AnonymousVMObject.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <Kernel/Arch/x86/SmapDisabler.h>
  7. #include <Kernel/Debug.h>
  8. #include <Kernel/Process.h>
  9. #include <Kernel/VM/AnonymousVMObject.h>
  10. #include <Kernel/VM/MemoryManager.h>
  11. #include <Kernel/VM/PhysicalPage.h>
  12. namespace Kernel {
  13. RefPtr<VMObject> AnonymousVMObject::clone()
  14. {
  15. // We need to acquire our lock so we copy a sane state
  16. ScopedSpinLock lock(m_lock);
  17. // We're the parent. Since we're about to become COW we need to
  18. // commit the number of pages that we need to potentially allocate
  19. // so that the parent is still guaranteed to be able to have all
  20. // non-volatile memory available.
  21. size_t need_cow_pages = 0;
  22. {
  23. // We definitely need to commit non-volatile areas
  24. for_each_nonvolatile_range([&](const VolatilePageRange& nonvolatile_range) {
  25. need_cow_pages += nonvolatile_range.count;
  26. return IterationDecision::Continue;
  27. });
  28. }
  29. dbgln_if(COMMIT_DEBUG, "Cloning {:p}, need {} committed cow pages", this, need_cow_pages);
  30. if (!MM.commit_user_physical_pages(need_cow_pages))
  31. return {};
  32. // Create or replace the committed cow pages. When cloning a previously
  33. // cloned vmobject, we want to essentially "fork", leaving us and the
  34. // new clone with one set of shared committed cow pages, and the original
  35. // one would keep the one it still has. This ensures that the original
  36. // one and this one, as well as the clone have sufficient resources
  37. // to cow all pages as needed
  38. m_shared_committed_cow_pages = adopt_ref(*new CommittedCowPages(need_cow_pages));
  39. // Both original and clone become COW. So create a COW map for ourselves
  40. // or reset all pages to be copied again if we were previously cloned
  41. ensure_or_reset_cow_map();
  42. return adopt_ref(*new AnonymousVMObject(*this));
  43. }
  44. RefPtr<AnonymousVMObject> AnonymousVMObject::create_with_size(size_t size, AllocationStrategy commit)
  45. {
  46. if (commit == AllocationStrategy::Reserve || commit == AllocationStrategy::AllocateNow) {
  47. // We need to attempt to commit before actually creating the object
  48. if (!MM.commit_user_physical_pages(ceil_div(size, static_cast<size_t>(PAGE_SIZE))))
  49. return {};
  50. }
  51. return adopt_ref(*new AnonymousVMObject(size, commit));
  52. }
  53. NonnullRefPtr<AnonymousVMObject> AnonymousVMObject::create_with_physical_pages(NonnullRefPtrVector<PhysicalPage> physical_pages)
  54. {
  55. return adopt_ref(*new AnonymousVMObject(physical_pages));
  56. }
  57. NonnullRefPtr<AnonymousVMObject> AnonymousVMObject::create_with_physical_page(PhysicalPage& page)
  58. {
  59. return adopt_ref(*new AnonymousVMObject(page));
  60. }
  61. RefPtr<AnonymousVMObject> AnonymousVMObject::create_for_physical_range(PhysicalAddress paddr, size_t size)
  62. {
  63. if (paddr.offset(size) < paddr) {
  64. dbgln("Shenanigans! create_for_physical_range({}, {}) would wrap around", paddr, size);
  65. return nullptr;
  66. }
  67. return adopt_ref(*new AnonymousVMObject(paddr, size));
  68. }
  69. AnonymousVMObject::AnonymousVMObject(size_t size, AllocationStrategy strategy)
  70. : VMObject(size)
  71. , m_volatile_ranges_cache({ 0, page_count() })
  72. , m_unused_committed_pages(strategy == AllocationStrategy::Reserve ? page_count() : 0)
  73. {
  74. if (strategy == AllocationStrategy::AllocateNow) {
  75. // Allocate all pages right now. We know we can get all because we committed the amount needed
  76. for (size_t i = 0; i < page_count(); ++i)
  77. physical_pages()[i] = MM.allocate_committed_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
  78. } else {
  79. auto& initial_page = (strategy == AllocationStrategy::Reserve) ? MM.lazy_committed_page() : MM.shared_zero_page();
  80. for (size_t i = 0; i < page_count(); ++i)
  81. physical_pages()[i] = initial_page;
  82. }
  83. }
  84. AnonymousVMObject::AnonymousVMObject(PhysicalAddress paddr, size_t size)
  85. : VMObject(size)
  86. , m_volatile_ranges_cache({ 0, page_count() })
  87. {
  88. VERIFY(paddr.page_base() == paddr);
  89. for (size_t i = 0; i < page_count(); ++i)
  90. physical_pages()[i] = PhysicalPage::create(paddr.offset(i * PAGE_SIZE), false, false);
  91. }
  92. AnonymousVMObject::AnonymousVMObject(PhysicalPage& page)
  93. : VMObject(PAGE_SIZE)
  94. , m_volatile_ranges_cache({ 0, page_count() })
  95. {
  96. physical_pages()[0] = page;
  97. }
  98. AnonymousVMObject::AnonymousVMObject(NonnullRefPtrVector<PhysicalPage> physical_pages)
  99. : VMObject()
  100. , m_volatile_ranges_cache({ 0, page_count() })
  101. {
  102. for (auto& page : physical_pages) {
  103. m_physical_pages.append(page);
  104. }
  105. }
  106. AnonymousVMObject::AnonymousVMObject(const AnonymousVMObject& other)
  107. : VMObject(other)
  108. , m_volatile_ranges_cache({ 0, page_count() }) // do *not* clone this
  109. , m_volatile_ranges_cache_dirty(true) // do *not* clone this
  110. , m_purgeable_ranges() // do *not* clone this
  111. , m_unused_committed_pages(other.m_unused_committed_pages)
  112. , m_cow_map() // do *not* clone this
  113. , m_shared_committed_cow_pages(other.m_shared_committed_cow_pages) // share the pool
  114. {
  115. // We can't really "copy" a spinlock. But we're holding it. Clear in the clone
  116. VERIFY(other.m_lock.is_locked());
  117. m_lock.initialize();
  118. // The clone also becomes COW
  119. ensure_or_reset_cow_map();
  120. if (m_unused_committed_pages > 0) {
  121. // The original vmobject didn't use up all committed pages. When
  122. // cloning (fork) we will overcommit. For this purpose we drop all
  123. // lazy-commit references and replace them with shared zero pages.
  124. for (size_t i = 0; i < page_count(); i++) {
  125. auto& phys_page = m_physical_pages[i];
  126. if (phys_page && phys_page->is_lazy_committed_page()) {
  127. phys_page = MM.shared_zero_page();
  128. if (--m_unused_committed_pages == 0)
  129. break;
  130. }
  131. }
  132. VERIFY(m_unused_committed_pages == 0);
  133. }
  134. }
  135. AnonymousVMObject::~AnonymousVMObject()
  136. {
  137. // Return any unused committed pages
  138. if (m_unused_committed_pages > 0)
  139. MM.uncommit_user_physical_pages(m_unused_committed_pages);
  140. }
  141. int AnonymousVMObject::purge()
  142. {
  143. LOCKER(m_paging_lock);
  144. return purge_impl();
  145. }
  146. int AnonymousVMObject::purge_with_interrupts_disabled(Badge<MemoryManager>)
  147. {
  148. VERIFY_INTERRUPTS_DISABLED();
  149. if (m_paging_lock.is_locked())
  150. return 0;
  151. return purge_impl();
  152. }
  153. void AnonymousVMObject::set_was_purged(const VolatilePageRange& range)
  154. {
  155. VERIFY(m_lock.is_locked());
  156. for (auto* purgeable_ranges : m_purgeable_ranges)
  157. purgeable_ranges->set_was_purged(range);
  158. }
  159. int AnonymousVMObject::purge_impl()
  160. {
  161. int purged_page_count = 0;
  162. ScopedSpinLock lock(m_lock);
  163. for_each_volatile_range([&](const auto& range) {
  164. int purged_in_range = 0;
  165. auto range_end = range.base + range.count;
  166. for (size_t i = range.base; i < range_end; i++) {
  167. auto& phys_page = m_physical_pages[i];
  168. if (phys_page && !phys_page->is_shared_zero_page()) {
  169. VERIFY(!phys_page->is_lazy_committed_page());
  170. ++purged_in_range;
  171. }
  172. phys_page = MM.shared_zero_page();
  173. }
  174. if (purged_in_range > 0) {
  175. purged_page_count += purged_in_range;
  176. set_was_purged(range);
  177. for_each_region([&](auto& region) {
  178. if (&region.vmobject() == this) {
  179. if (auto owner = region.get_owner()) {
  180. // we need to hold a reference the process here (if there is one) as we may not own this region
  181. dmesgln("Purged {} pages from region {} owned by {} at {} - {}",
  182. purged_in_range,
  183. region.name(),
  184. *owner,
  185. region.vaddr_from_page_index(range.base),
  186. region.vaddr_from_page_index(range.base + range.count));
  187. } else {
  188. dmesgln("Purged {} pages from region {} (no ownership) at {} - {}",
  189. purged_in_range,
  190. region.name(),
  191. region.vaddr_from_page_index(range.base),
  192. region.vaddr_from_page_index(range.base + range.count));
  193. }
  194. region.remap_vmobject_page_range(range.base, range.count);
  195. }
  196. });
  197. }
  198. return IterationDecision::Continue;
  199. });
  200. return purged_page_count;
  201. }
  202. void AnonymousVMObject::register_purgeable_page_ranges(PurgeablePageRanges& purgeable_page_ranges)
  203. {
  204. ScopedSpinLock lock(m_lock);
  205. purgeable_page_ranges.set_vmobject(this);
  206. VERIFY(!m_purgeable_ranges.contains_slow(&purgeable_page_ranges));
  207. m_purgeable_ranges.append(&purgeable_page_ranges);
  208. }
  209. void AnonymousVMObject::unregister_purgeable_page_ranges(PurgeablePageRanges& purgeable_page_ranges)
  210. {
  211. ScopedSpinLock lock(m_lock);
  212. for (size_t i = 0; i < m_purgeable_ranges.size(); i++) {
  213. if (m_purgeable_ranges[i] != &purgeable_page_ranges)
  214. continue;
  215. purgeable_page_ranges.set_vmobject(nullptr);
  216. m_purgeable_ranges.remove(i);
  217. return;
  218. }
  219. VERIFY_NOT_REACHED();
  220. }
  221. bool AnonymousVMObject::is_any_volatile() const
  222. {
  223. ScopedSpinLock lock(m_lock);
  224. for (auto& volatile_ranges : m_purgeable_ranges) {
  225. ScopedSpinLock lock(volatile_ranges->m_volatile_ranges_lock);
  226. if (!volatile_ranges->is_empty())
  227. return true;
  228. }
  229. return false;
  230. }
  231. size_t AnonymousVMObject::remove_lazy_commit_pages(const VolatilePageRange& range)
  232. {
  233. VERIFY(m_lock.is_locked());
  234. size_t removed_count = 0;
  235. auto range_end = range.base + range.count;
  236. for (size_t i = range.base; i < range_end; i++) {
  237. auto& phys_page = m_physical_pages[i];
  238. if (phys_page && phys_page->is_lazy_committed_page()) {
  239. phys_page = MM.shared_zero_page();
  240. removed_count++;
  241. VERIFY(m_unused_committed_pages > 0);
  242. if (--m_unused_committed_pages == 0)
  243. break;
  244. }
  245. }
  246. return removed_count;
  247. }
  248. void AnonymousVMObject::update_volatile_cache()
  249. {
  250. VERIFY(m_lock.is_locked());
  251. VERIFY(m_volatile_ranges_cache_dirty);
  252. m_volatile_ranges_cache.clear();
  253. for_each_nonvolatile_range([&](const VolatilePageRange& range) {
  254. m_volatile_ranges_cache.add_unchecked(range);
  255. return IterationDecision::Continue;
  256. });
  257. m_volatile_ranges_cache_dirty = false;
  258. }
  259. void AnonymousVMObject::range_made_volatile(const VolatilePageRange& range)
  260. {
  261. VERIFY(m_lock.is_locked());
  262. if (m_unused_committed_pages == 0)
  263. return;
  264. // We need to check this range for any pages that are marked for
  265. // lazy committed allocation and turn them into shared zero pages
  266. // and also adjust the m_unused_committed_pages for each such page.
  267. // Take into account all the other views as well.
  268. size_t uncommit_page_count = 0;
  269. for_each_volatile_range([&](const auto& r) {
  270. auto intersected = range.intersected(r);
  271. if (!intersected.is_empty()) {
  272. uncommit_page_count += remove_lazy_commit_pages(intersected);
  273. if (m_unused_committed_pages == 0)
  274. return IterationDecision::Break;
  275. }
  276. return IterationDecision::Continue;
  277. });
  278. // Return those committed pages back to the system
  279. if (uncommit_page_count > 0) {
  280. dbgln_if(COMMIT_DEBUG, "Uncommit {} lazy-commit pages from {:p}", uncommit_page_count, this);
  281. MM.uncommit_user_physical_pages(uncommit_page_count);
  282. }
  283. m_volatile_ranges_cache_dirty = true;
  284. }
  285. void AnonymousVMObject::range_made_nonvolatile(const VolatilePageRange&)
  286. {
  287. VERIFY(m_lock.is_locked());
  288. m_volatile_ranges_cache_dirty = true;
  289. }
  290. size_t AnonymousVMObject::count_needed_commit_pages_for_nonvolatile_range(const VolatilePageRange& range)
  291. {
  292. VERIFY(m_lock.is_locked());
  293. VERIFY(!range.is_empty());
  294. size_t need_commit_pages = 0;
  295. auto range_end = range.base + range.count;
  296. for (size_t page_index = range.base; page_index < range_end; page_index++) {
  297. // COW pages are accounted for in m_shared_committed_cow_pages
  298. if (!m_cow_map.is_null() && m_cow_map.get(page_index))
  299. continue;
  300. auto& phys_page = m_physical_pages[page_index];
  301. if (phys_page && phys_page->is_shared_zero_page())
  302. need_commit_pages++;
  303. }
  304. return need_commit_pages;
  305. }
  306. size_t AnonymousVMObject::mark_committed_pages_for_nonvolatile_range(const VolatilePageRange& range, size_t mark_total)
  307. {
  308. VERIFY(m_lock.is_locked());
  309. VERIFY(!range.is_empty());
  310. VERIFY(mark_total > 0);
  311. size_t pages_updated = 0;
  312. auto range_end = range.base + range.count;
  313. for (size_t page_index = range.base; page_index < range_end; page_index++) {
  314. // COW pages are accounted for in m_shared_committed_cow_pages
  315. if (!m_cow_map.is_null() && m_cow_map.get(page_index))
  316. continue;
  317. auto& phys_page = m_physical_pages[page_index];
  318. if (phys_page && phys_page->is_shared_zero_page()) {
  319. phys_page = MM.lazy_committed_page();
  320. if (++pages_updated == mark_total)
  321. break;
  322. }
  323. }
  324. dbgln_if(COMMIT_DEBUG, "Added {} lazy-commit pages to {:p}", pages_updated, this);
  325. m_unused_committed_pages += pages_updated;
  326. return pages_updated;
  327. }
  328. RefPtr<PhysicalPage> AnonymousVMObject::allocate_committed_page(size_t page_index)
  329. {
  330. {
  331. ScopedSpinLock lock(m_lock);
  332. VERIFY(m_unused_committed_pages > 0);
  333. // We shouldn't have any committed page tags in volatile regions
  334. VERIFY([&]() {
  335. for (auto* purgeable_ranges : m_purgeable_ranges) {
  336. if (purgeable_ranges->is_volatile(page_index))
  337. return false;
  338. }
  339. return true;
  340. }());
  341. m_unused_committed_pages--;
  342. }
  343. return MM.allocate_committed_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
  344. }
  345. Bitmap& AnonymousVMObject::ensure_cow_map()
  346. {
  347. if (m_cow_map.is_null())
  348. m_cow_map = Bitmap { page_count(), true };
  349. return m_cow_map;
  350. }
  351. void AnonymousVMObject::ensure_or_reset_cow_map()
  352. {
  353. if (m_cow_map.is_null())
  354. ensure_cow_map();
  355. else
  356. m_cow_map.fill(true);
  357. }
  358. bool AnonymousVMObject::should_cow(size_t page_index, bool is_shared) const
  359. {
  360. auto& page = physical_pages()[page_index];
  361. if (page && (page->is_shared_zero_page() || page->is_lazy_committed_page()))
  362. return true;
  363. if (is_shared)
  364. return false;
  365. return !m_cow_map.is_null() && m_cow_map.get(page_index);
  366. }
  367. void AnonymousVMObject::set_should_cow(size_t page_index, bool cow)
  368. {
  369. ensure_cow_map().set(page_index, cow);
  370. }
  371. size_t AnonymousVMObject::cow_pages() const
  372. {
  373. if (m_cow_map.is_null())
  374. return 0;
  375. return m_cow_map.count_slow(true);
  376. }
  377. bool AnonymousVMObject::is_nonvolatile(size_t page_index)
  378. {
  379. if (m_volatile_ranges_cache_dirty)
  380. update_volatile_cache();
  381. return !m_volatile_ranges_cache.contains(page_index);
  382. }
  383. PageFaultResponse AnonymousVMObject::handle_cow_fault(size_t page_index, VirtualAddress vaddr)
  384. {
  385. VERIFY_INTERRUPTS_DISABLED();
  386. ScopedSpinLock lock(m_lock);
  387. auto& page_slot = physical_pages()[page_index];
  388. bool have_committed = m_shared_committed_cow_pages && is_nonvolatile(page_index);
  389. if (page_slot->ref_count() == 1) {
  390. #if PAGE_FAULT_DEBUG
  391. dbgln(" >> It's a COW page but nobody is sharing it anymore. Remap r/w");
  392. #endif
  393. set_should_cow(page_index, false);
  394. if (have_committed) {
  395. if (m_shared_committed_cow_pages->return_one())
  396. m_shared_committed_cow_pages = nullptr;
  397. }
  398. return PageFaultResponse::Continue;
  399. }
  400. RefPtr<PhysicalPage> page;
  401. if (have_committed) {
  402. #if PAGE_FAULT_DEBUG
  403. dbgln(" >> It's a committed COW page and it's time to COW!");
  404. #endif
  405. page = m_shared_committed_cow_pages->allocate_one();
  406. } else {
  407. #if PAGE_FAULT_DEBUG
  408. dbgln(" >> It's a COW page and it's time to COW!");
  409. #endif
  410. page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
  411. if (page.is_null()) {
  412. dmesgln("MM: handle_cow_fault was unable to allocate a physical page");
  413. return PageFaultResponse::OutOfMemory;
  414. }
  415. }
  416. u8* dest_ptr = MM.quickmap_page(*page);
  417. dbgln_if(PAGE_FAULT_DEBUG, " >> COW {} <- {}", page->paddr(), page_slot->paddr());
  418. {
  419. SmapDisabler disabler;
  420. void* fault_at;
  421. if (!safe_memcpy(dest_ptr, vaddr.as_ptr(), PAGE_SIZE, fault_at)) {
  422. if ((u8*)fault_at >= dest_ptr && (u8*)fault_at <= dest_ptr + PAGE_SIZE)
  423. dbgln(" >> COW: error copying page {}/{} to {}/{}: failed to write to page at {}",
  424. page_slot->paddr(), vaddr, page->paddr(), VirtualAddress(dest_ptr), VirtualAddress(fault_at));
  425. else if ((u8*)fault_at >= vaddr.as_ptr() && (u8*)fault_at <= vaddr.as_ptr() + PAGE_SIZE)
  426. dbgln(" >> COW: error copying page {}/{} to {}/{}: failed to read from page at {}",
  427. page_slot->paddr(), vaddr, page->paddr(), VirtualAddress(dest_ptr), VirtualAddress(fault_at));
  428. else
  429. VERIFY_NOT_REACHED();
  430. }
  431. }
  432. page_slot = move(page);
  433. MM.unquickmap_page();
  434. set_should_cow(page_index, false);
  435. return PageFaultResponse::Continue;
  436. }
  437. }