MemoryManager.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642
  1. #include <Kernel/VM/MemoryManager.h>
  2. #include <AK/Assertions.h>
  3. #include <AK/kstdio.h>
  4. #include "i386.h"
  5. #include "StdLib.h"
  6. #include "Process.h"
  7. #include "CMOS.h"
  8. //#define MM_DEBUG
  9. //#define PAGE_FAULT_DEBUG
  10. static MemoryManager* s_the;
  11. unsigned MemoryManager::s_user_physical_pages_in_existence;
  12. unsigned MemoryManager::s_super_physical_pages_in_existence;
  13. MemoryManager& MM
  14. {
  15. return *s_the;
  16. }
  17. MemoryManager::MemoryManager()
  18. {
  19. // FIXME: This is not the best way to do memory map detection.
  20. // Rewrite to use BIOS int 15,e820 once we have VM86 support.
  21. word base_memory = (CMOS::read(0x16) << 8) | CMOS::read(0x15);
  22. word ext_memory = (CMOS::read(0x18) << 8) | CMOS::read(0x17);
  23. kprintf("%u kB base memory\n", base_memory);
  24. kprintf("%u kB extended memory\n", ext_memory);
  25. m_ram_size = ext_memory * 1024;
  26. m_kernel_page_directory = PageDirectory::create_at_fixed_address(PhysicalAddress(0x4000));
  27. m_page_table_zero = (dword*)0x6000;
  28. initialize_paging();
  29. kprintf("MM initialized.\n");
  30. }
  31. MemoryManager::~MemoryManager()
  32. {
  33. }
  34. void MemoryManager::populate_page_directory(PageDirectory& page_directory)
  35. {
  36. page_directory.m_directory_page = allocate_supervisor_physical_page();
  37. page_directory.entries()[0] = kernel_page_directory().entries()[0];
  38. // Defer to the kernel page tables for 0xC0000000-0xFFFFFFFF
  39. for (int i = 768; i < 1024; ++i)
  40. page_directory.entries()[i] = kernel_page_directory().entries()[i];
  41. }
  42. void MemoryManager::initialize_paging()
  43. {
  44. static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4);
  45. static_assert(sizeof(MemoryManager::PageTableEntry) == 4);
  46. memset(m_page_table_zero, 0, PAGE_SIZE);
  47. #ifdef MM_DEBUG
  48. dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
  49. #endif
  50. #ifdef MM_DEBUG
  51. dbgprintf("MM: Protect against null dereferences\n");
  52. #endif
  53. // Make null dereferences crash.
  54. map_protected(LinearAddress(0), PAGE_SIZE);
  55. #ifdef MM_DEBUG
  56. dbgprintf("MM: Identity map bottom 4MB\n");
  57. #endif
  58. // The bottom 4 MB (except for the null page) are identity mapped & supervisor only.
  59. // Every process shares these mappings.
  60. create_identity_mapping(kernel_page_directory(), LinearAddress(PAGE_SIZE), (4 * MB) - PAGE_SIZE);
  61. // Basic memory map:
  62. // 0 -> 512 kB Kernel code. Root page directory & PDE 0.
  63. // (last page before 1MB) Used by quickmap_page().
  64. // 1 MB -> 2 MB kmalloc_eternal() space.
  65. // 2 MB -> 3 MB kmalloc() space.
  66. // 3 MB -> 4 MB Supervisor physical pages (available for allocation!)
  67. // 4 MB -> (max) MB Userspace physical pages (available for allocation!)
  68. for (size_t i = (2 * MB); i < (4 * MB); i += PAGE_SIZE)
  69. m_free_supervisor_physical_pages.append(PhysicalPage::create_eternal(PhysicalAddress(i), true));
  70. dbgprintf("MM: 4MB-%uMB available for allocation\n", m_ram_size / 1048576);
  71. for (size_t i = (4 * MB); i < m_ram_size; i += PAGE_SIZE)
  72. m_free_physical_pages.append(PhysicalPage::create_eternal(PhysicalAddress(i), false));
  73. m_quickmap_addr = LinearAddress((1 * MB) - PAGE_SIZE);
  74. #ifdef MM_DEBUG
  75. dbgprintf("MM: Quickmap will use P%x\n", m_quickmap_addr.get());
  76. dbgprintf("MM: Installing page directory\n");
  77. #endif
  78. asm volatile("movl %%eax, %%cr3"::"a"(kernel_page_directory().cr3()));
  79. asm volatile(
  80. "movl %%cr0, %%eax\n"
  81. "orl $0x80000001, %%eax\n"
  82. "movl %%eax, %%cr0\n"
  83. :::"%eax", "memory");
  84. #ifdef MM_DEBUG
  85. dbgprintf("MM: Paging initialized.\n");
  86. #endif
  87. }
  88. RetainPtr<PhysicalPage> MemoryManager::allocate_page_table(PageDirectory& page_directory, unsigned index)
  89. {
  90. ASSERT(!page_directory.m_physical_pages.contains(index));
  91. auto physical_page = allocate_supervisor_physical_page();
  92. if (!physical_page)
  93. return nullptr;
  94. page_directory.m_physical_pages.set(index, physical_page.copy_ref());
  95. return physical_page;
  96. }
  97. void MemoryManager::remove_identity_mapping(PageDirectory& page_directory, LinearAddress laddr, size_t size)
  98. {
  99. InterruptDisabler disabler;
  100. // FIXME: ASSERT(laddr is 4KB aligned);
  101. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  102. auto pte_address = laddr.offset(offset);
  103. auto pte = ensure_pte(page_directory, pte_address);
  104. pte.set_physical_page_base(0);
  105. pte.set_user_allowed(false);
  106. pte.set_present(true);
  107. pte.set_writable(true);
  108. flush_tlb(pte_address);
  109. }
  110. }
  111. auto MemoryManager::ensure_pte(PageDirectory& page_directory, LinearAddress laddr) -> PageTableEntry
  112. {
  113. ASSERT_INTERRUPTS_DISABLED();
  114. dword page_directory_index = (laddr.get() >> 22) & 0x3ff;
  115. dword page_table_index = (laddr.get() >> 12) & 0x3ff;
  116. PageDirectoryEntry pde = PageDirectoryEntry(&page_directory.entries()[page_directory_index]);
  117. if (!pde.is_present()) {
  118. #ifdef MM_DEBUG
  119. dbgprintf("MM: PDE %u not present (requested for L%x), allocating\n", page_directory_index, laddr.get());
  120. #endif
  121. if (page_directory_index == 0) {
  122. ASSERT(&page_directory == m_kernel_page_directory.ptr());
  123. pde.set_page_table_base((dword)m_page_table_zero);
  124. pde.set_user_allowed(false);
  125. pde.set_present(true);
  126. pde.set_writable(true);
  127. } else {
  128. //ASSERT(&page_directory != m_kernel_page_directory.ptr());
  129. auto page_table = allocate_page_table(page_directory, page_directory_index);
  130. #ifdef MM_DEBUG
  131. dbgprintf("MM: PD K%x (%s) at P%x allocated page table #%u (for L%x) at P%x\n",
  132. &page_directory,
  133. &page_directory == m_kernel_page_directory.ptr() ? "Kernel" : "User",
  134. page_directory.cr3(),
  135. page_directory_index,
  136. laddr.get(),
  137. page_table->paddr().get());
  138. #endif
  139. pde.set_page_table_base(page_table->paddr().get());
  140. pde.set_user_allowed(true);
  141. pde.set_present(true);
  142. pde.set_writable(true);
  143. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  144. }
  145. }
  146. return PageTableEntry(&pde.page_table_base()[page_table_index]);
  147. }
  148. void MemoryManager::map_protected(LinearAddress laddr, size_t length)
  149. {
  150. InterruptDisabler disabler;
  151. // FIXME: ASSERT(linearAddress is 4KB aligned);
  152. for (dword offset = 0; offset < length; offset += PAGE_SIZE) {
  153. auto pte_address = laddr.offset(offset);
  154. auto pte = ensure_pte(kernel_page_directory(), pte_address);
  155. pte.set_physical_page_base(pte_address.get());
  156. pte.set_user_allowed(false);
  157. pte.set_present(false);
  158. pte.set_writable(false);
  159. flush_tlb(pte_address);
  160. }
  161. }
  162. void MemoryManager::create_identity_mapping(PageDirectory& page_directory, LinearAddress laddr, size_t size)
  163. {
  164. InterruptDisabler disabler;
  165. ASSERT((laddr.get() & ~PAGE_MASK) == 0);
  166. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  167. auto pte_address = laddr.offset(offset);
  168. auto pte = ensure_pte(page_directory, pte_address);
  169. pte.set_physical_page_base(pte_address.get());
  170. pte.set_user_allowed(false);
  171. pte.set_present(true);
  172. pte.set_writable(true);
  173. page_directory.flush(pte_address);
  174. }
  175. }
  176. void MemoryManager::initialize()
  177. {
  178. s_the = new MemoryManager;
  179. }
  180. Region* MemoryManager::region_from_laddr(Process& process, LinearAddress laddr)
  181. {
  182. ASSERT_INTERRUPTS_DISABLED();
  183. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  184. for (auto& region : process.m_regions) {
  185. if (region->contains(laddr))
  186. return region.ptr();
  187. }
  188. dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), laddr.get(), process.page_directory().cr3());
  189. return nullptr;
  190. }
  191. const Region* MemoryManager::region_from_laddr(const Process& process, LinearAddress laddr)
  192. {
  193. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  194. for (auto& region : process.m_regions) {
  195. if (region->contains(laddr))
  196. return region.ptr();
  197. }
  198. dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), laddr.get(), process.page_directory().cr3());
  199. return nullptr;
  200. }
  201. bool MemoryManager::zero_page(Region& region, unsigned page_index_in_region)
  202. {
  203. ASSERT_INTERRUPTS_DISABLED();
  204. auto& vmo = region.vmo();
  205. auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
  206. sti();
  207. LOCKER(vmo.m_paging_lock);
  208. cli();
  209. if (!vmo_page.is_null()) {
  210. #ifdef PAGE_FAULT_DEBUG
  211. dbgprintf("MM: zero_page() but page already present. Fine with me!\n");
  212. #endif
  213. remap_region_page(region, page_index_in_region, true);
  214. return true;
  215. }
  216. auto physical_page = allocate_physical_page(ShouldZeroFill::Yes);
  217. #ifdef PAGE_FAULT_DEBUG
  218. dbgprintf(" >> ZERO P%x\n", physical_page->paddr().get());
  219. #endif
  220. region.m_cow_map.set(page_index_in_region, false);
  221. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  222. remap_region_page(region, page_index_in_region, true);
  223. return true;
  224. }
  225. bool MemoryManager::copy_on_write(Region& region, unsigned page_index_in_region)
  226. {
  227. ASSERT_INTERRUPTS_DISABLED();
  228. auto& vmo = region.vmo();
  229. if (vmo.physical_pages()[page_index_in_region]->retain_count() == 1) {
  230. #ifdef PAGE_FAULT_DEBUG
  231. dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
  232. #endif
  233. region.m_cow_map.set(page_index_in_region, false);
  234. remap_region_page(region, page_index_in_region, true);
  235. return true;
  236. }
  237. #ifdef PAGE_FAULT_DEBUG
  238. dbgprintf(" >> It's a COW page and it's time to COW!\n");
  239. #endif
  240. auto physical_page_to_copy = move(vmo.physical_pages()[page_index_in_region]);
  241. auto physical_page = allocate_physical_page(ShouldZeroFill::No);
  242. byte* dest_ptr = quickmap_page(*physical_page);
  243. const byte* src_ptr = region.laddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  244. #ifdef PAGE_FAULT_DEBUG
  245. dbgprintf(" >> COW P%x <- P%x\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
  246. #endif
  247. memcpy(dest_ptr, src_ptr, PAGE_SIZE);
  248. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  249. unquickmap_page();
  250. region.m_cow_map.set(page_index_in_region, false);
  251. remap_region_page(region, page_index_in_region, true);
  252. return true;
  253. }
  254. bool MemoryManager::page_in_from_inode(Region& region, unsigned page_index_in_region)
  255. {
  256. ASSERT(region.page_directory());
  257. auto& vmo = region.vmo();
  258. ASSERT(!vmo.is_anonymous());
  259. ASSERT(vmo.inode());
  260. auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
  261. InterruptFlagSaver saver;
  262. sti();
  263. LOCKER(vmo.m_paging_lock);
  264. cli();
  265. if (!vmo_page.is_null()) {
  266. dbgprintf("MM: page_in_from_inode() but page already present. Fine with me!\n");
  267. remap_region_page(region, page_index_in_region, true);
  268. return true;
  269. }
  270. #ifdef MM_DEBUG
  271. dbgprintf("MM: page_in_from_inode ready to read from inode\n");
  272. #endif
  273. sti();
  274. byte page_buffer[PAGE_SIZE];
  275. auto& inode = *vmo.inode();
  276. auto nread = inode.read_bytes(vmo.inode_offset() + ((region.first_page_index() + page_index_in_region) * PAGE_SIZE), PAGE_SIZE, page_buffer, nullptr);
  277. if (nread < 0) {
  278. kprintf("MM: page_in_from_inode had error (%d) while reading!\n", nread);
  279. return false;
  280. }
  281. if (nread < PAGE_SIZE) {
  282. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  283. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  284. }
  285. cli();
  286. vmo_page = allocate_physical_page(ShouldZeroFill::No);
  287. if (vmo_page.is_null()) {
  288. kprintf("MM: page_in_from_inode was unable to allocate a physical page\n");
  289. return false;
  290. }
  291. remap_region_page(region, page_index_in_region, true);
  292. byte* dest_ptr = region.laddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  293. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  294. return true;
  295. }
  296. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  297. {
  298. ASSERT_INTERRUPTS_DISABLED();
  299. ASSERT(current);
  300. #ifdef PAGE_FAULT_DEBUG
  301. dbgprintf("MM: handle_page_fault(%w) at L%x\n", fault.code(), fault.laddr().get());
  302. #endif
  303. ASSERT(fault.laddr() != m_quickmap_addr);
  304. auto* region = region_from_laddr(current->process(), fault.laddr());
  305. if (!region) {
  306. kprintf("NP(error) fault at invalid address L%x\n", fault.laddr().get());
  307. return PageFaultResponse::ShouldCrash;
  308. }
  309. auto page_index_in_region = region->page_index_from_address(fault.laddr());
  310. if (fault.is_not_present()) {
  311. if (region->vmo().inode()) {
  312. #ifdef PAGE_FAULT_DEBUG
  313. dbgprintf("NP(inode) fault in Region{%p}[%u]\n", region, page_index_in_region);
  314. #endif
  315. page_in_from_inode(*region, page_index_in_region);
  316. return PageFaultResponse::Continue;
  317. } else {
  318. #ifdef PAGE_FAULT_DEBUG
  319. dbgprintf("NP(zero) fault in Region{%p}[%u]\n", region, page_index_in_region);
  320. #endif
  321. zero_page(*region, page_index_in_region);
  322. return PageFaultResponse::Continue;
  323. }
  324. } else if (fault.is_protection_violation()) {
  325. if (region->m_cow_map.get(page_index_in_region)) {
  326. #ifdef PAGE_FAULT_DEBUG
  327. dbgprintf("PV(cow) fault in Region{%p}[%u]\n", region, page_index_in_region);
  328. #endif
  329. bool success = copy_on_write(*region, page_index_in_region);
  330. ASSERT(success);
  331. return PageFaultResponse::Continue;
  332. }
  333. kprintf("PV(error) fault in Region{%p}[%u] at L%x\n", region, page_index_in_region, fault.laddr().get());
  334. } else {
  335. ASSERT_NOT_REACHED();
  336. }
  337. return PageFaultResponse::ShouldCrash;
  338. }
  339. RetainPtr<PhysicalPage> MemoryManager::allocate_physical_page(ShouldZeroFill should_zero_fill)
  340. {
  341. InterruptDisabler disabler;
  342. if (1 > m_free_physical_pages.size()) {
  343. kprintf("FUCK! No physical pages available.\n");
  344. ASSERT_NOT_REACHED();
  345. return { };
  346. }
  347. #ifdef MM_DEBUG
  348. dbgprintf("MM: allocate_physical_page vending P%x (%u remaining)\n", m_free_physical_pages.last()->paddr().get(), m_free_physical_pages.size());
  349. #endif
  350. auto physical_page = m_free_physical_pages.take_last();
  351. if (should_zero_fill == ShouldZeroFill::Yes) {
  352. auto* ptr = (dword*)quickmap_page(*physical_page);
  353. fast_dword_fill(ptr, 0, PAGE_SIZE / sizeof(dword));
  354. unquickmap_page();
  355. }
  356. return physical_page;
  357. }
  358. RetainPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  359. {
  360. InterruptDisabler disabler;
  361. if (1 > m_free_supervisor_physical_pages.size()) {
  362. kprintf("FUCK! No physical pages available.\n");
  363. ASSERT_NOT_REACHED();
  364. return { };
  365. }
  366. #ifdef MM_DEBUG
  367. dbgprintf("MM: allocate_supervisor_physical_page vending P%x (%u remaining)\n", m_free_supervisor_physical_pages.last()->paddr().get(), m_free_supervisor_physical_pages.size());
  368. #endif
  369. auto physical_page = m_free_supervisor_physical_pages.take_last();
  370. fast_dword_fill((dword*)physical_page->paddr().as_ptr(), 0, PAGE_SIZE / sizeof(dword));
  371. return physical_page;
  372. }
  373. void MemoryManager::enter_process_paging_scope(Process& process)
  374. {
  375. ASSERT(current);
  376. InterruptDisabler disabler;
  377. current->tss().cr3 = process.page_directory().cr3();
  378. asm volatile("movl %%eax, %%cr3"::"a"(process.page_directory().cr3()):"memory");
  379. }
  380. void MemoryManager::enter_kernel_paging_scope()
  381. {
  382. InterruptDisabler disabler;
  383. asm volatile("movl %%eax, %%cr3"::"a"(kernel_page_directory().cr3()):"memory");
  384. }
  385. void MemoryManager::flush_entire_tlb()
  386. {
  387. asm volatile(
  388. "mov %%cr3, %%eax\n"
  389. "mov %%eax, %%cr3\n"
  390. ::: "%eax", "memory"
  391. );
  392. }
  393. void MemoryManager::flush_tlb(LinearAddress laddr)
  394. {
  395. asm volatile("invlpg %0": :"m" (*(char*)laddr.get()) : "memory");
  396. }
  397. void MemoryManager::map_for_kernel(LinearAddress laddr, PhysicalAddress paddr)
  398. {
  399. auto pte = ensure_pte(kernel_page_directory(), laddr);
  400. pte.set_physical_page_base(paddr.get());
  401. pte.set_present(true);
  402. pte.set_writable(true);
  403. pte.set_user_allowed(false);
  404. flush_tlb(laddr);
  405. }
  406. byte* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  407. {
  408. ASSERT_INTERRUPTS_DISABLED();
  409. ASSERT(!m_quickmap_in_use);
  410. m_quickmap_in_use = true;
  411. auto page_laddr = m_quickmap_addr;
  412. auto pte = ensure_pte(kernel_page_directory(), page_laddr);
  413. pte.set_physical_page_base(physical_page.paddr().get());
  414. pte.set_present(true);
  415. pte.set_writable(true);
  416. pte.set_user_allowed(false);
  417. flush_tlb(page_laddr);
  418. ASSERT((dword)pte.physical_page_base() == physical_page.paddr().get());
  419. #ifdef MM_DEBUG
  420. dbgprintf("MM: >> quickmap_page L%x => P%x @ PTE=%p\n", page_laddr, physical_page.paddr().get(), pte.ptr());
  421. #endif
  422. return page_laddr.as_ptr();
  423. }
  424. void MemoryManager::unquickmap_page()
  425. {
  426. ASSERT_INTERRUPTS_DISABLED();
  427. ASSERT(m_quickmap_in_use);
  428. auto page_laddr = m_quickmap_addr;
  429. auto pte = ensure_pte(kernel_page_directory(), page_laddr);
  430. #ifdef MM_DEBUG
  431. auto old_physical_address = pte.physical_page_base();
  432. #endif
  433. pte.set_physical_page_base(0);
  434. pte.set_present(false);
  435. pte.set_writable(false);
  436. flush_tlb(page_laddr);
  437. #ifdef MM_DEBUG
  438. dbgprintf("MM: >> unquickmap_page L%x =/> P%x\n", page_laddr, old_physical_address);
  439. #endif
  440. m_quickmap_in_use = false;
  441. }
  442. void MemoryManager::remap_region_page(Region& region, unsigned page_index_in_region, bool user_allowed)
  443. {
  444. ASSERT(region.page_directory());
  445. InterruptDisabler disabler;
  446. auto page_laddr = region.laddr().offset(page_index_in_region * PAGE_SIZE);
  447. auto pte = ensure_pte(*region.page_directory(), page_laddr);
  448. auto& physical_page = region.vmo().physical_pages()[page_index_in_region];
  449. ASSERT(physical_page);
  450. pte.set_physical_page_base(physical_page->paddr().get());
  451. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  452. if (region.m_cow_map.get(page_index_in_region))
  453. pte.set_writable(false);
  454. else
  455. pte.set_writable(region.is_writable());
  456. pte.set_cache_disabled(!region.vmo().m_allow_cpu_caching);
  457. pte.set_write_through(!region.vmo().m_allow_cpu_caching);
  458. pte.set_user_allowed(user_allowed);
  459. region.page_directory()->flush(page_laddr);
  460. #ifdef MM_DEBUG
  461. dbgprintf("MM: >> remap_region_page (PD=%x, PTE=P%x) '%s' L%x => P%x (@%p)\n", region.page_directory()->cr3(), pte.ptr(), region.name().characters(), page_laddr.get(), physical_page->paddr().get(), physical_page.ptr());
  462. #endif
  463. }
  464. void MemoryManager::remap_region(PageDirectory& page_directory, Region& region)
  465. {
  466. InterruptDisabler disabler;
  467. ASSERT(region.page_directory() == &page_directory);
  468. map_region_at_address(page_directory, region, region.laddr(), true);
  469. }
  470. void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region& region, LinearAddress laddr, bool user_allowed)
  471. {
  472. InterruptDisabler disabler;
  473. region.set_page_directory(page_directory);
  474. auto& vmo = region.vmo();
  475. #ifdef MM_DEBUG
  476. dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", region.first_page_index(), region.last_page_index(), vmo.page_count());
  477. #endif
  478. for (size_t i = 0; i < region.page_count(); ++i) {
  479. auto page_laddr = laddr.offset(i * PAGE_SIZE);
  480. auto pte = ensure_pte(page_directory, page_laddr);
  481. auto& physical_page = vmo.physical_pages()[region.first_page_index() + i];
  482. if (physical_page) {
  483. pte.set_physical_page_base(physical_page->paddr().get());
  484. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  485. // FIXME: It seems wrong that the *region* cow map is essentially using *VMO* relative indices.
  486. if (region.m_cow_map.get(region.first_page_index() + i))
  487. pte.set_writable(false);
  488. else
  489. pte.set_writable(region.is_writable());
  490. pte.set_cache_disabled(!region.vmo().m_allow_cpu_caching);
  491. pte.set_write_through(!region.vmo().m_allow_cpu_caching);
  492. } else {
  493. pte.set_physical_page_base(0);
  494. pte.set_present(false);
  495. pte.set_writable(region.is_writable());
  496. }
  497. pte.set_user_allowed(user_allowed);
  498. page_directory.flush(page_laddr);
  499. #ifdef MM_DEBUG
  500. dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", &page_directory, region.name().characters(), page_laddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
  501. #endif
  502. }
  503. }
  504. bool MemoryManager::unmap_region(Region& region)
  505. {
  506. ASSERT(region.page_directory());
  507. InterruptDisabler disabler;
  508. for (size_t i = 0; i < region.page_count(); ++i) {
  509. auto laddr = region.laddr().offset(i * PAGE_SIZE);
  510. auto pte = ensure_pte(*region.page_directory(), laddr);
  511. pte.set_physical_page_base(0);
  512. pte.set_present(false);
  513. pte.set_writable(false);
  514. pte.set_user_allowed(false);
  515. region.page_directory()->flush(laddr);
  516. #ifdef MM_DEBUG
  517. auto& physical_page = region.vmo().physical_pages()[region.first_page_index() + i];
  518. dbgprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, physical_page ? physical_page->paddr().get() : 0);
  519. #endif
  520. }
  521. region.release_page_directory();
  522. return true;
  523. }
  524. bool MemoryManager::map_region(Process& process, Region& region)
  525. {
  526. map_region_at_address(process.page_directory(), region, region.laddr(), true);
  527. return true;
  528. }
  529. bool MemoryManager::validate_user_read(const Process& process, LinearAddress laddr) const
  530. {
  531. auto* region = region_from_laddr(process, laddr);
  532. return region && region->is_readable();
  533. }
  534. bool MemoryManager::validate_user_write(const Process& process, LinearAddress laddr) const
  535. {
  536. auto* region = region_from_laddr(process, laddr);
  537. return region && region->is_writable();
  538. }
  539. void MemoryManager::register_vmo(VMObject& vmo)
  540. {
  541. InterruptDisabler disabler;
  542. m_vmos.set(&vmo);
  543. }
  544. void MemoryManager::unregister_vmo(VMObject& vmo)
  545. {
  546. InterruptDisabler disabler;
  547. m_vmos.remove(&vmo);
  548. }
  549. void MemoryManager::register_region(Region& region)
  550. {
  551. InterruptDisabler disabler;
  552. m_regions.set(&region);
  553. }
  554. void MemoryManager::unregister_region(Region& region)
  555. {
  556. InterruptDisabler disabler;
  557. m_regions.remove(&region);
  558. }
  559. ProcessPagingScope::ProcessPagingScope(Process& process)
  560. {
  561. ASSERT(current);
  562. MM.enter_process_paging_scope(process);
  563. }
  564. ProcessPagingScope::~ProcessPagingScope()
  565. {
  566. MM.enter_process_paging_scope(current->process());
  567. }
  568. KernelPagingScope::KernelPagingScope()
  569. {
  570. ASSERT(current);
  571. MM.enter_kernel_paging_scope();
  572. }
  573. KernelPagingScope::~KernelPagingScope()
  574. {
  575. MM.enter_process_paging_scope(current->process());
  576. }