Op.cpp 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319
  1. /*
  2. * Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2021-2022, Linus Groh <linusg@serenityos.org>
  4. * Copyright (c) 2021, Gunnar Beutner <gbeutner@serenityos.org>
  5. *
  6. * SPDX-License-Identifier: BSD-2-Clause
  7. */
  8. #include <AK/HashTable.h>
  9. #include <LibJS/AST.h>
  10. #include <LibJS/Bytecode/Interpreter.h>
  11. #include <LibJS/Bytecode/Op.h>
  12. #include <LibJS/Runtime/AbstractOperations.h>
  13. #include <LibJS/Runtime/Array.h>
  14. #include <LibJS/Runtime/BigInt.h>
  15. #include <LibJS/Runtime/DeclarativeEnvironment.h>
  16. #include <LibJS/Runtime/ECMAScriptFunctionObject.h>
  17. #include <LibJS/Runtime/Environment.h>
  18. #include <LibJS/Runtime/FunctionEnvironment.h>
  19. #include <LibJS/Runtime/GlobalEnvironment.h>
  20. #include <LibJS/Runtime/GlobalObject.h>
  21. #include <LibJS/Runtime/Iterator.h>
  22. #include <LibJS/Runtime/IteratorOperations.h>
  23. #include <LibJS/Runtime/NativeFunction.h>
  24. #include <LibJS/Runtime/ObjectEnvironment.h>
  25. #include <LibJS/Runtime/Reference.h>
  26. #include <LibJS/Runtime/RegExpObject.h>
  27. #include <LibJS/Runtime/Value.h>
  28. namespace JS::Bytecode {
  29. String Instruction::to_string(Bytecode::Executable const& executable) const
  30. {
  31. #define __BYTECODE_OP(op) \
  32. case Instruction::Type::op: \
  33. return static_cast<Bytecode::Op::op const&>(*this).to_string_impl(executable);
  34. switch (type()) {
  35. ENUMERATE_BYTECODE_OPS(__BYTECODE_OP)
  36. default:
  37. VERIFY_NOT_REACHED();
  38. }
  39. #undef __BYTECODE_OP
  40. }
  41. }
  42. namespace JS::Bytecode::Op {
  43. static ThrowCompletionOr<void> put_by_property_key(Object* object, Value value, PropertyKey name, Bytecode::Interpreter& interpreter, PropertyKind kind)
  44. {
  45. auto& vm = interpreter.vm();
  46. if (kind == PropertyKind::Getter || kind == PropertyKind::Setter) {
  47. // The generator should only pass us functions for getters and setters.
  48. VERIFY(value.is_function());
  49. }
  50. switch (kind) {
  51. case PropertyKind::Getter: {
  52. auto& function = value.as_function();
  53. if (function.name().is_empty() && is<ECMAScriptFunctionObject>(function))
  54. static_cast<ECMAScriptFunctionObject*>(&function)->set_name(String::formatted("get {}", name));
  55. object->define_direct_accessor(name, &function, nullptr, Attribute::Configurable | Attribute::Enumerable);
  56. break;
  57. }
  58. case PropertyKind::Setter: {
  59. auto& function = value.as_function();
  60. if (function.name().is_empty() && is<ECMAScriptFunctionObject>(function))
  61. static_cast<ECMAScriptFunctionObject*>(&function)->set_name(String::formatted("set {}", name));
  62. object->define_direct_accessor(name, nullptr, &function, Attribute::Configurable | Attribute::Enumerable);
  63. break;
  64. }
  65. case PropertyKind::KeyValue: {
  66. bool succeeded = TRY(object->internal_set(name, interpreter.accumulator(), object));
  67. if (!succeeded && vm.in_strict_mode())
  68. return vm.throw_completion<TypeError>(ErrorType::ReferenceNullishSetProperty, name, interpreter.accumulator().to_string_without_side_effects());
  69. break;
  70. }
  71. case PropertyKind::Spread:
  72. TRY(object->copy_data_properties(vm, value, {}));
  73. break;
  74. case PropertyKind::ProtoSetter:
  75. if (value.is_object() || value.is_null())
  76. MUST(object->internal_set_prototype_of(value.is_object() ? &value.as_object() : nullptr));
  77. break;
  78. }
  79. return {};
  80. }
  81. ThrowCompletionOr<void> Load::execute_impl(Bytecode::Interpreter& interpreter) const
  82. {
  83. interpreter.accumulator() = interpreter.reg(m_src);
  84. return {};
  85. }
  86. ThrowCompletionOr<void> LoadImmediate::execute_impl(Bytecode::Interpreter& interpreter) const
  87. {
  88. interpreter.accumulator() = m_value;
  89. return {};
  90. }
  91. ThrowCompletionOr<void> Store::execute_impl(Bytecode::Interpreter& interpreter) const
  92. {
  93. interpreter.reg(m_dst) = interpreter.accumulator();
  94. return {};
  95. }
  96. static ThrowCompletionOr<Value> abstract_inequals(VM& vm, Value src1, Value src2)
  97. {
  98. return Value(!TRY(is_loosely_equal(vm, src1, src2)));
  99. }
  100. static ThrowCompletionOr<Value> abstract_equals(VM& vm, Value src1, Value src2)
  101. {
  102. return Value(TRY(is_loosely_equal(vm, src1, src2)));
  103. }
  104. static ThrowCompletionOr<Value> typed_inequals(VM&, Value src1, Value src2)
  105. {
  106. return Value(!is_strictly_equal(src1, src2));
  107. }
  108. static ThrowCompletionOr<Value> typed_equals(VM&, Value src1, Value src2)
  109. {
  110. return Value(is_strictly_equal(src1, src2));
  111. }
  112. #define JS_DEFINE_COMMON_BINARY_OP(OpTitleCase, op_snake_case) \
  113. ThrowCompletionOr<void> OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \
  114. { \
  115. auto& vm = interpreter.vm(); \
  116. auto lhs = interpreter.reg(m_lhs_reg); \
  117. auto rhs = interpreter.accumulator(); \
  118. interpreter.accumulator() = TRY(op_snake_case(vm, lhs, rhs)); \
  119. return {}; \
  120. } \
  121. String OpTitleCase::to_string_impl(Bytecode::Executable const&) const \
  122. { \
  123. return String::formatted(#OpTitleCase " {}", m_lhs_reg); \
  124. }
  125. JS_ENUMERATE_COMMON_BINARY_OPS(JS_DEFINE_COMMON_BINARY_OP)
  126. static ThrowCompletionOr<Value> not_(VM&, Value value)
  127. {
  128. return Value(!value.to_boolean());
  129. }
  130. static ThrowCompletionOr<Value> typeof_(VM& vm, Value value)
  131. {
  132. return Value(js_string(vm, value.typeof()));
  133. }
  134. #define JS_DEFINE_COMMON_UNARY_OP(OpTitleCase, op_snake_case) \
  135. ThrowCompletionOr<void> OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \
  136. { \
  137. auto& vm = interpreter.vm(); \
  138. interpreter.accumulator() = TRY(op_snake_case(vm, interpreter.accumulator())); \
  139. return {}; \
  140. } \
  141. String OpTitleCase::to_string_impl(Bytecode::Executable const&) const \
  142. { \
  143. return #OpTitleCase; \
  144. }
  145. JS_ENUMERATE_COMMON_UNARY_OPS(JS_DEFINE_COMMON_UNARY_OP)
  146. ThrowCompletionOr<void> NewBigInt::execute_impl(Bytecode::Interpreter& interpreter) const
  147. {
  148. interpreter.accumulator() = js_bigint(interpreter.vm().heap(), m_bigint);
  149. return {};
  150. }
  151. ThrowCompletionOr<void> NewArray::execute_impl(Bytecode::Interpreter& interpreter) const
  152. {
  153. auto* array = MUST(Array::create(interpreter.realm(), 0));
  154. for (size_t i = 0; i < m_element_count; i++) {
  155. auto& value = interpreter.reg(Register(m_elements[0].index() + i));
  156. array->indexed_properties().put(i, value, default_attributes);
  157. }
  158. interpreter.accumulator() = array;
  159. return {};
  160. }
  161. ThrowCompletionOr<void> Append::execute_impl(Bytecode::Interpreter& interpreter) const
  162. {
  163. // Note: This OpCode is used to construct array literals and argument arrays for calls,
  164. // containing at least one spread element,
  165. // Iterating over such a spread element to unpack it has to be visible by
  166. // the user courtesy of
  167. // (1) https://tc39.es/ecma262/#sec-runtime-semantics-arrayaccumulation
  168. // SpreadElement : ... AssignmentExpression
  169. // 1. Let spreadRef be ? Evaluation of AssignmentExpression.
  170. // 2. Let spreadObj be ? GetValue(spreadRef).
  171. // 3. Let iteratorRecord be ? GetIterator(spreadObj).
  172. // 4. Repeat,
  173. // a. Let next be ? IteratorStep(iteratorRecord).
  174. // b. If next is false, return nextIndex.
  175. // c. Let nextValue be ? IteratorValue(next).
  176. // d. Perform ! CreateDataPropertyOrThrow(array, ! ToString(𝔽(nextIndex)), nextValue).
  177. // e. Set nextIndex to nextIndex + 1.
  178. // (2) https://tc39.es/ecma262/#sec-runtime-semantics-argumentlistevaluation
  179. // ArgumentList : ... AssignmentExpression
  180. // 1. Let list be a new empty List.
  181. // 2. Let spreadRef be ? Evaluation of AssignmentExpression.
  182. // 3. Let spreadObj be ? GetValue(spreadRef).
  183. // 4. Let iteratorRecord be ? GetIterator(spreadObj).
  184. // 5. Repeat,
  185. // a. Let next be ? IteratorStep(iteratorRecord).
  186. // b. If next is false, return list.
  187. // c. Let nextArg be ? IteratorValue(next).
  188. // d. Append nextArg to list.
  189. // ArgumentList : ArgumentList , ... AssignmentExpression
  190. // 1. Let precedingArgs be ? ArgumentListEvaluation of ArgumentList.
  191. // 2. Let spreadRef be ? Evaluation of AssignmentExpression.
  192. // 3. Let iteratorRecord be ? GetIterator(? GetValue(spreadRef)).
  193. // 4. Repeat,
  194. // a. Let next be ? IteratorStep(iteratorRecord).
  195. // b. If next is false, return precedingArgs.
  196. // c. Let nextArg be ? IteratorValue(next).
  197. // d. Append nextArg to precedingArgs.
  198. auto& vm = interpreter.vm();
  199. // Note: We know from codegen, that lhs is a plain array with only indexed properties
  200. auto& lhs = interpreter.reg(m_lhs).as_array();
  201. auto lhs_size = lhs.indexed_properties().array_like_size();
  202. auto rhs = interpreter.accumulator();
  203. if (m_is_spread) {
  204. // ...rhs
  205. size_t i = lhs_size;
  206. TRY(get_iterator_values(vm, rhs, [&i, &lhs](Value iterator_value) -> Optional<Completion> {
  207. lhs.indexed_properties().put(i, iterator_value, default_attributes);
  208. ++i;
  209. return {};
  210. }));
  211. } else {
  212. lhs.indexed_properties().put(lhs_size, rhs, default_attributes);
  213. }
  214. return {};
  215. }
  216. // FIXME: Since the accumulator is a Value, we store an object there and have to convert back and forth between that an Iterator records. Not great.
  217. // Make sure to put this into the accumulator before the iterator object disappears from the stack to prevent the members from being GC'd.
  218. static Object* iterator_to_object(VM& vm, Iterator iterator)
  219. {
  220. auto& realm = *vm.current_realm();
  221. auto* object = Object::create(realm, nullptr);
  222. object->define_direct_property(vm.names.iterator, iterator.iterator, 0);
  223. object->define_direct_property(vm.names.next, iterator.next_method, 0);
  224. object->define_direct_property(vm.names.done, Value(iterator.done), 0);
  225. return object;
  226. }
  227. static Iterator object_to_iterator(VM& vm, Object& object)
  228. {
  229. return Iterator {
  230. .iterator = &MUST(object.get(vm.names.iterator)).as_object(),
  231. .next_method = MUST(object.get(vm.names.next)),
  232. .done = MUST(object.get(vm.names.done)).as_bool()
  233. };
  234. }
  235. ThrowCompletionOr<void> IteratorToArray::execute_impl(Bytecode::Interpreter& interpreter) const
  236. {
  237. auto& vm = interpreter.vm();
  238. auto iterator_object = TRY(interpreter.accumulator().to_object(vm));
  239. auto iterator = object_to_iterator(vm, *iterator_object);
  240. auto* array = MUST(Array::create(interpreter.realm(), 0));
  241. size_t index = 0;
  242. while (true) {
  243. auto* iterator_result = TRY(iterator_next(vm, iterator));
  244. auto complete = TRY(iterator_complete(vm, *iterator_result));
  245. if (complete) {
  246. interpreter.accumulator() = array;
  247. return {};
  248. }
  249. auto value = TRY(iterator_value(vm, *iterator_result));
  250. MUST(array->create_data_property_or_throw(index, value));
  251. index++;
  252. }
  253. return {};
  254. }
  255. ThrowCompletionOr<void> NewString::execute_impl(Bytecode::Interpreter& interpreter) const
  256. {
  257. interpreter.accumulator() = js_string(interpreter.vm(), interpreter.current_executable().get_string(m_string));
  258. return {};
  259. }
  260. ThrowCompletionOr<void> NewObject::execute_impl(Bytecode::Interpreter& interpreter) const
  261. {
  262. auto& vm = interpreter.vm();
  263. auto& realm = *vm.current_realm();
  264. interpreter.accumulator() = Object::create(realm, realm.intrinsics().object_prototype());
  265. return {};
  266. }
  267. ThrowCompletionOr<void> NewRegExp::execute_impl(Bytecode::Interpreter& interpreter) const
  268. {
  269. auto& vm = interpreter.vm();
  270. auto source = interpreter.current_executable().get_string(m_source_index);
  271. auto flags = interpreter.current_executable().get_string(m_flags_index);
  272. interpreter.accumulator() = TRY(regexp_create(vm, js_string(vm, source), js_string(vm, flags)));
  273. return {};
  274. }
  275. ThrowCompletionOr<void> CopyObjectExcludingProperties::execute_impl(Bytecode::Interpreter& interpreter) const
  276. {
  277. auto& vm = interpreter.vm();
  278. auto& realm = *vm.current_realm();
  279. auto* from_object = TRY(interpreter.reg(m_from_object).to_object(vm));
  280. auto* to_object = Object::create(realm, realm.intrinsics().object_prototype());
  281. HashTable<Value, ValueTraits> excluded_names;
  282. for (size_t i = 0; i < m_excluded_names_count; ++i)
  283. excluded_names.set(interpreter.reg(m_excluded_names[i]));
  284. auto own_keys = TRY(from_object->internal_own_property_keys());
  285. for (auto& key : own_keys) {
  286. if (!excluded_names.contains(key)) {
  287. auto property_key = TRY(key.to_property_key(vm));
  288. auto property_value = TRY(from_object->get(property_key));
  289. to_object->define_direct_property(property_key, property_value, JS::default_attributes);
  290. }
  291. }
  292. interpreter.accumulator() = to_object;
  293. return {};
  294. }
  295. ThrowCompletionOr<void> ConcatString::execute_impl(Bytecode::Interpreter& interpreter) const
  296. {
  297. auto& vm = interpreter.vm();
  298. interpreter.reg(m_lhs) = TRY(add(vm, interpreter.reg(m_lhs), interpreter.accumulator()));
  299. return {};
  300. }
  301. ThrowCompletionOr<void> GetVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  302. {
  303. auto& vm = interpreter.vm();
  304. auto get_reference = [&]() -> ThrowCompletionOr<Reference> {
  305. auto const& string = interpreter.current_executable().get_identifier(m_identifier);
  306. if (m_cached_environment_coordinate.has_value()) {
  307. Environment* environment = nullptr;
  308. if (m_cached_environment_coordinate->index == EnvironmentCoordinate::global_marker) {
  309. environment = &interpreter.vm().current_realm()->global_environment();
  310. } else {
  311. environment = vm.running_execution_context().lexical_environment;
  312. for (size_t i = 0; i < m_cached_environment_coordinate->hops; ++i)
  313. environment = environment->outer_environment();
  314. VERIFY(environment);
  315. VERIFY(environment->is_declarative_environment());
  316. }
  317. if (!environment->is_permanently_screwed_by_eval()) {
  318. return Reference { *environment, string, vm.in_strict_mode(), m_cached_environment_coordinate };
  319. }
  320. m_cached_environment_coordinate = {};
  321. }
  322. auto reference = TRY(vm.resolve_binding(string));
  323. if (reference.environment_coordinate().has_value())
  324. m_cached_environment_coordinate = reference.environment_coordinate();
  325. return reference;
  326. };
  327. auto reference = TRY(get_reference());
  328. interpreter.accumulator() = TRY(reference.get_value(vm));
  329. return {};
  330. }
  331. ThrowCompletionOr<void> DeleteVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  332. {
  333. auto& vm = interpreter.vm();
  334. auto const& string = interpreter.current_executable().get_identifier(m_identifier);
  335. auto reference = TRY(vm.resolve_binding(string));
  336. interpreter.accumulator() = Value(TRY(reference.delete_(vm)));
  337. return {};
  338. }
  339. ThrowCompletionOr<void> CreateEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
  340. {
  341. auto make_and_swap_envs = [&](auto*& old_environment) {
  342. Environment* environment = new_declarative_environment(*old_environment);
  343. swap(old_environment, environment);
  344. return environment;
  345. };
  346. if (m_mode == EnvironmentMode::Lexical)
  347. interpreter.saved_lexical_environment_stack().append(make_and_swap_envs(interpreter.vm().running_execution_context().lexical_environment));
  348. else if (m_mode == EnvironmentMode::Var)
  349. interpreter.saved_variable_environment_stack().append(make_and_swap_envs(interpreter.vm().running_execution_context().variable_environment));
  350. return {};
  351. }
  352. ThrowCompletionOr<void> EnterObjectEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
  353. {
  354. auto& vm = interpreter.vm();
  355. auto& old_environment = vm.running_execution_context().lexical_environment;
  356. interpreter.saved_lexical_environment_stack().append(old_environment);
  357. auto object = TRY(interpreter.accumulator().to_object(vm));
  358. vm.running_execution_context().lexical_environment = new_object_environment(*object, true, old_environment);
  359. return {};
  360. }
  361. ThrowCompletionOr<void> CreateVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  362. {
  363. auto& vm = interpreter.vm();
  364. auto const& name = interpreter.current_executable().get_identifier(m_identifier);
  365. if (m_mode == EnvironmentMode::Lexical) {
  366. VERIFY(!m_is_global);
  367. // Note: This is papering over an issue where "FunctionDeclarationInstantiation" creates these bindings for us.
  368. // Instead of crashing in there, we'll just raise an exception here.
  369. if (TRY(vm.lexical_environment()->has_binding(name)))
  370. return vm.throw_completion<InternalError>(String::formatted("Lexical environment already has binding '{}'", name));
  371. if (m_is_immutable)
  372. vm.lexical_environment()->create_immutable_binding(vm, name, vm.in_strict_mode());
  373. else
  374. vm.lexical_environment()->create_mutable_binding(vm, name, vm.in_strict_mode());
  375. } else {
  376. if (!m_is_global) {
  377. if (m_is_immutable)
  378. vm.variable_environment()->create_immutable_binding(vm, name, vm.in_strict_mode());
  379. else
  380. vm.variable_environment()->create_mutable_binding(vm, name, vm.in_strict_mode());
  381. } else {
  382. // NOTE: CreateVariable with m_is_global set to true is expected to only be used in GlobalDeclarationInstantiation currently, which only uses "false" for "can_be_deleted".
  383. // The only area that sets "can_be_deleted" to true is EvalDeclarationInstantiation, which is currently fully implemented in C++ and not in Bytecode.
  384. verify_cast<GlobalEnvironment>(vm.variable_environment())->create_global_var_binding(name, false);
  385. }
  386. }
  387. return {};
  388. }
  389. ThrowCompletionOr<void> SetVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  390. {
  391. auto& vm = interpreter.vm();
  392. auto const& name = interpreter.current_executable().get_identifier(m_identifier);
  393. auto environment = m_mode == EnvironmentMode::Lexical ? vm.running_execution_context().lexical_environment : vm.running_execution_context().variable_environment;
  394. auto reference = TRY(vm.resolve_binding(name, environment));
  395. switch (m_initialization_mode) {
  396. case InitializationMode::Initialize:
  397. TRY(reference.initialize_referenced_binding(vm, interpreter.accumulator()));
  398. break;
  399. case InitializationMode::Set:
  400. TRY(reference.put_value(vm, interpreter.accumulator()));
  401. break;
  402. case InitializationMode::InitializeOrSet:
  403. VERIFY(reference.is_environment_reference());
  404. VERIFY(reference.base_environment().is_declarative_environment());
  405. TRY(static_cast<DeclarativeEnvironment&>(reference.base_environment()).initialize_or_set_mutable_binding(vm, name, interpreter.accumulator()));
  406. break;
  407. }
  408. return {};
  409. }
  410. ThrowCompletionOr<void> GetById::execute_impl(Bytecode::Interpreter& interpreter) const
  411. {
  412. auto& vm = interpreter.vm();
  413. auto* object = TRY(interpreter.accumulator().to_object(vm));
  414. interpreter.accumulator() = TRY(object->get(interpreter.current_executable().get_identifier(m_property)));
  415. return {};
  416. }
  417. ThrowCompletionOr<void> PutById::execute_impl(Bytecode::Interpreter& interpreter) const
  418. {
  419. auto& vm = interpreter.vm();
  420. auto* object = TRY(interpreter.reg(m_base).to_object(vm));
  421. PropertyKey name = interpreter.current_executable().get_identifier(m_property);
  422. auto value = interpreter.accumulator();
  423. return put_by_property_key(object, value, name, interpreter, m_kind);
  424. }
  425. ThrowCompletionOr<void> DeleteById::execute_impl(Bytecode::Interpreter& interpreter) const
  426. {
  427. auto& vm = interpreter.vm();
  428. auto* object = TRY(interpreter.accumulator().to_object(vm));
  429. auto const& identifier = interpreter.current_executable().get_identifier(m_property);
  430. bool strict = vm.in_strict_mode();
  431. auto reference = Reference { object, identifier, {}, strict };
  432. interpreter.accumulator() = Value(TRY(reference.delete_(vm)));
  433. return {};
  434. };
  435. ThrowCompletionOr<void> Jump::execute_impl(Bytecode::Interpreter& interpreter) const
  436. {
  437. interpreter.jump(*m_true_target);
  438. return {};
  439. }
  440. ThrowCompletionOr<void> ResolveThisBinding::execute_impl(Bytecode::Interpreter& interpreter) const
  441. {
  442. auto& vm = interpreter.vm();
  443. interpreter.accumulator() = TRY(vm.resolve_this_binding());
  444. return {};
  445. }
  446. ThrowCompletionOr<void> GetNewTarget::execute_impl(Bytecode::Interpreter& interpreter) const
  447. {
  448. interpreter.accumulator() = interpreter.vm().get_new_target();
  449. return {};
  450. }
  451. void Jump::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  452. {
  453. if (m_true_target.has_value() && &m_true_target->block() == &from)
  454. m_true_target = Label { to };
  455. if (m_false_target.has_value() && &m_false_target->block() == &from)
  456. m_false_target = Label { to };
  457. }
  458. ThrowCompletionOr<void> JumpConditional::execute_impl(Bytecode::Interpreter& interpreter) const
  459. {
  460. VERIFY(m_true_target.has_value());
  461. VERIFY(m_false_target.has_value());
  462. auto result = interpreter.accumulator();
  463. if (result.to_boolean())
  464. interpreter.jump(m_true_target.value());
  465. else
  466. interpreter.jump(m_false_target.value());
  467. return {};
  468. }
  469. ThrowCompletionOr<void> JumpNullish::execute_impl(Bytecode::Interpreter& interpreter) const
  470. {
  471. VERIFY(m_true_target.has_value());
  472. VERIFY(m_false_target.has_value());
  473. auto result = interpreter.accumulator();
  474. if (result.is_nullish())
  475. interpreter.jump(m_true_target.value());
  476. else
  477. interpreter.jump(m_false_target.value());
  478. return {};
  479. }
  480. ThrowCompletionOr<void> JumpUndefined::execute_impl(Bytecode::Interpreter& interpreter) const
  481. {
  482. VERIFY(m_true_target.has_value());
  483. VERIFY(m_false_target.has_value());
  484. auto result = interpreter.accumulator();
  485. if (result.is_undefined())
  486. interpreter.jump(m_true_target.value());
  487. else
  488. interpreter.jump(m_false_target.value());
  489. return {};
  490. }
  491. // 13.3.8.1 https://tc39.es/ecma262/#sec-runtime-semantics-argumentlistevaluation
  492. static MarkedVector<Value> argument_list_evaluation(Bytecode::Interpreter& interpreter)
  493. {
  494. // Note: Any spreading and actual evaluation is handled in preceding opcodes
  495. // Note: The spec uses the concept of a list, while we create a temporary array
  496. // in the preceding opcodes, so we have to convert in a manner that is not
  497. // visible to the user
  498. auto& vm = interpreter.vm();
  499. MarkedVector<Value> argument_values { vm.heap() };
  500. auto arguments = interpreter.accumulator();
  501. if (!(arguments.is_object() && is<Array>(arguments.as_object()))) {
  502. dbgln("Call arguments are not an array, but: {}", arguments.to_string_without_side_effects());
  503. dbgln("PC: {}[{:4x}]", interpreter.current_block().name(), interpreter.pc());
  504. interpreter.current_executable().dump();
  505. VERIFY_NOT_REACHED();
  506. }
  507. auto& argument_array = arguments.as_array();
  508. auto array_length = argument_array.indexed_properties().array_like_size();
  509. argument_values.ensure_capacity(array_length);
  510. for (size_t i = 0; i < array_length; ++i) {
  511. if (auto maybe_value = argument_array.indexed_properties().get(i); maybe_value.has_value())
  512. argument_values.append(maybe_value.release_value().value);
  513. else
  514. argument_values.append(js_undefined());
  515. }
  516. return argument_values;
  517. }
  518. Completion Call::throw_type_error_for_callee(Bytecode::Interpreter& interpreter, StringView callee_type) const
  519. {
  520. auto callee = interpreter.reg(m_callee);
  521. if (m_expression_string.has_value())
  522. return interpreter.vm().throw_completion<TypeError>(ErrorType::IsNotAEvaluatedFrom, callee.to_string_without_side_effects(), callee_type, interpreter.current_executable().get_string(m_expression_string->value()));
  523. return interpreter.vm().throw_completion<TypeError>(ErrorType::IsNotA, callee.to_string_without_side_effects(), callee_type);
  524. }
  525. ThrowCompletionOr<void> Call::execute_impl(Bytecode::Interpreter& interpreter) const
  526. {
  527. auto& vm = interpreter.vm();
  528. auto callee = interpreter.reg(m_callee);
  529. if (m_type == CallType::Call && !callee.is_function())
  530. return throw_type_error_for_callee(interpreter, "function"sv);
  531. if (m_type == CallType::Construct && !callee.is_constructor())
  532. return throw_type_error_for_callee(interpreter, "constructor"sv);
  533. auto& function = callee.as_function();
  534. auto this_value = interpreter.reg(m_this_value);
  535. auto argument_values = argument_list_evaluation(interpreter);
  536. Value return_value;
  537. if (m_type == CallType::Call)
  538. return_value = TRY(call(vm, function, this_value, move(argument_values)));
  539. else
  540. return_value = TRY(construct(vm, function, move(argument_values)));
  541. interpreter.accumulator() = return_value;
  542. return {};
  543. }
  544. // 13.3.7.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
  545. ThrowCompletionOr<void> SuperCall::execute_impl(Bytecode::Interpreter& interpreter) const
  546. {
  547. auto& vm = interpreter.vm();
  548. // 1. Let newTarget be GetNewTarget().
  549. auto new_target = vm.get_new_target();
  550. // 2. Assert: Type(newTarget) is Object.
  551. VERIFY(new_target.is_object());
  552. // 3. Let func be GetSuperConstructor().
  553. auto* func = get_super_constructor(vm);
  554. // 4. Let argList be ? ArgumentListEvaluation of Arguments.
  555. MarkedVector<Value> arg_list { vm.heap() };
  556. if (m_is_synthetic) {
  557. auto const& value = interpreter.accumulator();
  558. VERIFY(value.is_object() && is<Array>(value.as_object()));
  559. auto const& array_value = static_cast<Array const&>(value.as_object());
  560. auto length = MUST(length_of_array_like(vm, array_value));
  561. for (size_t i = 0; i < length; ++i)
  562. arg_list.append(array_value.get_without_side_effects(PropertyKey { i }));
  563. } else {
  564. arg_list = argument_list_evaluation(interpreter);
  565. }
  566. // 5. If IsConstructor(func) is false, throw a TypeError exception.
  567. if (!Value(func).is_constructor())
  568. return vm.throw_completion<TypeError>(ErrorType::NotAConstructor, "Super constructor");
  569. // 6. Let result be ? Construct(func, argList, newTarget).
  570. auto* result = TRY(construct(vm, static_cast<FunctionObject&>(*func), move(arg_list), &new_target.as_function()));
  571. // 7. Let thisER be GetThisEnvironment().
  572. auto& this_environment = verify_cast<FunctionEnvironment>(get_this_environment(vm));
  573. // 8. Perform ? thisER.BindThisValue(result).
  574. TRY(this_environment.bind_this_value(vm, result));
  575. // 9. Let F be thisER.[[FunctionObject]].
  576. auto& f = this_environment.function_object();
  577. // 10. Assert: F is an ECMAScript function object.
  578. // NOTE: This is implied by the strong C++ type.
  579. // 11. Perform ? InitializeInstanceElements(result, F).
  580. TRY(vm.initialize_instance_elements(*result, f));
  581. // 12. Return result.
  582. interpreter.accumulator() = result;
  583. return {};
  584. }
  585. ThrowCompletionOr<void> NewFunction::execute_impl(Bytecode::Interpreter& interpreter) const
  586. {
  587. auto& vm = interpreter.vm();
  588. interpreter.accumulator() = ECMAScriptFunctionObject::create(interpreter.realm(), m_function_node.name(), m_function_node.source_text(), m_function_node.body(), m_function_node.parameters(), m_function_node.function_length(), vm.lexical_environment(), vm.running_execution_context().private_environment, m_function_node.kind(), m_function_node.is_strict_mode(), m_function_node.might_need_arguments_object(), m_function_node.contains_direct_call_to_eval(), m_function_node.is_arrow_function());
  589. return {};
  590. }
  591. ThrowCompletionOr<void> Return::execute_impl(Bytecode::Interpreter& interpreter) const
  592. {
  593. interpreter.do_return(interpreter.accumulator().value_or(js_undefined()));
  594. return {};
  595. }
  596. ThrowCompletionOr<void> Increment::execute_impl(Bytecode::Interpreter& interpreter) const
  597. {
  598. auto& vm = interpreter.vm();
  599. auto old_value = TRY(interpreter.accumulator().to_numeric(vm));
  600. if (old_value.is_number())
  601. interpreter.accumulator() = Value(old_value.as_double() + 1);
  602. else
  603. interpreter.accumulator() = js_bigint(vm, old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 }));
  604. return {};
  605. }
  606. ThrowCompletionOr<void> Decrement::execute_impl(Bytecode::Interpreter& interpreter) const
  607. {
  608. auto& vm = interpreter.vm();
  609. auto old_value = TRY(interpreter.accumulator().to_numeric(vm));
  610. if (old_value.is_number())
  611. interpreter.accumulator() = Value(old_value.as_double() - 1);
  612. else
  613. interpreter.accumulator() = js_bigint(vm, old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 }));
  614. return {};
  615. }
  616. ThrowCompletionOr<void> Throw::execute_impl(Bytecode::Interpreter& interpreter) const
  617. {
  618. return throw_completion(interpreter.accumulator());
  619. }
  620. ThrowCompletionOr<void> EnterUnwindContext::execute_impl(Bytecode::Interpreter& interpreter) const
  621. {
  622. interpreter.enter_unwind_context(m_handler_target, m_finalizer_target);
  623. interpreter.jump(m_entry_point);
  624. return {};
  625. }
  626. void EnterUnwindContext::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  627. {
  628. if (&m_entry_point.block() == &from)
  629. m_entry_point = Label { to };
  630. if (m_handler_target.has_value() && &m_handler_target->block() == &from)
  631. m_handler_target = Label { to };
  632. if (m_finalizer_target.has_value() && &m_finalizer_target->block() == &from)
  633. m_finalizer_target = Label { to };
  634. }
  635. ThrowCompletionOr<void> FinishUnwind::execute_impl(Bytecode::Interpreter& interpreter) const
  636. {
  637. interpreter.leave_unwind_context();
  638. interpreter.jump(m_next_target);
  639. return {};
  640. }
  641. void FinishUnwind::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  642. {
  643. if (&m_next_target.block() == &from)
  644. m_next_target = Label { to };
  645. }
  646. ThrowCompletionOr<void> LeaveEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
  647. {
  648. if (m_mode == EnvironmentMode::Lexical)
  649. interpreter.vm().running_execution_context().lexical_environment = interpreter.saved_lexical_environment_stack().take_last();
  650. if (m_mode == EnvironmentMode::Var)
  651. interpreter.vm().running_execution_context().variable_environment = interpreter.saved_variable_environment_stack().take_last();
  652. return {};
  653. }
  654. ThrowCompletionOr<void> LeaveUnwindContext::execute_impl(Bytecode::Interpreter& interpreter) const
  655. {
  656. interpreter.leave_unwind_context();
  657. return {};
  658. }
  659. ThrowCompletionOr<void> ContinuePendingUnwind::execute_impl(Bytecode::Interpreter& interpreter) const
  660. {
  661. return interpreter.continue_pending_unwind(m_resume_target);
  662. }
  663. void ContinuePendingUnwind::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  664. {
  665. if (&m_resume_target.block() == &from)
  666. m_resume_target = Label { to };
  667. }
  668. ThrowCompletionOr<void> PushDeclarativeEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
  669. {
  670. auto* environment = interpreter.vm().heap().allocate_without_realm<DeclarativeEnvironment>(interpreter.vm().lexical_environment());
  671. interpreter.vm().running_execution_context().lexical_environment = environment;
  672. interpreter.vm().running_execution_context().variable_environment = environment;
  673. return {};
  674. }
  675. ThrowCompletionOr<void> Yield::execute_impl(Bytecode::Interpreter& interpreter) const
  676. {
  677. auto yielded_value = interpreter.accumulator().value_or(js_undefined());
  678. auto object = Object::create(interpreter.realm(), nullptr);
  679. object->define_direct_property("result", yielded_value, JS::default_attributes);
  680. if (m_continuation_label.has_value())
  681. object->define_direct_property("continuation", Value(static_cast<double>(reinterpret_cast<u64>(&m_continuation_label->block()))), JS::default_attributes);
  682. else
  683. object->define_direct_property("continuation", Value(0), JS::default_attributes);
  684. interpreter.do_return(object);
  685. return {};
  686. }
  687. void Yield::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  688. {
  689. if (m_continuation_label.has_value() && &m_continuation_label->block() == &from)
  690. m_continuation_label = Label { to };
  691. }
  692. ThrowCompletionOr<void> GetByValue::execute_impl(Bytecode::Interpreter& interpreter) const
  693. {
  694. auto& vm = interpreter.vm();
  695. auto* object = TRY(interpreter.reg(m_base).to_object(vm));
  696. auto property_key = TRY(interpreter.accumulator().to_property_key(vm));
  697. interpreter.accumulator() = TRY(object->get(property_key));
  698. return {};
  699. }
  700. ThrowCompletionOr<void> PutByValue::execute_impl(Bytecode::Interpreter& interpreter) const
  701. {
  702. auto& vm = interpreter.vm();
  703. auto* object = TRY(interpreter.reg(m_base).to_object(vm));
  704. auto property_key = TRY(interpreter.reg(m_property).to_property_key(vm));
  705. return put_by_property_key(object, interpreter.accumulator(), property_key, interpreter, m_kind);
  706. }
  707. ThrowCompletionOr<void> DeleteByValue::execute_impl(Bytecode::Interpreter& interpreter) const
  708. {
  709. auto& vm = interpreter.vm();
  710. auto* object = TRY(interpreter.reg(m_base).to_object(vm));
  711. auto property_key = TRY(interpreter.accumulator().to_property_key(vm));
  712. bool strict = vm.in_strict_mode();
  713. auto reference = Reference { object, property_key, {}, strict };
  714. interpreter.accumulator() = Value(TRY(reference.delete_(vm)));
  715. return {};
  716. }
  717. ThrowCompletionOr<void> GetIterator::execute_impl(Bytecode::Interpreter& interpreter) const
  718. {
  719. auto& vm = interpreter.vm();
  720. auto iterator = TRY(get_iterator(vm, interpreter.accumulator()));
  721. interpreter.accumulator() = iterator_to_object(vm, iterator);
  722. return {};
  723. }
  724. // 14.7.5.9 EnumerateObjectProperties ( O ), https://tc39.es/ecma262/#sec-enumerate-object-properties
  725. ThrowCompletionOr<void> GetObjectPropertyIterator::execute_impl(Bytecode::Interpreter& interpreter) const
  726. {
  727. // While the spec does provide an algorithm, it allows us to implement it ourselves so long as we meet the following invariants:
  728. // 1- Returned property keys do not include keys that are Symbols
  729. // 2- Properties of the target object may be deleted during enumeration. A property that is deleted before it is processed by the iterator's next method is ignored
  730. // 3- If new properties are added to the target object during enumeration, the newly added properties are not guaranteed to be processed in the active enumeration
  731. // 4- A property name will be returned by the iterator's next method at most once in any enumeration.
  732. // 5- Enumerating the properties of the target object includes enumerating properties of its prototype, and the prototype of the prototype, and so on, recursively;
  733. // but a property of a prototype is not processed if it has the same name as a property that has already been processed by the iterator's next method.
  734. // 6- The values of [[Enumerable]] attributes are not considered when determining if a property of a prototype object has already been processed.
  735. // 7- The enumerable property names of prototype objects must be obtained by invoking EnumerateObjectProperties passing the prototype object as the argument.
  736. // 8- EnumerateObjectProperties must obtain the own property keys of the target object by calling its [[OwnPropertyKeys]] internal method.
  737. // 9- Property attributes of the target object must be obtained by calling its [[GetOwnProperty]] internal method
  738. // Invariant 3 effectively allows the implementation to ignore newly added keys, and we do so (similar to other implementations).
  739. // Invariants 1 and 6 through 9 are implemented in `enumerable_own_property_names`, which implements the EnumerableOwnPropertyNames AO.
  740. auto& vm = interpreter.vm();
  741. auto* object = TRY(interpreter.accumulator().to_object(vm));
  742. // Note: While the spec doesn't explicitly require these to be ordered, it says that the values should be retrieved via OwnPropertyKeys,
  743. // so we just keep the order consistent anyway.
  744. OrderedHashTable<PropertyKey> properties;
  745. HashTable<Object*> seen_objects;
  746. // Collect all keys immediately (invariant no. 5)
  747. for (auto* object_to_check = object; object_to_check && !seen_objects.contains(object_to_check); object_to_check = TRY(object_to_check->internal_get_prototype_of())) {
  748. seen_objects.set(object_to_check);
  749. for (auto& key : TRY(object_to_check->enumerable_own_property_names(Object::PropertyKind::Key))) {
  750. properties.set(TRY(PropertyKey::from_value(vm, key)));
  751. }
  752. }
  753. Iterator iterator {
  754. .iterator = object,
  755. .next_method = NativeFunction::create(
  756. interpreter.realm(),
  757. [seen_items = HashTable<PropertyKey>(), items = move(properties)](VM& vm) mutable -> ThrowCompletionOr<Value> {
  758. auto& realm = *vm.current_realm();
  759. auto iterated_object_value = vm.this_value();
  760. if (!iterated_object_value.is_object())
  761. return vm.throw_completion<InternalError>("Invalid state for GetObjectPropertyIterator.next");
  762. auto& iterated_object = iterated_object_value.as_object();
  763. auto* result_object = Object::create(realm, nullptr);
  764. while (true) {
  765. if (items.is_empty()) {
  766. result_object->define_direct_property(vm.names.done, JS::Value(true), default_attributes);
  767. return result_object;
  768. }
  769. auto it = items.begin();
  770. auto key = *it;
  771. items.remove(it);
  772. // If the key was already seen, skip over it (invariant no. 4)
  773. auto result = seen_items.set(key);
  774. if (result != AK::HashSetResult::InsertedNewEntry)
  775. continue;
  776. // If the property is deleted, don't include it (invariant no. 2)
  777. if (!TRY(iterated_object.has_property(key)))
  778. continue;
  779. result_object->define_direct_property(vm.names.done, JS::Value(false), default_attributes);
  780. if (key.is_number())
  781. result_object->define_direct_property(vm.names.value, JS::Value(key.as_number()), default_attributes);
  782. else if (key.is_string())
  783. result_object->define_direct_property(vm.names.value, js_string(vm, key.as_string()), default_attributes);
  784. else
  785. VERIFY_NOT_REACHED(); // We should not have non-string/number keys.
  786. return result_object;
  787. }
  788. },
  789. 1,
  790. vm.names.next),
  791. .done = false,
  792. };
  793. interpreter.accumulator() = iterator_to_object(vm, move(iterator));
  794. return {};
  795. }
  796. ThrowCompletionOr<void> IteratorNext::execute_impl(Bytecode::Interpreter& interpreter) const
  797. {
  798. auto& vm = interpreter.vm();
  799. auto* iterator_object = TRY(interpreter.accumulator().to_object(vm));
  800. auto iterator = object_to_iterator(vm, *iterator_object);
  801. interpreter.accumulator() = TRY(iterator_next(vm, iterator));
  802. return {};
  803. }
  804. ThrowCompletionOr<void> IteratorResultDone::execute_impl(Bytecode::Interpreter& interpreter) const
  805. {
  806. auto& vm = interpreter.vm();
  807. auto* iterator_result = TRY(interpreter.accumulator().to_object(vm));
  808. auto complete = TRY(iterator_complete(vm, *iterator_result));
  809. interpreter.accumulator() = Value(complete);
  810. return {};
  811. }
  812. ThrowCompletionOr<void> IteratorResultValue::execute_impl(Bytecode::Interpreter& interpreter) const
  813. {
  814. auto& vm = interpreter.vm();
  815. auto* iterator_result = TRY(interpreter.accumulator().to_object(vm));
  816. interpreter.accumulator() = TRY(iterator_value(vm, *iterator_result));
  817. return {};
  818. }
  819. ThrowCompletionOr<void> NewClass::execute_impl(Bytecode::Interpreter& interpreter) const
  820. {
  821. auto name = m_class_expression.name();
  822. auto scope = interpreter.ast_interpreter_scope();
  823. auto& ast_interpreter = scope.interpreter();
  824. auto* class_object = TRY(m_class_expression.class_definition_evaluation(ast_interpreter, name, name.is_null() ? ""sv : name));
  825. class_object->set_source_text(m_class_expression.source_text());
  826. interpreter.accumulator() = class_object;
  827. return {};
  828. }
  829. // 13.5.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-typeof-operator-runtime-semantics-evaluation
  830. ThrowCompletionOr<void> TypeofVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  831. {
  832. auto& vm = interpreter.vm();
  833. // 1. Let val be the result of evaluating UnaryExpression.
  834. auto const& string = interpreter.current_executable().get_identifier(m_identifier);
  835. auto reference = TRY(vm.resolve_binding(string));
  836. // 2. If val is a Reference Record, then
  837. // a. If IsUnresolvableReference(val) is true, return "undefined".
  838. if (reference.is_unresolvable()) {
  839. interpreter.accumulator() = js_string(vm, "undefined"sv);
  840. return {};
  841. }
  842. // 3. Set val to ? GetValue(val).
  843. auto value = TRY(reference.get_value(vm));
  844. // 4. NOTE: This step is replaced in section B.3.6.3.
  845. // 5. Return a String according to Table 41.
  846. interpreter.accumulator() = js_string(vm, value.typeof());
  847. return {};
  848. }
  849. String Load::to_string_impl(Bytecode::Executable const&) const
  850. {
  851. return String::formatted("Load {}", m_src);
  852. }
  853. String LoadImmediate::to_string_impl(Bytecode::Executable const&) const
  854. {
  855. return String::formatted("LoadImmediate {}", m_value);
  856. }
  857. String Store::to_string_impl(Bytecode::Executable const&) const
  858. {
  859. return String::formatted("Store {}", m_dst);
  860. }
  861. String NewBigInt::to_string_impl(Bytecode::Executable const&) const
  862. {
  863. return String::formatted("NewBigInt \"{}\"", m_bigint.to_base(10));
  864. }
  865. String NewArray::to_string_impl(Bytecode::Executable const&) const
  866. {
  867. StringBuilder builder;
  868. builder.append("NewArray"sv);
  869. if (m_element_count != 0) {
  870. builder.appendff(" [{}-{}]", m_elements[0], m_elements[1]);
  871. }
  872. return builder.to_string();
  873. }
  874. String Append::to_string_impl(Bytecode::Executable const&) const
  875. {
  876. if (m_is_spread)
  877. return String::formatted("Append lhs: **{}", m_lhs);
  878. return String::formatted("Append lhs: {}", m_lhs);
  879. }
  880. String IteratorToArray::to_string_impl(Bytecode::Executable const&) const
  881. {
  882. return "IteratorToArray";
  883. }
  884. String NewString::to_string_impl(Bytecode::Executable const& executable) const
  885. {
  886. return String::formatted("NewString {} (\"{}\")", m_string, executable.string_table->get(m_string));
  887. }
  888. String NewObject::to_string_impl(Bytecode::Executable const&) const
  889. {
  890. return "NewObject";
  891. }
  892. String NewRegExp::to_string_impl(Bytecode::Executable const& executable) const
  893. {
  894. return String::formatted("NewRegExp source:{} (\"{}\") flags:{} (\"{}\")", m_source_index, executable.get_string(m_source_index), m_flags_index, executable.get_string(m_flags_index));
  895. }
  896. String CopyObjectExcludingProperties::to_string_impl(Bytecode::Executable const&) const
  897. {
  898. StringBuilder builder;
  899. builder.appendff("CopyObjectExcludingProperties from:{}", m_from_object);
  900. if (m_excluded_names_count != 0) {
  901. builder.append(" excluding:["sv);
  902. builder.join(", "sv, Span<Register const>(m_excluded_names, m_excluded_names_count));
  903. builder.append(']');
  904. }
  905. return builder.to_string();
  906. }
  907. String ConcatString::to_string_impl(Bytecode::Executable const&) const
  908. {
  909. return String::formatted("ConcatString {}", m_lhs);
  910. }
  911. String GetVariable::to_string_impl(Bytecode::Executable const& executable) const
  912. {
  913. return String::formatted("GetVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier));
  914. }
  915. String DeleteVariable::to_string_impl(Bytecode::Executable const& executable) const
  916. {
  917. return String::formatted("DeleteVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier));
  918. }
  919. String CreateEnvironment::to_string_impl(Bytecode::Executable const&) const
  920. {
  921. auto mode_string = m_mode == EnvironmentMode::Lexical
  922. ? "Lexical"
  923. : "Variable";
  924. return String::formatted("CreateEnvironment mode:{}", mode_string);
  925. }
  926. String CreateVariable::to_string_impl(Bytecode::Executable const& executable) const
  927. {
  928. auto mode_string = m_mode == EnvironmentMode::Lexical ? "Lexical" : "Variable";
  929. return String::formatted("CreateVariable env:{} immutable:{} global:{} {} ({})", mode_string, m_is_immutable, m_is_global, m_identifier, executable.identifier_table->get(m_identifier));
  930. }
  931. String EnterObjectEnvironment::to_string_impl(Executable const&) const
  932. {
  933. return String::formatted("EnterObjectEnvironment");
  934. }
  935. String SetVariable::to_string_impl(Bytecode::Executable const& executable) const
  936. {
  937. auto initialization_mode_name = m_initialization_mode == InitializationMode ::Initialize ? "Initialize"
  938. : m_initialization_mode == InitializationMode::Set ? "Set"
  939. : "InitializeOrSet";
  940. auto mode_string = m_mode == EnvironmentMode::Lexical ? "Lexical" : "Variable";
  941. return String::formatted("SetVariable env:{} init:{} {} ({})", mode_string, initialization_mode_name, m_identifier, executable.identifier_table->get(m_identifier));
  942. }
  943. String PutById::to_string_impl(Bytecode::Executable const& executable) const
  944. {
  945. auto kind = m_kind == PropertyKind::Getter
  946. ? "getter"
  947. : m_kind == PropertyKind::Setter
  948. ? "setter"
  949. : "property";
  950. return String::formatted("PutById kind:{} base:{}, property:{} ({})", kind, m_base, m_property, executable.identifier_table->get(m_property));
  951. }
  952. String GetById::to_string_impl(Bytecode::Executable const& executable) const
  953. {
  954. return String::formatted("GetById {} ({})", m_property, executable.identifier_table->get(m_property));
  955. }
  956. String DeleteById::to_string_impl(Bytecode::Executable const& executable) const
  957. {
  958. return String::formatted("DeleteById {} ({})", m_property, executable.identifier_table->get(m_property));
  959. }
  960. String Jump::to_string_impl(Bytecode::Executable const&) const
  961. {
  962. if (m_true_target.has_value())
  963. return String::formatted("Jump {}", *m_true_target);
  964. return String::formatted("Jump <empty>");
  965. }
  966. String JumpConditional::to_string_impl(Bytecode::Executable const&) const
  967. {
  968. auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
  969. auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
  970. return String::formatted("JumpConditional true:{} false:{}", true_string, false_string);
  971. }
  972. String JumpNullish::to_string_impl(Bytecode::Executable const&) const
  973. {
  974. auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
  975. auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
  976. return String::formatted("JumpNullish null:{} nonnull:{}", true_string, false_string);
  977. }
  978. String JumpUndefined::to_string_impl(Bytecode::Executable const&) const
  979. {
  980. auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
  981. auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
  982. return String::formatted("JumpUndefined undefined:{} not undefined:{}", true_string, false_string);
  983. }
  984. String Call::to_string_impl(Bytecode::Executable const& executable) const
  985. {
  986. if (m_expression_string.has_value())
  987. return String::formatted("Call callee:{}, this:{}, arguments:[...acc] ({})", m_callee, m_this_value, executable.get_string(m_expression_string.value()));
  988. return String::formatted("Call callee:{}, this:{}, arguments:[...acc]", m_callee, m_this_value);
  989. }
  990. String SuperCall::to_string_impl(Bytecode::Executable const&) const
  991. {
  992. return "SuperCall arguments:[...acc]"sv;
  993. }
  994. String NewFunction::to_string_impl(Bytecode::Executable const&) const
  995. {
  996. return "NewFunction";
  997. }
  998. String NewClass::to_string_impl(Bytecode::Executable const&) const
  999. {
  1000. auto name = m_class_expression.name();
  1001. return String::formatted("NewClass '{}'", name.is_null() ? ""sv : name);
  1002. }
  1003. String Return::to_string_impl(Bytecode::Executable const&) const
  1004. {
  1005. return "Return";
  1006. }
  1007. String Increment::to_string_impl(Bytecode::Executable const&) const
  1008. {
  1009. return "Increment";
  1010. }
  1011. String Decrement::to_string_impl(Bytecode::Executable const&) const
  1012. {
  1013. return "Decrement";
  1014. }
  1015. String Throw::to_string_impl(Bytecode::Executable const&) const
  1016. {
  1017. return "Throw";
  1018. }
  1019. String EnterUnwindContext::to_string_impl(Bytecode::Executable const&) const
  1020. {
  1021. auto handler_string = m_handler_target.has_value() ? String::formatted("{}", *m_handler_target) : "<empty>";
  1022. auto finalizer_string = m_finalizer_target.has_value() ? String::formatted("{}", *m_finalizer_target) : "<empty>";
  1023. return String::formatted("EnterUnwindContext handler:{} finalizer:{} entry:{}", handler_string, finalizer_string, m_entry_point);
  1024. }
  1025. String FinishUnwind::to_string_impl(Bytecode::Executable const&) const
  1026. {
  1027. return String::formatted("FinishUnwind next:{}", m_next_target);
  1028. }
  1029. String LeaveEnvironment::to_string_impl(Bytecode::Executable const&) const
  1030. {
  1031. auto mode_string = m_mode == EnvironmentMode::Lexical
  1032. ? "Lexical"
  1033. : "Variable";
  1034. return String::formatted("LeaveEnvironment env:{}", mode_string);
  1035. }
  1036. String LeaveUnwindContext::to_string_impl(Bytecode::Executable const&) const
  1037. {
  1038. return "LeaveUnwindContext";
  1039. }
  1040. String ContinuePendingUnwind::to_string_impl(Bytecode::Executable const&) const
  1041. {
  1042. return String::formatted("ContinuePendingUnwind resume:{}", m_resume_target);
  1043. }
  1044. String PushDeclarativeEnvironment::to_string_impl(Bytecode::Executable const& executable) const
  1045. {
  1046. StringBuilder builder;
  1047. builder.append("PushDeclarativeEnvironment"sv);
  1048. if (!m_variables.is_empty()) {
  1049. builder.append(" {"sv);
  1050. Vector<String> names;
  1051. for (auto& it : m_variables)
  1052. names.append(executable.get_string(it.key));
  1053. builder.append('}');
  1054. builder.join(", "sv, names);
  1055. }
  1056. return builder.to_string();
  1057. }
  1058. String Yield::to_string_impl(Bytecode::Executable const&) const
  1059. {
  1060. if (m_continuation_label.has_value())
  1061. return String::formatted("Yield continuation:@{}", m_continuation_label->block().name());
  1062. return String::formatted("Yield return");
  1063. }
  1064. String GetByValue::to_string_impl(Bytecode::Executable const&) const
  1065. {
  1066. return String::formatted("GetByValue base:{}", m_base);
  1067. }
  1068. String PutByValue::to_string_impl(Bytecode::Executable const&) const
  1069. {
  1070. auto kind = m_kind == PropertyKind::Getter
  1071. ? "getter"
  1072. : m_kind == PropertyKind::Setter
  1073. ? "setter"
  1074. : "property";
  1075. return String::formatted("PutByValue kind:{} base:{}, property:{}", kind, m_base, m_property);
  1076. }
  1077. String DeleteByValue::to_string_impl(Bytecode::Executable const&) const
  1078. {
  1079. return String::formatted("DeleteByValue base:{}", m_base);
  1080. }
  1081. String GetIterator::to_string_impl(Executable const&) const
  1082. {
  1083. return "GetIterator";
  1084. }
  1085. String GetObjectPropertyIterator::to_string_impl(Bytecode::Executable const&) const
  1086. {
  1087. return "GetObjectPropertyIterator";
  1088. }
  1089. String IteratorNext::to_string_impl(Executable const&) const
  1090. {
  1091. return "IteratorNext";
  1092. }
  1093. String IteratorResultDone::to_string_impl(Executable const&) const
  1094. {
  1095. return "IteratorResultDone";
  1096. }
  1097. String IteratorResultValue::to_string_impl(Executable const&) const
  1098. {
  1099. return "IteratorResultValue";
  1100. }
  1101. String ResolveThisBinding::to_string_impl(Bytecode::Executable const&) const
  1102. {
  1103. return "ResolveThisBinding"sv;
  1104. }
  1105. String GetNewTarget::to_string_impl(Bytecode::Executable const&) const
  1106. {
  1107. return "GetNewTarget"sv;
  1108. }
  1109. String TypeofVariable::to_string_impl(Bytecode::Executable const& executable) const
  1110. {
  1111. return String::formatted("TypeofVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier));
  1112. }
  1113. }