dbgln_if(PROCESS_DEBUG, "Process {} ({}) is attached by {} ({}) which will exit", process.name(), process.pid(), name(), pid());
  610. process.stop_tracing();
  611. auto err = process.send_signal(SIGSTOP, this);
  612. if (err.is_error())
  613. dbgln("Failed to send the SIGSTOP signal to {} ({})", process.name(), process.pid());
  614. }
  615. }
  616. });
  617. kill_all_threads();
  618. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  619. KCOVDevice::free_process();
  620. #endif
  621. }
  622. void Process::terminate_due_to_signal(u8 signal)
  623. {
  624. VERIFY_INTERRUPTS_DISABLED();
  625. VERIFY(signal < 32);
  626. VERIFY(&Process::current() == this);
  627. dbgln("Terminating {} due to signal {}", *this, signal);
  628. {
  629. ProtectedDataMutationScope scope { *this };
  630. m_protected_values.termination_status = 0;
  631. m_protected_values.termination_signal = signal;
  632. }
  633. die();
  634. }
  635. KResult Process::send_signal(u8 signal, Process* sender)
  636. {
  637. // Try to send it to the "obvious" main thread:
  638. auto receiver_thread = Thread::from_tid(pid().value());
  639. // If the main thread has died, there may still be other threads:
  640. if (!receiver_thread) {
  641. // The first one should be good enough.
  642. // Neither kill(2) nor kill(3) specify any selection precedure.
  643. for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision {
  644. receiver_thread = &thread;
  645. return IterationDecision::Break;
  646. });
  647. }
  648. if (receiver_thread) {
  649. receiver_thread->send_signal(signal, sender);
  650. return KSuccess;
  651. }
  652. return ESRCH;
  653. }
  654. RefPtr<Thread> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, NonnullOwnPtr<KString> name, u32 affinity, bool joinable)
  655. {
  656. VERIFY((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX));
  657. // FIXME: Do something with guard pages?
  658. auto thread_or_error = Thread::try_create(*this);
  659. if (thread_or_error.is_error())
  660. return {};
  661. auto thread = thread_or_error.release_value();
  662. thread->set_name(move(name));
  663. thread->set_affinity(affinity);
  664. thread->set_priority(priority);
  665. if (!joinable)
  666. thread->detach();
  667. auto& regs = thread->regs();
  668. regs.set_ip((FlatPtr)entry);
  669. regs.set_sp((FlatPtr)entry_data); // entry function argument is expected to be in the SP register
  670. SpinlockLocker lock(g_scheduler_lock);
  671. thread->set_state(Thread::State::Runnable);
  672. return thread;
  673. }
  674. void Process::OpenFileDescriptionAndFlags::clear()
  675. {
  676. // FIXME: Verify Process::m_fds_lock is locked!
  677. m_description = nullptr;
  678. m_flags = 0;
  679. }
  680. void Process::OpenFileDescriptionAndFlags::set(NonnullRefPtr<OpenFileDescription>&& description, u32 flags)
  681. {
  682. // FIXME: Verify Process::m_fds_lock is locked!
  683. m_description = move(description);
  684. m_flags = flags;
  685. }
  686. void Process::set_tty(TTY* tty)
  687. {
  688. m_tty = tty;
  689. }
  690. KResult Process::start_tracing_from(ProcessID tracer)
  691. {
  692. m_tracer = TRY(ThreadTracer::try_create(tracer));
  693. return KSuccess;
  694. }
  695. void Process::stop_tracing()
  696. {
  697. m_tracer = nullptr;
  698. }
  699. void Process::tracer_trap(Thread& thread, const RegisterState& regs)
  700. {
  701. VERIFY(m_tracer.ptr());
  702. m_tracer->set_regs(regs);
  703. thread.send_urgent_signal_to_self(SIGTRAP);
  704. }
  705. bool Process::create_perf_events_buffer_if_needed()
  706. {
  707. if (!m_perf_event_buffer) {
  708. m_perf_event_buffer = PerformanceEventBuffer::try_create_with_size(4 * MiB);
  709. m_perf_event_buffer->add_process(*this, ProcessEventType::Create);
  710. }
  711. return !!m_perf_event_buffer;
  712. }
  713. void Process::delete_perf_events_buffer()
  714. {
  715. if (m_perf_event_buffer)
  716. m_perf_event_buffer = nullptr;
  717. }
  718. bool Process::remove_thread(Thread& thread)
  719. {
  720. ProtectedDataMutationScope scope { *this };
  721. auto thread_cnt_before = m_protected_values.thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
  722. VERIFY(thread_cnt_before != 0);
  723. thread_list().with([&](auto& thread_list) {
  724. thread_list.remove(thread);
  725. });
  726. return thread_cnt_before == 1;
  727. }
  728. bool Process::add_thread(Thread& thread)
  729. {
  730. ProtectedDataMutationScope scope { *this };
  731. bool is_first = m_protected_values.thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0;
  732. thread_list().with([&](auto& thread_list) {
  733. thread_list.append(thread);
  734. });
  735. return is_first;
  736. }
  737. void Process::set_dumpable(bool dumpable)
  738. {
  739. if (dumpable == m_protected_values.dumpable)
  740. return;
  741. ProtectedDataMutationScope scope { *this };
  742. m_protected_values.dumpable = dumpable;
  743. }
  744. KResult Process::set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value)
  745. {
  746. // Write it into the first available property slot.
  747. for (auto& slot : m_coredump_properties) {
  748. if (slot.key)
  749. continue;
  750. slot.key = move(key);
  751. slot.value = move(value);
  752. return KSuccess;
  753. }
  754. return ENOBUFS;
  755. }
  756. KResult Process::try_set_coredump_property(StringView key, StringView value)
  757. {
  758. auto key_kstring = TRY(KString::try_create(key));
  759. auto value_kstring = TRY(KString::try_create(value));
  760. return set_coredump_property(move(key_kstring), move(value_kstring));
  761. };
  762. static constexpr StringView to_string(Pledge promise)
  763. {
  764. #define __ENUMERATE_PLEDGE_PROMISE(x) \
  765. case Pledge::x: \
  766. return #x;
  767. switch (promise) {
  768. ENUMERATE_PLEDGE_PROMISES
  769. }
  770. #undef __ENUMERATE_PLEDGE_PROMISE
  771. VERIFY_NOT_REACHED();
  772. }
  773. void Process::require_no_promises()
  774. {
  775. if (!has_promises())
  776. return;
  777. dbgln("Has made a promise");
  778. Process::current().crash(SIGABRT, 0);
  779. VERIFY_NOT_REACHED();
  780. }
  781. void Process::require_promise(Pledge promise)
  782. {
  783. if (!has_promises())
  784. return;
  785. if (has_promised(promise))
  786. return;
  787. dbgln("Has not pledged {}", to_string(promise));
  788. (void)try_set_coredump_property("pledge_violation"sv, to_string(promise));
  789. crash(SIGABRT, 0);
  790. }
  791. }