MemoryManager.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629
  1. #include "CMOS.h"
  2. #include "Process.h"
  3. #include "StdLib.h"
  4. #include <AK/Assertions.h>
  5. #include <AK/kstdio.h>
  6. #include <Kernel/Arch/i386/CPU.h>
  7. #include <Kernel/FileSystem/Inode.h>
  8. #include <Kernel/Multiboot.h>
  9. #include <Kernel/VM/AnonymousVMObject.h>
  10. #include <Kernel/VM/InodeVMObject.h>
  11. #include <Kernel/VM/MemoryManager.h>
  12. //#define MM_DEBUG
  13. //#define PAGE_FAULT_DEBUG
  14. static MemoryManager* s_the;
  15. MemoryManager& MM
  16. {
  17. return *s_the;
  18. }
  19. MemoryManager::MemoryManager(u32 physical_address_for_kernel_page_tables)
  20. {
  21. m_kernel_page_directory = PageDirectory::create_at_fixed_address(PhysicalAddress(physical_address_for_kernel_page_tables));
  22. m_page_table_zero = (PageTableEntry*)(physical_address_for_kernel_page_tables + PAGE_SIZE);
  23. m_page_table_one = (PageTableEntry*)(physical_address_for_kernel_page_tables + PAGE_SIZE * 2);
  24. initialize_paging();
  25. kprintf("MM initialized.\n");
  26. }
  27. MemoryManager::~MemoryManager()
  28. {
  29. }
  30. void MemoryManager::populate_page_directory(PageDirectory& page_directory)
  31. {
  32. page_directory.m_directory_page = allocate_supervisor_physical_page();
  33. page_directory.entries()[0].copy_from({}, kernel_page_directory().entries()[0]);
  34. page_directory.entries()[1].copy_from({}, kernel_page_directory().entries()[1]);
  35. // Defer to the kernel page tables for 0xC0000000-0xFFFFFFFF
  36. for (int i = 768; i < 1024; ++i)
  37. page_directory.entries()[i].copy_from({}, kernel_page_directory().entries()[i]);
  38. }
  39. void MemoryManager::initialize_paging()
  40. {
  41. memset(m_page_table_zero, 0, PAGE_SIZE);
  42. memset(m_page_table_one, 0, PAGE_SIZE);
  43. #ifdef MM_DEBUG
  44. dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
  45. #endif
  46. #ifdef MM_DEBUG
  47. dbgprintf("MM: Protect against null dereferences\n");
  48. #endif
  49. // Make null dereferences crash.
  50. map_protected(VirtualAddress(0), PAGE_SIZE);
  51. #ifdef MM_DEBUG
  52. dbgprintf("MM: Identity map bottom 8MB\n");
  53. #endif
  54. // The bottom 8 MB (except for the null page) are identity mapped & supervisor only.
  55. // Every process shares these mappings.
  56. create_identity_mapping(kernel_page_directory(), VirtualAddress(PAGE_SIZE), (8 * MB) - PAGE_SIZE);
  57. // FIXME: We should move everything kernel-related above the 0xc0000000 virtual mark.
  58. // Basic physical memory map:
  59. // 0 -> 1 MB We're just leaving this alone for now.
  60. // 1 -> 3 MB Kernel image.
  61. // (last page before 2MB) Used by quickmap_page().
  62. // 2 MB -> 4 MB kmalloc_eternal() space.
  63. // 4 MB -> 7 MB kmalloc() space.
  64. // 7 MB -> 8 MB Supervisor physical pages (available for allocation!)
  65. // 8 MB -> MAX Userspace physical pages (available for allocation!)
  66. // Basic virtual memory map:
  67. // 0 -> 4 KB Null page (so nullptr dereferences crash!)
  68. // 4 KB -> 8 MB Identity mapped.
  69. // 8 MB -> 3 GB Available to userspace.
  70. // 3GB -> 4 GB Kernel-only virtual address space (>0xc0000000)
  71. #ifdef MM_DEBUG
  72. dbgprintf("MM: Quickmap will use %p\n", m_quickmap_addr.get());
  73. #endif
  74. m_quickmap_addr = VirtualAddress((2 * MB) - PAGE_SIZE);
  75. RefPtr<PhysicalRegion> region;
  76. bool region_is_super = false;
  77. for (auto* mmap = (multiboot_memory_map_t*)multiboot_info_ptr->mmap_addr; (unsigned long)mmap < multiboot_info_ptr->mmap_addr + multiboot_info_ptr->mmap_length; mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  78. kprintf("MM: Multiboot mmap: base_addr = 0x%x%08x, length = 0x%x%08x, type = 0x%x\n",
  79. (u32)(mmap->addr >> 32),
  80. (u32)(mmap->addr & 0xffffffff),
  81. (u32)(mmap->len >> 32),
  82. (u32)(mmap->len & 0xffffffff),
  83. (u32)mmap->type);
  84. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  85. continue;
  86. // FIXME: Maybe make use of stuff below the 1MB mark?
  87. if (mmap->addr < (1 * MB))
  88. continue;
  89. if ((mmap->addr + mmap->len) > 0xffffffff)
  90. continue;
  91. auto diff = (u32)mmap->addr % PAGE_SIZE;
  92. if (diff != 0) {
  93. kprintf("MM: got an unaligned region base from the bootloader; correcting %p by %d bytes\n", mmap->addr, diff);
  94. diff = PAGE_SIZE - diff;
  95. mmap->addr += diff;
  96. mmap->len -= diff;
  97. }
  98. if ((mmap->len % PAGE_SIZE) != 0) {
  99. kprintf("MM: got an unaligned region length from the bootloader; correcting %d by %d bytes\n", mmap->len, mmap->len % PAGE_SIZE);
  100. mmap->len -= mmap->len % PAGE_SIZE;
  101. }
  102. if (mmap->len < PAGE_SIZE) {
  103. kprintf("MM: memory region from bootloader is too small; we want >= %d bytes, but got %d bytes\n", PAGE_SIZE, mmap->len);
  104. continue;
  105. }
  106. #ifdef MM_DEBUG
  107. kprintf("MM: considering memory at %p - %p\n",
  108. (u32)mmap->addr, (u32)(mmap->addr + mmap->len));
  109. #endif
  110. for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  111. auto addr = PhysicalAddress(page_base);
  112. if (page_base < 7 * MB) {
  113. // nothing
  114. } else if (page_base >= 7 * MB && page_base < 8 * MB) {
  115. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  116. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  117. region = m_super_physical_regions.last();
  118. region_is_super = true;
  119. } else {
  120. region->expand(region->lower(), addr);
  121. }
  122. } else {
  123. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  124. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  125. region = m_user_physical_regions.last();
  126. region_is_super = false;
  127. } else {
  128. region->expand(region->lower(), addr);
  129. }
  130. }
  131. }
  132. }
  133. for (auto& region : m_super_physical_regions)
  134. m_super_physical_pages += region.finalize_capacity();
  135. for (auto& region : m_user_physical_regions)
  136. m_user_physical_pages += region.finalize_capacity();
  137. #ifdef MM_DEBUG
  138. dbgprintf("MM: Installing page directory\n");
  139. #endif
  140. // Turn on CR4.PGE so the CPU will respect the G bit in page tables.
  141. asm volatile(
  142. "mov %cr4, %eax\n"
  143. "orl $0x10, %eax\n"
  144. "mov %eax, %cr4\n");
  145. asm volatile("movl %%eax, %%cr3" ::"a"(kernel_page_directory().cr3()));
  146. asm volatile(
  147. "movl %%cr0, %%eax\n"
  148. "orl $0x80000001, %%eax\n"
  149. "movl %%eax, %%cr0\n" ::
  150. : "%eax", "memory");
  151. #ifdef MM_DEBUG
  152. dbgprintf("MM: Paging initialized.\n");
  153. #endif
  154. }
  155. PageTableEntry& MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  156. {
  157. ASSERT_INTERRUPTS_DISABLED();
  158. u32 page_directory_index = (vaddr.get() >> 22) & 0x3ff;
  159. u32 page_table_index = (vaddr.get() >> 12) & 0x3ff;
  160. PageDirectoryEntry& pde = page_directory.entries()[page_directory_index];
  161. if (!pde.is_present()) {
  162. #ifdef MM_DEBUG
  163. dbgprintf("MM: PDE %u not present (requested for V%p), allocating\n", page_directory_index, vaddr.get());
  164. #endif
  165. if (page_directory_index == 0) {
  166. ASSERT(&page_directory == m_kernel_page_directory);
  167. pde.set_page_table_base((u32)m_page_table_zero);
  168. pde.set_user_allowed(false);
  169. pde.set_present(true);
  170. pde.set_writable(true);
  171. pde.set_global(true);
  172. } else if (page_directory_index == 1) {
  173. ASSERT(&page_directory == m_kernel_page_directory);
  174. pde.set_page_table_base((u32)m_page_table_one);
  175. pde.set_user_allowed(false);
  176. pde.set_present(true);
  177. pde.set_writable(true);
  178. pde.set_global(true);
  179. } else {
  180. //ASSERT(&page_directory != m_kernel_page_directory.ptr());
  181. auto page_table = allocate_supervisor_physical_page();
  182. #ifdef MM_DEBUG
  183. dbgprintf("MM: PD K%p (%s) at P%p allocated page table #%u (for V%p) at P%p\n",
  184. &page_directory,
  185. &page_directory == m_kernel_page_directory ? "Kernel" : "User",
  186. page_directory.cr3(),
  187. page_directory_index,
  188. vaddr.get(),
  189. page_table->paddr().get());
  190. #endif
  191. pde.set_page_table_base(page_table->paddr().get());
  192. pde.set_user_allowed(true);
  193. pde.set_present(true);
  194. pde.set_writable(true);
  195. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  196. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  197. }
  198. }
  199. return pde.page_table_base()[page_table_index];
  200. }
  201. void MemoryManager::map_protected(VirtualAddress vaddr, size_t length)
  202. {
  203. InterruptDisabler disabler;
  204. ASSERT(vaddr.is_page_aligned());
  205. for (u32 offset = 0; offset < length; offset += PAGE_SIZE) {
  206. auto pte_address = vaddr.offset(offset);
  207. auto& pte = ensure_pte(kernel_page_directory(), pte_address);
  208. pte.set_physical_page_base(pte_address.get());
  209. pte.set_user_allowed(false);
  210. pte.set_present(false);
  211. pte.set_writable(false);
  212. flush_tlb(pte_address);
  213. }
  214. }
  215. void MemoryManager::create_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
  216. {
  217. InterruptDisabler disabler;
  218. ASSERT((vaddr.get() & ~PAGE_MASK) == 0);
  219. for (u32 offset = 0; offset < size; offset += PAGE_SIZE) {
  220. auto pte_address = vaddr.offset(offset);
  221. auto& pte = ensure_pte(page_directory, pte_address);
  222. pte.set_physical_page_base(pte_address.get());
  223. pte.set_user_allowed(false);
  224. pte.set_present(true);
  225. pte.set_writable(true);
  226. page_directory.flush(pte_address);
  227. }
  228. }
  229. void MemoryManager::initialize(u32 physical_address_for_kernel_page_tables)
  230. {
  231. s_the = new MemoryManager(physical_address_for_kernel_page_tables);
  232. }
  233. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  234. {
  235. if (vaddr.get() < 0xc0000000)
  236. return nullptr;
  237. for (auto& region : MM.m_kernel_regions) {
  238. if (region.contains(vaddr))
  239. return &region;
  240. }
  241. return nullptr;
  242. }
  243. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  244. {
  245. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  246. for (auto& region : process.m_regions) {
  247. if (region.contains(vaddr))
  248. return &region;
  249. }
  250. dbg() << process << " Couldn't find user region for " << vaddr;
  251. return nullptr;
  252. }
  253. Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
  254. {
  255. if (auto* region = kernel_region_from_vaddr(vaddr))
  256. return region;
  257. return user_region_from_vaddr(process, vaddr);
  258. }
  259. const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
  260. {
  261. if (auto* region = kernel_region_from_vaddr(vaddr))
  262. return region;
  263. return user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  264. }
  265. Region* MemoryManager::region_from_vaddr(VirtualAddress vaddr)
  266. {
  267. if (auto* region = kernel_region_from_vaddr(vaddr))
  268. return region;
  269. auto page_directory = PageDirectory::find_by_pdb(cpu_cr3());
  270. if (!page_directory)
  271. return nullptr;
  272. ASSERT(page_directory->process());
  273. return user_region_from_vaddr(*page_directory->process(), vaddr);
  274. }
  275. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  276. {
  277. ASSERT_INTERRUPTS_DISABLED();
  278. ASSERT(current);
  279. #ifdef PAGE_FAULT_DEBUG
  280. dbgprintf("MM: handle_page_fault(%w) at V%p\n", fault.code(), fault.vaddr().get());
  281. #endif
  282. ASSERT(fault.vaddr() != m_quickmap_addr);
  283. if (fault.type() == PageFault::Type::PageNotPresent && fault.vaddr().get() >= 0xc0000000) {
  284. auto* current_page_directory = reinterpret_cast<PageDirectoryEntry*>(cpu_cr3());
  285. u32 page_directory_index = (fault.vaddr().get() >> 22) & 0x3ff;
  286. auto& kernel_pde = kernel_page_directory().entries()[page_directory_index];
  287. auto& current_pde = current_page_directory[page_directory_index];
  288. if (kernel_pde.is_present() && !current_pde.is_present()) {
  289. #ifdef PAGE_FAULT_DEBUG
  290. dbg() << "NP(kernel): Copying new kernel mapping for " << fault.vaddr() << " into current page directory";
  291. #endif
  292. current_pde.copy_from({}, kernel_pde);
  293. flush_tlb(fault.vaddr().page_base());
  294. return PageFaultResponse::Continue;
  295. }
  296. }
  297. auto* region = region_from_vaddr(fault.vaddr());
  298. if (!region) {
  299. kprintf("NP(error) fault at invalid address V%p\n", fault.vaddr().get());
  300. return PageFaultResponse::ShouldCrash;
  301. }
  302. return region->handle_fault(fault);
  303. }
  304. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, bool user_accessible, bool should_commit)
  305. {
  306. InterruptDisabler disabler;
  307. ASSERT(!(size % PAGE_SIZE));
  308. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  309. ASSERT(range.is_valid());
  310. OwnPtr<Region> region;
  311. if (user_accessible)
  312. region = Region::create_user_accessible(range, name, PROT_READ | PROT_WRITE | PROT_EXEC);
  313. else
  314. region = Region::create_kernel_only(range, name, PROT_READ | PROT_WRITE | PROT_EXEC);
  315. region->map(kernel_page_directory());
  316. // FIXME: It would be cool if these could zero-fill on demand instead.
  317. if (should_commit)
  318. region->commit();
  319. return region;
  320. }
  321. OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name)
  322. {
  323. return allocate_kernel_region(size, name, true);
  324. }
  325. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, const StringView& name)
  326. {
  327. InterruptDisabler disabler;
  328. ASSERT(!(size % PAGE_SIZE));
  329. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  330. ASSERT(range.is_valid());
  331. auto region = make<Region>(range, vmobject, 0, name, PROT_READ | PROT_WRITE | PROT_EXEC);
  332. region->map(kernel_page_directory());
  333. return region;
  334. }
  335. void MemoryManager::deallocate_user_physical_page(PhysicalPage&& page)
  336. {
  337. for (auto& region : m_user_physical_regions) {
  338. if (!region.contains(page)) {
  339. kprintf(
  340. "MM: deallocate_user_physical_page: %p not in %p -> %p\n",
  341. page.paddr(), region.lower().get(), region.upper().get());
  342. continue;
  343. }
  344. region.return_page(move(page));
  345. --m_user_physical_pages_used;
  346. return;
  347. }
  348. kprintf("MM: deallocate_user_physical_page couldn't figure out region for user page @ %p\n", page.paddr());
  349. ASSERT_NOT_REACHED();
  350. }
  351. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page()
  352. {
  353. RefPtr<PhysicalPage> page;
  354. for (auto& region : m_user_physical_regions) {
  355. page = region.take_free_page(false);
  356. if (!page.is_null())
  357. break;
  358. }
  359. return page;
  360. }
  361. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
  362. {
  363. InterruptDisabler disabler;
  364. RefPtr<PhysicalPage> page = find_free_user_physical_page();
  365. if (!page) {
  366. if (m_user_physical_regions.is_empty()) {
  367. kprintf("MM: no user physical regions available (?)\n");
  368. }
  369. kprintf("MM: no user physical pages available\n");
  370. ASSERT_NOT_REACHED();
  371. return {};
  372. }
  373. #ifdef MM_DEBUG
  374. dbgprintf("MM: allocate_user_physical_page vending P%p\n", page->paddr().get());
  375. #endif
  376. if (should_zero_fill == ShouldZeroFill::Yes) {
  377. auto* ptr = (u32*)quickmap_page(*page);
  378. fast_u32_fill(ptr, 0, PAGE_SIZE / sizeof(u32));
  379. unquickmap_page();
  380. }
  381. ++m_user_physical_pages_used;
  382. return page;
  383. }
  384. void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage&& page)
  385. {
  386. for (auto& region : m_super_physical_regions) {
  387. if (!region.contains(page)) {
  388. kprintf(
  389. "MM: deallocate_supervisor_physical_page: %p not in %p -> %p\n",
  390. page.paddr(), region.lower().get(), region.upper().get());
  391. continue;
  392. }
  393. region.return_page(move(page));
  394. --m_super_physical_pages_used;
  395. return;
  396. }
  397. kprintf("MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ %p\n", page.paddr());
  398. ASSERT_NOT_REACHED();
  399. }
  400. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  401. {
  402. InterruptDisabler disabler;
  403. RefPtr<PhysicalPage> page;
  404. for (auto& region : m_super_physical_regions) {
  405. page = region.take_free_page(true);
  406. if (page.is_null())
  407. continue;
  408. }
  409. if (!page) {
  410. if (m_super_physical_regions.is_empty()) {
  411. kprintf("MM: no super physical regions available (?)\n");
  412. }
  413. kprintf("MM: no super physical pages available\n");
  414. ASSERT_NOT_REACHED();
  415. return {};
  416. }
  417. #ifdef MM_DEBUG
  418. dbgprintf("MM: allocate_supervisor_physical_page vending P%p\n", page->paddr().get());
  419. #endif
  420. fast_u32_fill((u32*)page->paddr().as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  421. ++m_super_physical_pages_used;
  422. return page;
  423. }
  424. void MemoryManager::enter_process_paging_scope(Process& process)
  425. {
  426. ASSERT(current);
  427. InterruptDisabler disabler;
  428. // NOTE: To prevent triple-faulting here, we have to ensure that the current stack
  429. // is accessible to the incoming page directory. We achieve this by forcing
  430. // an update of the kernel VM mappings in the entered scope's page directory.
  431. process.page_directory().update_kernel_mappings();
  432. current->tss().cr3 = process.page_directory().cr3();
  433. asm volatile("movl %%eax, %%cr3" ::"a"(process.page_directory().cr3())
  434. : "memory");
  435. }
  436. void MemoryManager::flush_entire_tlb()
  437. {
  438. asm volatile(
  439. "mov %%cr3, %%eax\n"
  440. "mov %%eax, %%cr3\n" ::
  441. : "%eax", "memory");
  442. }
  443. void MemoryManager::flush_tlb(VirtualAddress vaddr)
  444. {
  445. asm volatile("invlpg %0"
  446. :
  447. : "m"(*(char*)vaddr.get())
  448. : "memory");
  449. }
  450. void MemoryManager::map_for_kernel(VirtualAddress vaddr, PhysicalAddress paddr, bool cache_disabled)
  451. {
  452. auto& pte = ensure_pte(kernel_page_directory(), vaddr);
  453. pte.set_physical_page_base(paddr.get());
  454. pte.set_present(true);
  455. pte.set_writable(true);
  456. pte.set_user_allowed(false);
  457. pte.set_cache_disabled(cache_disabled);
  458. flush_tlb(vaddr);
  459. }
  460. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  461. {
  462. ASSERT_INTERRUPTS_DISABLED();
  463. ASSERT(!m_quickmap_in_use);
  464. m_quickmap_in_use = true;
  465. auto page_vaddr = m_quickmap_addr;
  466. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  467. pte.set_physical_page_base(physical_page.paddr().get());
  468. pte.set_present(true);
  469. pte.set_writable(true);
  470. pte.set_user_allowed(false);
  471. flush_tlb(page_vaddr);
  472. ASSERT((u32)pte.physical_page_base() == physical_page.paddr().get());
  473. #ifdef MM_DEBUG
  474. dbg() << "MM: >> quickmap_page " << page_vaddr << " => " << physical_page.paddr() << " @ PTE=" << (void*)pte.raw() << " {" << &pte << "}";
  475. #endif
  476. return page_vaddr.as_ptr();
  477. }
  478. void MemoryManager::unquickmap_page()
  479. {
  480. ASSERT_INTERRUPTS_DISABLED();
  481. ASSERT(m_quickmap_in_use);
  482. auto page_vaddr = m_quickmap_addr;
  483. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  484. #ifdef MM_DEBUG
  485. auto old_physical_address = pte.physical_page_base();
  486. #endif
  487. pte.set_physical_page_base(0);
  488. pte.set_present(false);
  489. pte.set_writable(false);
  490. flush_tlb(page_vaddr);
  491. #ifdef MM_DEBUG
  492. dbg() << "MM: >> unquickmap_page " << page_vaddr << " =/> " << old_physical_address;
  493. #endif
  494. m_quickmap_in_use = false;
  495. }
  496. bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
  497. {
  498. auto* region = region_from_vaddr(process, vaddr);
  499. return region && region->is_stack();
  500. }
  501. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr) const
  502. {
  503. auto* region = region_from_vaddr(process, vaddr);
  504. return region && region->is_readable();
  505. }
  506. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr) const
  507. {
  508. auto* region = region_from_vaddr(process, vaddr);
  509. return region && region->is_writable();
  510. }
  511. void MemoryManager::register_vmobject(VMObject& vmobject)
  512. {
  513. InterruptDisabler disabler;
  514. m_vmobjects.append(&vmobject);
  515. }
  516. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  517. {
  518. InterruptDisabler disabler;
  519. m_vmobjects.remove(&vmobject);
  520. }
  521. void MemoryManager::register_region(Region& region)
  522. {
  523. InterruptDisabler disabler;
  524. if (region.vaddr().get() >= 0xc0000000)
  525. m_kernel_regions.append(&region);
  526. else
  527. m_user_regions.append(&region);
  528. }
  529. void MemoryManager::unregister_region(Region& region)
  530. {
  531. InterruptDisabler disabler;
  532. if (region.vaddr().get() >= 0xc0000000)
  533. m_kernel_regions.remove(&region);
  534. else
  535. m_user_regions.remove(&region);
  536. }
  537. ProcessPagingScope::ProcessPagingScope(Process& process)
  538. {
  539. ASSERT(current);
  540. MM.enter_process_paging_scope(process);
  541. }
  542. ProcessPagingScope::~ProcessPagingScope()
  543. {
  544. MM.enter_process_paging_scope(current->process());
  545. }