Process.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Singleton.h>
  7. #include <AK/StdLibExtras.h>
  8. #include <AK/Time.h>
  9. #include <AK/Types.h>
  10. #include <Kernel/API/Syscall.h>
  11. #include <Kernel/Arch/x86/InterruptDisabler.h>
  12. #include <Kernel/Coredump.h>
  13. #include <Kernel/Debug.h>
  14. #include <Kernel/Devices/DeviceManagement.h>
  15. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  16. # include <Kernel/Devices/KCOVDevice.h>
  17. #endif
  18. #include <Kernel/API/POSIX/errno.h>
  19. #include <Kernel/Devices/NullDevice.h>
  20. #include <Kernel/FileSystem/Custody.h>
  21. #include <Kernel/FileSystem/OpenFileDescription.h>
  22. #include <Kernel/FileSystem/VirtualFileSystem.h>
  23. #include <Kernel/KBufferBuilder.h>
  24. #include <Kernel/KSyms.h>
  25. #include <Kernel/Memory/AnonymousVMObject.h>
  26. #include <Kernel/Memory/PageDirectory.h>
  27. #include <Kernel/Memory/SharedInodeVMObject.h>
  28. #include <Kernel/PerformanceEventBuffer.h>
  29. #include <Kernel/PerformanceManager.h>
  30. #include <Kernel/Process.h>
  31. #include <Kernel/Sections.h>
  32. #include <Kernel/StdLib.h>
  33. #include <Kernel/TTY/TTY.h>
  34. #include <Kernel/Thread.h>
  35. #include <Kernel/ThreadTracer.h>
  36. #include <LibC/limits.h>
  37. namespace Kernel {
  38. static void create_signal_trampoline();
  39. RecursiveSpinlock g_profiling_lock;
  40. static Atomic<pid_t> next_pid;
  41. static Singleton<SpinlockProtected<Process::List>> s_all_instances;
  42. READONLY_AFTER_INIT Memory::Region* g_signal_trampoline_region;
  43. static Singleton<MutexProtected<OwnPtr<KString>>> s_hostname;
  44. MutexProtected<OwnPtr<KString>>& hostname()
  45. {
  46. return *s_hostname;
  47. }
  48. SpinlockProtected<Process::List>& Process::all_instances()
  49. {
  50. return *s_all_instances;
  51. }
  52. ProcessID Process::allocate_pid()
  53. {
  54. // Overflow is UB, and negative PIDs wreck havoc.
  55. // TODO: Handle PID overflow
  56. // For example: Use an Atomic<u32>, mask the most significant bit,
  57. // retry if PID is already taken as a PID, taken as a TID,
  58. // takes as a PGID, taken as a SID, or zero.
  59. return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
  60. }
  61. UNMAP_AFTER_INIT void Process::initialize()
  62. {
  63. next_pid.store(0, AK::MemoryOrder::memory_order_release);
  64. // Note: This is called before scheduling is initialized, and before APs are booted.
  65. // So we can "safely" bypass the lock here.
  66. reinterpret_cast<OwnPtr<KString>&>(hostname()) = KString::must_create("courage"sv);
  67. create_signal_trampoline();
  68. }
  69. bool Process::in_group(GroupID gid) const
  70. {
  71. return this->gid() == gid || extra_gids().contains_slow(gid);
  72. }
  73. void Process::kill_threads_except_self()
  74. {
  75. InterruptDisabler disabler;
  76. if (thread_count() <= 1)
  77. return;
  78. auto* current_thread = Thread::current();
  79. for_each_thread([&](Thread& thread) {
  80. if (&thread == current_thread)
  81. return;
  82. if (auto state = thread.state(); state == Thread::State::Dead
  83. || state == Thread::State::Dying)
  84. return;
  85. // We need to detach this thread in case it hasn't been joined
  86. thread.detach();
  87. thread.set_should_die();
  88. });
  89. u32 dropped_lock_count = 0;
  90. if (big_lock().force_unlock_if_locked(dropped_lock_count) != LockMode::Unlocked)
  91. dbgln("Process {} big lock had {} locks", *this, dropped_lock_count);
  92. }
  93. void Process::kill_all_threads()
  94. {
  95. for_each_thread([&](Thread& thread) {
  96. // We need to detach this thread in case it hasn't been joined
  97. thread.detach();
  98. thread.set_should_die();
  99. });
  100. }
  101. void Process::register_new(Process& process)
  102. {
  103. // Note: this is essentially the same like process->ref()
  104. RefPtr<Process> new_process = process;
  105. all_instances().with([&](auto& list) {
  106. list.prepend(process);
  107. });
  108. }
  109. ErrorOr<NonnullRefPtr<Process>> Process::try_create_user_process(RefPtr<Thread>& first_thread, StringView path, UserID uid, GroupID gid, NonnullOwnPtrVector<KString> arguments, NonnullOwnPtrVector<KString> environment, TTY* tty)
  110. {
  111. auto parts = path.split_view('/');
  112. if (arguments.is_empty()) {
  113. auto last_part = TRY(KString::try_create(parts.last()));
  114. TRY(arguments.try_append(move(last_part)));
  115. }
  116. auto path_string = TRY(KString::try_create(path));
  117. auto name = TRY(KString::try_create(parts.last()));
  118. auto process = TRY(Process::try_create(first_thread, move(name), uid, gid, ProcessID(0), false, VirtualFileSystem::the().root_custody(), nullptr, tty));
  119. TRY(process->m_fds.with_exclusive([&](auto& fds) -> ErrorOr<void> {
  120. TRY(fds.try_resize(Process::OpenFileDescriptions::max_open()));
  121. auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : DeviceManagement::the().null_device();
  122. auto description = TRY(device_to_use_as_tty.open(O_RDWR));
  123. auto setup_description = [&](int fd) {
  124. fds.m_fds_metadatas[fd].allocate();
  125. fds[fd].set(*description);
  126. };
  127. setup_description(0);
  128. setup_description(1);
  129. setup_description(2);
  130. return {};
  131. }));
  132. Thread* new_main_thread = nullptr;
  133. u32 prev_flags = 0;
  134. if (auto result = process->exec(move(path_string), move(arguments), move(environment), new_main_thread, prev_flags); result.is_error()) {
  135. dbgln("Failed to exec {}: {}", path, result.error());
  136. first_thread = nullptr;
  137. return result.release_error();
  138. }
  139. register_new(*process);
  140. // NOTE: All user processes have a leaked ref on them. It's balanced by Thread::WaitBlockerSet::finalize().
  141. process->ref();
  142. {
  143. SpinlockLocker lock(g_scheduler_lock);
  144. new_main_thread->set_state(Thread::State::Runnable);
  145. }
  146. return process;
  147. }
  148. RefPtr<Process> Process::create_kernel_process(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, void (*entry)(void*), void* entry_data, u32 affinity, RegisterProcess do_register)
  149. {
  150. auto process_or_error = Process::try_create(first_thread, move(name), UserID(0), GroupID(0), ProcessID(0), true);
  151. if (process_or_error.is_error())
  152. return {};
  153. auto process = process_or_error.release_value();
  154. first_thread->regs().set_ip((FlatPtr)entry);
  155. #if ARCH(I386)
  156. first_thread->regs().esp = FlatPtr(entry_data); // entry function argument is expected to be in regs.esp
  157. #else
  158. first_thread->regs().rdi = FlatPtr(entry_data); // entry function argument is expected to be in regs.rdi
  159. #endif
  160. if (do_register == RegisterProcess::Yes)
  161. register_new(*process);
  162. SpinlockLocker lock(g_scheduler_lock);
  163. first_thread->set_affinity(affinity);
  164. first_thread->set_state(Thread::State::Runnable);
  165. return process;
  166. }
  167. void Process::protect_data()
  168. {
  169. m_protected_data_refs.unref([&]() {
  170. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, false);
  171. });
  172. }
  173. void Process::unprotect_data()
  174. {
  175. m_protected_data_refs.ref([&]() {
  176. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, true);
  177. });
  178. }
  179. ErrorOr<NonnullRefPtr<Process>> Process::try_create(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty, Process* fork_parent)
  180. {
  181. auto space = TRY(Memory::AddressSpace::try_create(fork_parent ? &fork_parent->address_space() : nullptr));
  182. auto process = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) Process(move(name), uid, gid, ppid, is_kernel_process, move(cwd), move(executable), tty)));
  183. TRY(process->attach_resources(move(space), first_thread, fork_parent));
  184. return process;
  185. }
  186. Process::Process(NonnullOwnPtr<KString> name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty)
  187. : m_name(move(name))
  188. , m_is_kernel_process(is_kernel_process)
  189. , m_executable(move(executable))
  190. , m_cwd(move(cwd))
  191. , m_tty(tty)
  192. , m_wait_blocker_set(*this)
  193. {
  194. // Ensure that we protect the process data when exiting the constructor.
  195. ProtectedDataMutationScope scope { *this };
  196. m_protected_values.pid = allocate_pid();
  197. m_protected_values.ppid = ppid;
  198. m_protected_values.uid = uid;
  199. m_protected_values.gid = gid;
  200. m_protected_values.euid = uid;
  201. m_protected_values.egid = gid;
  202. m_protected_values.suid = uid;
  203. m_protected_values.sgid = gid;
  204. dbgln_if(PROCESS_DEBUG, "Created new process {}({})", m_name, this->pid().value());
  205. }
  206. ErrorOr<void> Process::attach_resources(NonnullOwnPtr<Memory::AddressSpace>&& preallocated_space, RefPtr<Thread>& first_thread, Process* fork_parent)
  207. {
  208. m_space = move(preallocated_space);
  209. auto create_first_thread = [&] {
  210. if (fork_parent) {
  211. // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process.
  212. return Thread::current()->try_clone(*this);
  213. }
  214. // NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.)
  215. return Thread::try_create(*this);
  216. };
  217. first_thread = TRY(create_first_thread());
  218. if (!fork_parent) {
  219. // FIXME: Figure out if this is really necessary.
  220. first_thread->detach();
  221. }
  222. m_procfs_traits = TRY(ProcessProcFSTraits::try_create({}, *this));
  223. return {};
  224. }
  225. Process::~Process()
  226. {
  227. unprotect_data();
  228. VERIFY(thread_count() == 0); // all threads should have been finalized
  229. VERIFY(!m_alarm_timer);
  230. PerformanceManager::add_process_exit_event(*this);
  231. }
  232. // Make sure the compiler doesn't "optimize away" this function:
  233. extern void signal_trampoline_dummy() __attribute__((used));
  234. void signal_trampoline_dummy()
  235. {
  236. #if ARCH(I386)
  237. // The trampoline preserves the current eax, pushes the signal code and
  238. // then calls the signal handler. We do this because, when interrupting a
  239. // blocking syscall, that syscall may return some special error code in eax;
  240. // This error code would likely be overwritten by the signal handler, so it's
  241. // necessary to preserve it here.
  242. asm(
  243. ".intel_syntax noprefix\n"
  244. ".globl asm_signal_trampoline\n"
  245. "asm_signal_trampoline:\n"
  246. "push ebp\n"
  247. "mov ebp, esp\n"
  248. "push eax\n" // we have to store eax 'cause it might be the return value from a syscall
  249. "sub esp, 4\n" // align the stack to 16 bytes
  250. "mov eax, [ebp+12]\n" // push the signal code
  251. "push eax\n"
  252. "call [ebp+8]\n" // call the signal handler
  253. "add esp, 8\n"
  254. "mov eax, %P0\n"
  255. "int 0x82\n" // sigreturn syscall
  256. ".globl asm_signal_trampoline_end\n"
  257. "asm_signal_trampoline_end:\n"
  258. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  259. #elif ARCH(X86_64)
  260. // The trampoline preserves the current rax, pushes the signal code and
  261. // then calls the signal handler. We do this because, when interrupting a
  262. // blocking syscall, that syscall may return some special error code in eax;
  263. // This error code would likely be overwritten by the signal handler, so it's
  264. // necessary to preserve it here.
  265. asm(
  266. ".intel_syntax noprefix\n"
  267. ".globl asm_signal_trampoline\n"
  268. "asm_signal_trampoline:\n"
  269. "push rbp\n"
  270. "mov rbp, rsp\n"
  271. "push rax\n" // we have to store rax 'cause it might be the return value from a syscall
  272. "sub rsp, 8\n" // align the stack to 16 bytes
  273. "mov rdi, [rbp+24]\n" // push the signal code
  274. "call [rbp+16]\n" // call the signal handler
  275. "add rsp, 8\n"
  276. "mov rax, %P0\n"
  277. "int 0x82\n" // sigreturn syscall
  278. ".globl asm_signal_trampoline_end\n"
  279. "asm_signal_trampoline_end:\n"
  280. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  281. #endif
  282. }
  283. extern "C" char const asm_signal_trampoline[];
  284. extern "C" char const asm_signal_trampoline_end[];
  285. void create_signal_trampoline()
  286. {
  287. // NOTE: We leak this region.
  288. g_signal_trampoline_region = MM.allocate_kernel_region(PAGE_SIZE, "Signal trampolines", Memory::Region::Access::ReadWrite).release_value().leak_ptr();
  289. g_signal_trampoline_region->set_syscall_region(true);
  290. size_t trampoline_size = asm_signal_trampoline_end - asm_signal_trampoline;
  291. u8* code_ptr = (u8*)g_signal_trampoline_region->vaddr().as_ptr();
  292. memcpy(code_ptr, asm_signal_trampoline, trampoline_size);
  293. g_signal_trampoline_region->set_writable(false);
  294. g_signal_trampoline_region->remap();
  295. }
  296. void Process::crash(int signal, FlatPtr ip, bool out_of_memory)
  297. {
  298. VERIFY(!is_dead());
  299. VERIFY(&Process::current() == this);
  300. if (out_of_memory) {
  301. dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this);
  302. } else {
  303. if (ip >= kernel_load_base && g_kernel_symbols_available) {
  304. auto const* symbol = symbolicate_kernel_address(ip);
  305. dbgln("\033[31;1m{:p} {} +{}\033[0m\n", ip, (symbol ? symbol->name : "(k?)"), (symbol ? ip - symbol->address : 0));
  306. } else {
  307. dbgln("\033[31;1m{:p} (?)\033[0m\n", ip);
  308. }
  309. dump_backtrace();
  310. }
  311. {
  312. ProtectedDataMutationScope scope { *this };
  313. m_protected_values.termination_signal = signal;
  314. }
  315. set_should_generate_coredump(!out_of_memory);
  316. address_space().dump_regions();
  317. VERIFY(is_user_process());
  318. die();
  319. // We can not return from here, as there is nowhere
  320. // to unwind to, so die right away.
  321. Thread::current()->die_if_needed();
  322. VERIFY_NOT_REACHED();
  323. }
  324. RefPtr<Process> Process::from_pid(ProcessID pid)
  325. {
  326. return all_instances().with([&](const auto& list) -> RefPtr<Process> {
  327. for (auto const& process : list) {
  328. if (process.pid() == pid)
  329. return &process;
  330. }
  331. return {};
  332. });
  333. }
  334. const Process::OpenFileDescriptionAndFlags* Process::OpenFileDescriptions::get_if_valid(size_t i) const
  335. {
  336. if (m_fds_metadatas.size() <= i)
  337. return nullptr;
  338. if (auto const& metadata = m_fds_metadatas[i]; metadata.is_valid())
  339. return &metadata;
  340. return nullptr;
  341. }
  342. Process::OpenFileDescriptionAndFlags* Process::OpenFileDescriptions::get_if_valid(size_t i)
  343. {
  344. if (m_fds_metadatas.size() <= i)
  345. return nullptr;
  346. if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
  347. return &metadata;
  348. return nullptr;
  349. }
  350. const Process::OpenFileDescriptionAndFlags& Process::OpenFileDescriptions::at(size_t i) const
  351. {
  352. VERIFY(m_fds_metadatas[i].is_allocated());
  353. return m_fds_metadatas[i];
  354. }
  355. Process::OpenFileDescriptionAndFlags& Process::OpenFileDescriptions::at(size_t i)
  356. {
  357. VERIFY(m_fds_metadatas[i].is_allocated());
  358. return m_fds_metadatas[i];
  359. }
  360. ErrorOr<NonnullRefPtr<OpenFileDescription>> Process::OpenFileDescriptions::open_file_description(int fd) const
  361. {
  362. if (fd < 0)
  363. return EBADF;
  364. if (static_cast<size_t>(fd) >= m_fds_metadatas.size())
  365. return EBADF;
  366. RefPtr description = m_fds_metadatas[fd].description();
  367. if (!description)
  368. return EBADF;
  369. return description.release_nonnull();
  370. }
  371. void Process::OpenFileDescriptions::enumerate(Function<void(const OpenFileDescriptionAndFlags&)> callback) const
  372. {
  373. for (auto const& file_description_metadata : m_fds_metadatas) {
  374. callback(file_description_metadata);
  375. }
  376. }
  377. void Process::OpenFileDescriptions::change_each(Function<void(OpenFileDescriptionAndFlags&)> callback)
  378. {
  379. for (auto& file_description_metadata : m_fds_metadatas) {
  380. callback(file_description_metadata);
  381. }
  382. }
  383. size_t Process::OpenFileDescriptions::open_count() const
  384. {
  385. size_t count = 0;
  386. enumerate([&](auto& file_description_metadata) {
  387. if (file_description_metadata.is_valid())
  388. ++count;
  389. });
  390. return count;
  391. }
  392. ErrorOr<Process::ScopedDescriptionAllocation> Process::OpenFileDescriptions::allocate(int first_candidate_fd)
  393. {
  394. for (size_t i = first_candidate_fd; i < max_open(); ++i) {
  395. if (!m_fds_metadatas[i].is_allocated()) {
  396. m_fds_metadatas[i].allocate();
  397. return Process::ScopedDescriptionAllocation { static_cast<int>(i), &m_fds_metadatas[i] };
  398. }
  399. }
  400. return EMFILE;
  401. }
  402. Time kgettimeofday()
  403. {
  404. return TimeManagement::now();
  405. }
  406. siginfo_t Process::wait_info() const
  407. {
  408. siginfo_t siginfo {};
  409. siginfo.si_signo = SIGCHLD;
  410. siginfo.si_pid = pid().value();
  411. siginfo.si_uid = uid().value();
  412. if (m_protected_values.termination_signal != 0) {
  413. siginfo.si_status = m_protected_values.termination_signal;
  414. siginfo.si_code = CLD_KILLED;
  415. } else {
  416. siginfo.si_status = m_protected_values.termination_status;
  417. siginfo.si_code = CLD_EXITED;
  418. }
  419. return siginfo;
  420. }
  421. Custody& Process::current_directory()
  422. {
  423. if (!m_cwd)
  424. m_cwd = VirtualFileSystem::the().root_custody();
  425. return *m_cwd;
  426. }
  427. ErrorOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Userspace<char const*> user_path, size_t path_length)
  428. {
  429. if (path_length == 0)
  430. return EINVAL;
  431. if (path_length > PATH_MAX)
  432. return ENAMETOOLONG;
  433. return try_copy_kstring_from_user(user_path, path_length);
  434. }
  435. ErrorOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Syscall::StringArgument const& path)
  436. {
  437. Userspace<char const*> path_characters((FlatPtr)path.characters);
  438. return get_syscall_path_argument(path_characters, path.length);
  439. }
  440. ErrorOr<void> Process::dump_core()
  441. {
  442. VERIFY(is_dumpable());
  443. VERIFY(should_generate_coredump());
  444. dbgln("Generating coredump for pid: {}", pid().value());
  445. auto coredump_path = TRY(KString::formatted("/tmp/coredump/{}_{}_{}", name(), pid().value(), kgettimeofday().to_truncated_seconds()));
  446. auto coredump = TRY(Coredump::try_create(*this, coredump_path->view()));
  447. return coredump->write();
  448. }
  449. ErrorOr<void> Process::dump_perfcore()
  450. {
  451. VERIFY(is_dumpable());
  452. VERIFY(m_perf_event_buffer);
  453. dbgln("Generating perfcore for pid: {}", pid().value());
  454. // Try to generate a filename which isn't already used.
  455. auto base_filename = TRY(KString::formatted("{}_{}", name(), pid().value()));
  456. auto perfcore_filename = TRY(KString::formatted("{}.profile", base_filename));
  457. RefPtr<OpenFileDescription> description;
  458. for (size_t attempt = 1; attempt <= 10; ++attempt) {
  459. auto description_or_error = VirtualFileSystem::the().open(perfcore_filename->view(), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { 0, 0 });
  460. if (!description_or_error.is_error()) {
  461. description = description_or_error.release_value();
  462. break;
  463. }
  464. perfcore_filename = TRY(KString::formatted("{}.{}.profile", base_filename, attempt));
  465. }
  466. if (!description) {
  467. dbgln("Failed to generate perfcore for pid {}: Could not generate filename for the perfcore file.", pid().value());
  468. return EEXIST;
  469. }
  470. auto builder = TRY(KBufferBuilder::try_create());
  471. TRY(m_perf_event_buffer->to_json(builder));
  472. auto json = builder.build();
  473. if (!json) {
  474. dbgln("Failed to generate perfcore for pid {}: Could not allocate buffer.", pid().value());
  475. return ENOMEM;
  476. }
  477. auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data());
  478. TRY(description->write(json_buffer, json->size()));
  479. dbgln("Wrote perfcore for pid {} to {}", pid().value(), perfcore_filename);
  480. return {};
  481. }
  482. void Process::finalize()
  483. {
  484. VERIFY(Thread::current() == g_finalizer);
  485. dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this);
  486. if (veil_state() == VeilState::Dropped)
  487. dbgln("\x1b[01;31mProcess '{}' exited with the veil left open\x1b[0m", name());
  488. if (is_dumpable()) {
  489. if (m_should_generate_coredump) {
  490. auto result = dump_core();
  491. if (result.is_error()) {
  492. critical_dmesgln("Failed to write coredump: {}", result.error());
  493. }
  494. }
  495. if (m_perf_event_buffer) {
  496. auto result = dump_perfcore();
  497. if (result.is_error())
  498. critical_dmesgln("Failed to write perfcore: {}", result.error());
  499. TimeManagement::the().disable_profile_timer();
  500. }
  501. }
  502. m_threads_for_coredump.clear();
  503. if (m_alarm_timer)
  504. TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull());
  505. m_fds.with_exclusive([](auto& fds) { fds.clear(); });
  506. m_tty = nullptr;
  507. m_executable = nullptr;
  508. m_cwd = nullptr;
  509. m_arguments.clear();
  510. m_environment.clear();
  511. m_state.store(State::Dead, AK::MemoryOrder::memory_order_release);
  512. {
  513. // FIXME: PID/TID BUG
  514. if (auto parent_thread = Thread::from_tid(ppid().value())) {
  515. if ((parent_thread->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT) != SA_NOCLDWAIT)
  516. parent_thread->send_signal(SIGCHLD, this);
  517. }
  518. }
  519. if (!!ppid()) {
  520. if (auto parent = Process::from_pid(ppid())) {
  521. parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children;
  522. parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children;
  523. }
  524. }
  525. unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated);
  526. m_space->remove_all_regions({});
  527. VERIFY(ref_count() > 0);
  528. // WaitBlockerSet::finalize will be in charge of dropping the last
  529. // reference if there are still waiters around, or whenever the last
  530. // waitable states are consumed. Unless there is no parent around
  531. // anymore, in which case we'll just drop it right away.
  532. m_wait_blocker_set.finalize();
  533. }
  534. void Process::disowned_by_waiter(Process& process)
  535. {
  536. m_wait_blocker_set.disowned_by_waiter(process);
  537. }
  538. void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal)
  539. {
  540. RefPtr<Process> waiter_process;
  541. if (auto* my_tracer = tracer())
  542. waiter_process = Process::from_pid(my_tracer->tracer_pid());
  543. else
  544. waiter_process = Process::from_pid(ppid());
  545. if (waiter_process)
  546. waiter_process->m_wait_blocker_set.unblock(*this, flags, signal);
  547. }
  548. void Process::die()
  549. {
  550. auto expected = State::Running;
  551. if (!m_state.compare_exchange_strong(expected, State::Dying, AK::memory_order_acquire)) {
  552. // It's possible that another thread calls this at almost the same time
  553. // as we can't always instantly kill other threads (they may be blocked)
  554. // So if we already were called then other threads should stop running
  555. // momentarily and we only really need to service the first thread
  556. return;
  557. }
  558. // Let go of the TTY, otherwise a slave PTY may keep the master PTY from
  559. // getting an EOF when the last process using the slave PTY dies.
  560. // If the master PTY owner relies on an EOF to know when to wait() on a
  561. // slave owner, we have to allow the PTY pair to be torn down.
  562. m_tty = nullptr;
  563. VERIFY(m_threads_for_coredump.is_empty());
  564. for_each_thread([&](auto& thread) {
  565. auto result = m_threads_for_coredump.try_append(thread);
  566. if (result.is_error())
  567. dbgln("Failed to add thread {} to coredump due to OOM", thread.tid());
  568. });
  569. all_instances().with([&](const auto& list) {
  570. for (auto it = list.begin(); it != list.end();) {
  571. auto& process = *it;
  572. ++it;
  573. if (process.has_tracee_thread(pid())) {
  574. dbgln_if(PROCESS_DEBUG, "Process {} ({}) is attached by {} ({}) which will exit", process.name(), process.pid(), name(), pid());
  575. process.stop_tracing();
  576. auto err = process.send_signal(SIGSTOP, this);
  577. if (err.is_error())
  578. dbgln("Failed to send the SIGSTOP signal to {} ({})", process.name(), process.pid());
  579. }
  580. }
  581. });
  582. kill_all_threads();
  583. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  584. KCOVDevice::free_process();
  585. #endif
  586. }
  587. void Process::terminate_due_to_signal(u8 signal)
  588. {
  589. VERIFY_INTERRUPTS_DISABLED();
  590. VERIFY(signal < 32);
  591. VERIFY(&Process::current() == this);
  592. dbgln("Terminating {} due to signal {}", *this, signal);
  593. {
  594. ProtectedDataMutationScope scope { *this };
  595. m_protected_values.termination_status = 0;
  596. m_protected_values.termination_signal = signal;
  597. }
  598. die();
  599. }
  600. ErrorOr<void> Process::send_signal(u8 signal, Process* sender)
  601. {
  602. // Try to send it to the "obvious" main thread:
  603. auto receiver_thread = Thread::from_tid(pid().value());
  604. // If the main thread has died, there may still be other threads:
  605. if (!receiver_thread) {
  606. // The first one should be good enough.
  607. // Neither kill(2) nor kill(3) specify any selection procedure.
  608. for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision {
  609. receiver_thread = &thread;
  610. return IterationDecision::Break;
  611. });
  612. }
  613. if (receiver_thread) {
  614. receiver_thread->send_signal(signal, sender);
  615. return {};
  616. }
  617. return ESRCH;
  618. }
  619. RefPtr<Thread> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, NonnullOwnPtr<KString> name, u32 affinity, bool joinable)
  620. {
  621. VERIFY((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX));
  622. // FIXME: Do something with guard pages?
  623. auto thread_or_error = Thread::try_create(*this);
  624. if (thread_or_error.is_error())
  625. return {};
  626. auto thread = thread_or_error.release_value();
  627. thread->set_name(move(name));
  628. thread->set_affinity(affinity);
  629. thread->set_priority(priority);
  630. if (!joinable)
  631. thread->detach();
  632. auto& regs = thread->regs();
  633. regs.set_ip((FlatPtr)entry);
  634. regs.set_sp((FlatPtr)entry_data); // entry function argument is expected to be in the SP register
  635. SpinlockLocker lock(g_scheduler_lock);
  636. thread->set_state(Thread::State::Runnable);
  637. return thread;
  638. }
  639. void Process::OpenFileDescriptionAndFlags::clear()
  640. {
  641. // FIXME: Verify Process::m_fds_lock is locked!
  642. m_description = nullptr;
  643. m_flags = 0;
  644. }
  645. void Process::OpenFileDescriptionAndFlags::set(NonnullRefPtr<OpenFileDescription>&& description, u32 flags)
  646. {
  647. // FIXME: Verify Process::m_fds_lock is locked!
  648. m_description = move(description);
  649. m_flags = flags;
  650. }
  651. void Process::set_tty(TTY* tty)
  652. {
  653. m_tty = tty;
  654. }
  655. ErrorOr<void> Process::start_tracing_from(ProcessID tracer)
  656. {
  657. m_tracer = TRY(ThreadTracer::try_create(tracer));
  658. return {};
  659. }
  660. void Process::stop_tracing()
  661. {
  662. m_tracer = nullptr;
  663. }
  664. void Process::tracer_trap(Thread& thread, const RegisterState& regs)
  665. {
  666. VERIFY(m_tracer.ptr());
  667. m_tracer->set_regs(regs);
  668. thread.send_urgent_signal_to_self(SIGTRAP);
  669. }
  670. bool Process::create_perf_events_buffer_if_needed()
  671. {
  672. if (m_perf_event_buffer)
  673. return true;
  674. m_perf_event_buffer = PerformanceEventBuffer::try_create_with_size(4 * MiB);
  675. if (!m_perf_event_buffer)
  676. return false;
  677. return !m_perf_event_buffer->add_process(*this, ProcessEventType::Create).is_error();
  678. }
  679. void Process::delete_perf_events_buffer()
  680. {
  681. if (m_perf_event_buffer)
  682. m_perf_event_buffer = nullptr;
  683. }
  684. bool Process::remove_thread(Thread& thread)
  685. {
  686. ProtectedDataMutationScope scope { *this };
  687. auto thread_cnt_before = m_protected_values.thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
  688. VERIFY(thread_cnt_before != 0);
  689. thread_list().with([&](auto& thread_list) {
  690. thread_list.remove(thread);
  691. });
  692. return thread_cnt_before == 1;
  693. }
  694. bool Process::add_thread(Thread& thread)
  695. {
  696. ProtectedDataMutationScope scope { *this };
  697. bool is_first = m_protected_values.thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0;
  698. thread_list().with([&](auto& thread_list) {
  699. thread_list.append(thread);
  700. });
  701. return is_first;
  702. }
  703. void Process::set_dumpable(bool dumpable)
  704. {
  705. if (dumpable == m_protected_values.dumpable)
  706. return;
  707. ProtectedDataMutationScope scope { *this };
  708. m_protected_values.dumpable = dumpable;
  709. }
  710. ErrorOr<void> Process::set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value)
  711. {
  712. // Write it into the first available property slot.
  713. for (auto& slot : m_coredump_properties) {
  714. if (slot.key)
  715. continue;
  716. slot.key = move(key);
  717. slot.value = move(value);
  718. return {};
  719. }
  720. return ENOBUFS;
  721. }
  722. ErrorOr<void> Process::try_set_coredump_property(StringView key, StringView value)
  723. {
  724. auto key_kstring = TRY(KString::try_create(key));
  725. auto value_kstring = TRY(KString::try_create(value));
  726. return set_coredump_property(move(key_kstring), move(value_kstring));
  727. };
  728. static constexpr StringView to_string(Pledge promise)
  729. {
  730. #define __ENUMERATE_PLEDGE_PROMISE(x) \
  731. case Pledge::x: \
  732. return #x;
  733. switch (promise) {
  734. ENUMERATE_PLEDGE_PROMISES
  735. }
  736. #undef __ENUMERATE_PLEDGE_PROMISE
  737. VERIFY_NOT_REACHED();
  738. }
  739. ErrorOr<void> Process::require_no_promises() const
  740. {
  741. if (!has_promises())
  742. return {};
  743. dbgln("Has made a promise");
  744. Thread::current()->set_promise_violation_pending(true);
  745. return EPROMISEVIOLATION;
  746. }
  747. ErrorOr<void> Process::require_promise(Pledge promise)
  748. {
  749. if (!has_promises())
  750. return {};
  751. if (has_promised(promise))
  752. return {};
  753. dbgln("Has not pledged {}", to_string(promise));
  754. Thread::current()->set_promise_violation_pending(true);
  755. (void)try_set_coredump_property("pledge_violation"sv, to_string(promise));
  756. return EPROMISEVIOLATION;
  757. }
  758. }