MemoryManager.cpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817
  1. #include "MemoryManager.h"
  2. #include <AK/Assertions.h>
  3. #include <AK/kstdio.h>
  4. #include <AK/kmalloc.h>
  5. #include "i386.h"
  6. #include "StdLib.h"
  7. #include "Process.h"
  8. #include <LibC/errno_numbers.h>
  9. #include "CMOS.h"
  10. //#define MM_DEBUG
  11. //#define PAGE_FAULT_DEBUG
  12. static MemoryManager* s_the;
  13. MemoryManager& MM
  14. {
  15. return *s_the;
  16. }
  17. MemoryManager::MemoryManager()
  18. {
  19. // FIXME: This is not the best way to do memory map detection.
  20. // Rewrite to use BIOS int 15,e820 once we have VM86 support.
  21. word base_memory = (CMOS::read(0x16) << 8) | CMOS::read(0x15);
  22. word ext_memory = (CMOS::read(0x18) << 8) | CMOS::read(0x17);
  23. kprintf("%u kB base memory\n", base_memory);
  24. kprintf("%u kB extended memory\n", ext_memory);
  25. m_ram_size = ext_memory * 1024;
  26. m_kernel_page_directory = PageDirectory::create_at_fixed_address(PhysicalAddress(0x4000));
  27. m_page_table_zero = (dword*)0x6000;
  28. initialize_paging();
  29. }
  30. MemoryManager::~MemoryManager()
  31. {
  32. }
  33. PageDirectory::PageDirectory(PhysicalAddress paddr)
  34. {
  35. kprintf("Instantiating PageDirectory with specific paddr P%x\n", paddr.get());
  36. m_directory_page = adopt(*new PhysicalPage(paddr, true));
  37. }
  38. PageDirectory::PageDirectory()
  39. {
  40. MM.populate_page_directory(*this);
  41. }
  42. void MemoryManager::populate_page_directory(PageDirectory& page_directory)
  43. {
  44. page_directory.m_directory_page = allocate_supervisor_physical_page();
  45. page_directory.entries()[0] = kernel_page_directory().entries()[0];
  46. }
  47. void MemoryManager::initialize_paging()
  48. {
  49. static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4);
  50. static_assert(sizeof(MemoryManager::PageTableEntry) == 4);
  51. memset(m_page_table_zero, 0, PAGE_SIZE);
  52. #ifdef MM_DEBUG
  53. dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
  54. #endif
  55. #ifdef MM_DEBUG
  56. dbgprintf("MM: Protect against null dereferences\n");
  57. #endif
  58. // Make null dereferences crash.
  59. map_protected(LinearAddress(0), PAGE_SIZE);
  60. #ifdef MM_DEBUG
  61. dbgprintf("MM: Identity map bottom 4MB\n");
  62. #endif
  63. // The bottom 4 MB (except for the null page) are identity mapped & supervisor only.
  64. // Every process shares these mappings.
  65. create_identity_mapping(kernel_page_directory(), LinearAddress(PAGE_SIZE), (4 * MB) - PAGE_SIZE);
  66. // Basic memory map:
  67. // 0 -> 512 kB Kernel code. Root page directory & PDE 0.
  68. // (last page before 1MB) Used by quickmap_page().
  69. // 1 MB -> 2 MB kmalloc_eternal() space.
  70. // 2 MB -> 3 MB kmalloc() space.
  71. // 3 MB -> 4 MB Supervisor physical pages (available for allocation!)
  72. // 4 MB -> (max) MB Userspace physical pages (available for allocation!)
  73. for (size_t i = (2 * MB); i < (4 * MB); i += PAGE_SIZE)
  74. m_free_supervisor_physical_pages.append(adopt(*new PhysicalPage(PhysicalAddress(i), true)));
  75. dbgprintf("MM: 4MB-%uMB available for allocation\n", m_ram_size / 1048576);
  76. for (size_t i = (4 * MB); i < m_ram_size; i += PAGE_SIZE)
  77. m_free_physical_pages.append(adopt(*new PhysicalPage(PhysicalAddress(i), false)));
  78. m_quickmap_addr = LinearAddress((1 * MB) - PAGE_SIZE);
  79. #ifdef MM_DEBUG
  80. dbgprintf("MM: Quickmap will use P%x\n", m_quickmap_addr.get());
  81. dbgprintf("MM: Installing page directory\n");
  82. #endif
  83. asm volatile("movl %%eax, %%cr3"::"a"(kernel_page_directory().cr3()));
  84. asm volatile(
  85. "movl %%cr0, %%eax\n"
  86. "orl $0x80000001, %%eax\n"
  87. "movl %%eax, %%cr0\n"
  88. :::"%eax", "memory");
  89. }
  90. RetainPtr<PhysicalPage> MemoryManager::allocate_page_table(PageDirectory& page_directory, unsigned index)
  91. {
  92. ASSERT(!page_directory.m_physical_pages.contains(index));
  93. auto physical_page = allocate_supervisor_physical_page();
  94. if (!physical_page)
  95. return nullptr;
  96. page_directory.m_physical_pages.set(index, physical_page.copy_ref());
  97. return physical_page;
  98. }
  99. void MemoryManager::remove_identity_mapping(PageDirectory& page_directory, LinearAddress laddr, size_t size)
  100. {
  101. InterruptDisabler disabler;
  102. // FIXME: ASSERT(laddr is 4KB aligned);
  103. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  104. auto pte_address = laddr.offset(offset);
  105. auto pte = ensure_pte(page_directory, pte_address);
  106. pte.set_physical_page_base(0);
  107. pte.set_user_allowed(false);
  108. pte.set_present(true);
  109. pte.set_writable(true);
  110. flush_tlb(pte_address);
  111. }
  112. }
  113. auto MemoryManager::ensure_pte(PageDirectory& page_directory, LinearAddress laddr) -> PageTableEntry
  114. {
  115. ASSERT_INTERRUPTS_DISABLED();
  116. dword page_directory_index = (laddr.get() >> 22) & 0x3ff;
  117. dword page_table_index = (laddr.get() >> 12) & 0x3ff;
  118. PageDirectoryEntry pde = PageDirectoryEntry(&page_directory.entries()[page_directory_index]);
  119. if (!pde.is_present()) {
  120. #ifdef MM_DEBUG
  121. dbgprintf("MM: PDE %u not present (requested for L%x), allocating\n", page_directory_index, laddr.get());
  122. #endif
  123. if (page_directory_index == 0) {
  124. ASSERT(&page_directory == m_kernel_page_directory.ptr());
  125. pde.set_page_table_base((dword)m_page_table_zero);
  126. pde.set_user_allowed(false);
  127. pde.set_present(true);
  128. pde.set_writable(true);
  129. } else {
  130. ASSERT(&page_directory != m_kernel_page_directory.ptr());
  131. auto page_table = allocate_page_table(page_directory, page_directory_index);
  132. #ifdef MM_DEBUG
  133. dbgprintf("MM: PD K%x (%s) at P%x allocated page table #%u (for L%x) at P%x\n",
  134. &page_directory,
  135. &page_directory == m_kernel_page_directory.ptr() ? "Kernel" : "User",
  136. page_directory.cr3(),
  137. page_directory_index,
  138. laddr.get(),
  139. page_table->paddr().get());
  140. #endif
  141. pde.set_page_table_base(page_table->paddr().get());
  142. pde.set_user_allowed(true);
  143. pde.set_present(true);
  144. pde.set_writable(true);
  145. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  146. }
  147. }
  148. return PageTableEntry(&pde.page_table_base()[page_table_index]);
  149. }
  150. void MemoryManager::map_protected(LinearAddress laddr, size_t length)
  151. {
  152. InterruptDisabler disabler;
  153. // FIXME: ASSERT(linearAddress is 4KB aligned);
  154. for (dword offset = 0; offset < length; offset += PAGE_SIZE) {
  155. auto pte_address = laddr.offset(offset);
  156. auto pte = ensure_pte(kernel_page_directory(), pte_address);
  157. pte.set_physical_page_base(pte_address.get());
  158. pte.set_user_allowed(false);
  159. pte.set_present(false);
  160. pte.set_writable(false);
  161. flush_tlb(pte_address);
  162. }
  163. }
  164. void MemoryManager::create_identity_mapping(PageDirectory& page_directory, LinearAddress laddr, size_t size)
  165. {
  166. InterruptDisabler disabler;
  167. ASSERT((laddr.get() & ~PAGE_MASK) == 0);
  168. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  169. auto pte_address = laddr.offset(offset);
  170. auto pte = ensure_pte(page_directory, pte_address);
  171. pte.set_physical_page_base(pte_address.get());
  172. pte.set_user_allowed(false);
  173. pte.set_present(true);
  174. pte.set_writable(true);
  175. page_directory.flush(pte_address);
  176. }
  177. }
  178. void MemoryManager::initialize()
  179. {
  180. s_the = new MemoryManager;
  181. }
  182. Region* MemoryManager::region_from_laddr(Process& process, LinearAddress laddr)
  183. {
  184. ASSERT_INTERRUPTS_DISABLED();
  185. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  186. for (auto& region : process.m_regions) {
  187. if (region->contains(laddr))
  188. return region.ptr();
  189. }
  190. dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), laddr.get(), process.page_directory().cr3());
  191. return nullptr;
  192. }
  193. const Region* MemoryManager::region_from_laddr(const Process& process, LinearAddress laddr)
  194. {
  195. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  196. for (auto& region : process.m_regions) {
  197. if (region->contains(laddr))
  198. return region.ptr();
  199. }
  200. dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), laddr.get(), process.page_directory().cr3());
  201. return nullptr;
  202. }
  203. bool MemoryManager::zero_page(Region& region, unsigned page_index_in_region)
  204. {
  205. ASSERT_INTERRUPTS_DISABLED();
  206. auto& vmo = region.vmo();
  207. auto physical_page = allocate_physical_page(ShouldZeroFill::Yes);
  208. #ifdef PAGE_FAULT_DEBUG
  209. dbgprintf(" >> ZERO P%x\n", physical_page->paddr().get());
  210. #endif
  211. region.m_cow_map.set(page_index_in_region, false);
  212. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  213. remap_region_page(region, page_index_in_region, true);
  214. return true;
  215. }
  216. bool MemoryManager::copy_on_write(Region& region, unsigned page_index_in_region)
  217. {
  218. ASSERT_INTERRUPTS_DISABLED();
  219. auto& vmo = region.vmo();
  220. if (vmo.physical_pages()[page_index_in_region]->retain_count() == 1) {
  221. #ifdef PAGE_FAULT_DEBUG
  222. dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
  223. #endif
  224. region.m_cow_map.set(page_index_in_region, false);
  225. remap_region_page(region, page_index_in_region, true);
  226. return true;
  227. }
  228. #ifdef PAGE_FAULT_DEBUG
  229. dbgprintf(" >> It's a COW page and it's time to COW!\n");
  230. #endif
  231. auto physical_page_to_copy = move(vmo.physical_pages()[page_index_in_region]);
  232. auto physical_page = allocate_physical_page(ShouldZeroFill::No);
  233. byte* dest_ptr = quickmap_page(*physical_page);
  234. const byte* src_ptr = region.laddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  235. #ifdef PAGE_FAULT_DEBUG
  236. dbgprintf(" >> COW P%x <- P%x\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
  237. #endif
  238. memcpy(dest_ptr, src_ptr, PAGE_SIZE);
  239. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  240. unquickmap_page();
  241. region.m_cow_map.set(page_index_in_region, false);
  242. remap_region_page(region, page_index_in_region, true);
  243. return true;
  244. }
  245. bool Region::page_in()
  246. {
  247. ASSERT(m_page_directory);
  248. ASSERT(!vmo().is_anonymous());
  249. ASSERT(vmo().inode());
  250. #ifdef MM_DEBUG
  251. dbgprintf("MM: page_in %u pages\n", page_count());
  252. #endif
  253. for (size_t i = 0; i < page_count(); ++i) {
  254. auto& vmo_page = vmo().physical_pages()[first_page_index() + i];
  255. if (vmo_page.is_null()) {
  256. bool success = MM.page_in_from_inode(*this, i);
  257. if (!success)
  258. return false;
  259. }
  260. MM.remap_region_page(*this, i, true);
  261. }
  262. return true;
  263. }
  264. bool MemoryManager::page_in_from_inode(Region& region, unsigned page_index_in_region)
  265. {
  266. ASSERT(region.page_directory());
  267. auto& vmo = region.vmo();
  268. ASSERT(!vmo.is_anonymous());
  269. ASSERT(vmo.inode());
  270. auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
  271. bool interrupts_were_enabled = are_interrupts_enabled();
  272. if (!interrupts_were_enabled)
  273. sti();
  274. LOCKER(vmo.m_paging_lock);
  275. if (!interrupts_were_enabled)
  276. cli();
  277. if (!vmo_page.is_null()) {
  278. kprintf("MM: page_in_from_inode() but page already present. Fine with me!\n");
  279. remap_region_page(region, page_index_in_region, true);
  280. return true;
  281. }
  282. #ifdef MM_DEBUG
  283. dbgprintf("MM: page_in_from_inode ready to read from inode, will write to L%x!\n", dest_ptr);
  284. #endif
  285. sti(); // Oh god here we go...
  286. byte page_buffer[PAGE_SIZE];
  287. auto& inode = *vmo.inode();
  288. auto nread = inode.read_bytes(vmo.inode_offset() + ((region.first_page_index() + page_index_in_region) * PAGE_SIZE), PAGE_SIZE, page_buffer, nullptr);
  289. if (nread < 0) {
  290. kprintf("MM: page_in_from_inode had error (%d) while reading!\n", nread);
  291. return false;
  292. }
  293. if (nread < PAGE_SIZE) {
  294. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  295. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  296. }
  297. cli();
  298. vmo_page = allocate_physical_page(ShouldZeroFill::No);
  299. if (vmo_page.is_null()) {
  300. kprintf("MM: page_in_from_inode was unable to allocate a physical page\n");
  301. return false;
  302. }
  303. remap_region_page(region, page_index_in_region, true);
  304. byte* dest_ptr = region.laddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  305. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  306. return true;
  307. }
  308. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  309. {
  310. ASSERT_INTERRUPTS_DISABLED();
  311. #ifdef PAGE_FAULT_DEBUG
  312. dbgprintf("MM: handle_page_fault(%w) at L%x\n", fault.code(), fault.laddr().get());
  313. #endif
  314. ASSERT(fault.laddr() != m_quickmap_addr);
  315. auto* region = region_from_laddr(*current, fault.laddr());
  316. if (!region) {
  317. kprintf("NP(error) fault at invalid address L%x\n", fault.laddr().get());
  318. return PageFaultResponse::ShouldCrash;
  319. }
  320. auto page_index_in_region = region->page_index_from_address(fault.laddr());
  321. if (fault.is_not_present()) {
  322. if (region->vmo().inode()) {
  323. dbgprintf("NP(inode) fault in Region{%p}[%u]\n", region, page_index_in_region);
  324. page_in_from_inode(*region, page_index_in_region);
  325. return PageFaultResponse::Continue;
  326. } else {
  327. dbgprintf("NP(zero) fault in Region{%p}[%u]\n", region, page_index_in_region);
  328. zero_page(*region, page_index_in_region);
  329. return PageFaultResponse::Continue;
  330. }
  331. } else if (fault.is_protection_violation()) {
  332. if (region->m_cow_map.get(page_index_in_region)) {
  333. dbgprintf("PV(cow) fault in Region{%p}[%u]\n", region, page_index_in_region);
  334. bool success = copy_on_write(*region, page_index_in_region);
  335. ASSERT(success);
  336. return PageFaultResponse::Continue;
  337. }
  338. kprintf("PV(error) fault in Region{%p}[%u]\n", region, page_index_in_region);
  339. } else {
  340. ASSERT_NOT_REACHED();
  341. }
  342. return PageFaultResponse::ShouldCrash;
  343. }
  344. RetainPtr<PhysicalPage> MemoryManager::allocate_physical_page(ShouldZeroFill should_zero_fill)
  345. {
  346. InterruptDisabler disabler;
  347. if (1 > m_free_physical_pages.size())
  348. return { };
  349. #ifdef MM_DEBUG
  350. dbgprintf("MM: allocate_physical_page vending P%x (%u remaining)\n", m_free_physical_pages.last()->paddr().get(), m_free_physical_pages.size());
  351. #endif
  352. auto physical_page = m_free_physical_pages.take_last();
  353. if (should_zero_fill == ShouldZeroFill::Yes) {
  354. auto* ptr = (dword*)quickmap_page(*physical_page);
  355. fast_dword_fill(ptr, 0, PAGE_SIZE / sizeof(dword));
  356. unquickmap_page();
  357. }
  358. return physical_page;
  359. }
  360. RetainPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  361. {
  362. InterruptDisabler disabler;
  363. if (1 > m_free_supervisor_physical_pages.size())
  364. return { };
  365. #ifdef MM_DEBUG
  366. dbgprintf("MM: allocate_supervisor_physical_page vending P%x (%u remaining)\n", m_free_supervisor_physical_pages.last()->paddr().get(), m_free_supervisor_physical_pages.size());
  367. #endif
  368. auto physical_page = m_free_supervisor_physical_pages.take_last();
  369. fast_dword_fill((dword*)physical_page->paddr().as_ptr(), 0, PAGE_SIZE / sizeof(dword));
  370. return physical_page;
  371. }
  372. void MemoryManager::enter_process_paging_scope(Process& process)
  373. {
  374. InterruptDisabler disabler;
  375. current->m_tss.cr3 = process.page_directory().cr3();
  376. asm volatile("movl %%eax, %%cr3"::"a"(process.page_directory().cr3()):"memory");
  377. }
  378. void MemoryManager::flush_entire_tlb()
  379. {
  380. asm volatile(
  381. "mov %%cr3, %%eax\n"
  382. "mov %%eax, %%cr3\n"
  383. ::: "%eax", "memory"
  384. );
  385. }
  386. void MemoryManager::flush_tlb(LinearAddress laddr)
  387. {
  388. asm volatile("invlpg %0": :"m" (*(char*)laddr.get()) : "memory");
  389. }
  390. byte* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  391. {
  392. ASSERT_INTERRUPTS_DISABLED();
  393. ASSERT(!m_quickmap_in_use);
  394. m_quickmap_in_use = true;
  395. auto page_laddr = m_quickmap_addr;
  396. auto pte = ensure_pte(kernel_page_directory(), page_laddr);
  397. pte.set_physical_page_base(physical_page.paddr().get());
  398. pte.set_present(true);
  399. pte.set_writable(true);
  400. pte.set_user_allowed(false);
  401. flush_tlb(page_laddr);
  402. ASSERT((dword)pte.physical_page_base() == physical_page.paddr().get());
  403. #ifdef MM_DEBUG
  404. dbgprintf("MM: >> quickmap_page L%x => P%x @ PTE=%p\n", page_laddr, physical_page.paddr().get(), pte.ptr());
  405. #endif
  406. return page_laddr.as_ptr();
  407. }
  408. void MemoryManager::unquickmap_page()
  409. {
  410. ASSERT_INTERRUPTS_DISABLED();
  411. ASSERT(m_quickmap_in_use);
  412. auto page_laddr = m_quickmap_addr;
  413. auto pte = ensure_pte(kernel_page_directory(), page_laddr);
  414. #ifdef MM_DEBUG
  415. auto old_physical_address = pte.physical_page_base();
  416. #endif
  417. pte.set_physical_page_base(0);
  418. pte.set_present(false);
  419. pte.set_writable(false);
  420. flush_tlb(page_laddr);
  421. #ifdef MM_DEBUG
  422. dbgprintf("MM: >> unquickmap_page L%x =/> P%x\n", page_laddr, old_physical_address);
  423. #endif
  424. m_quickmap_in_use = false;
  425. }
  426. void MemoryManager::remap_region_page(Region& region, unsigned page_index_in_region, bool user_allowed)
  427. {
  428. ASSERT(region.page_directory());
  429. InterruptDisabler disabler;
  430. auto page_laddr = region.laddr().offset(page_index_in_region * PAGE_SIZE);
  431. auto pte = ensure_pte(*region.page_directory(), page_laddr);
  432. auto& physical_page = region.vmo().physical_pages()[page_index_in_region];
  433. ASSERT(physical_page);
  434. pte.set_physical_page_base(physical_page->paddr().get());
  435. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  436. if (region.m_cow_map.get(page_index_in_region))
  437. pte.set_writable(false);
  438. else
  439. pte.set_writable(region.is_writable());
  440. pte.set_user_allowed(user_allowed);
  441. region.page_directory()->flush(page_laddr);
  442. #ifdef MM_DEBUG
  443. dbgprintf("MM: >> remap_region_page (PD=%x, PTE=P%x) '%s' L%x => P%x (@%p)\n", region.page_directory()->cr3(), pte.ptr(), region.name().characters(), page_laddr.get(), physical_page->paddr().get(), physical_page.ptr());
  444. #endif
  445. }
  446. void MemoryManager::remap_region(Process& process, Region& region)
  447. {
  448. InterruptDisabler disabler;
  449. map_region_at_address(process.page_directory(), region, region.laddr(), true);
  450. }
  451. void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region& region, LinearAddress laddr, bool user_allowed)
  452. {
  453. InterruptDisabler disabler;
  454. region.set_page_directory(page_directory);
  455. auto& vmo = region.vmo();
  456. #ifdef MM_DEBUG
  457. dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", region.first_page_index(), region.last_page_index(), vmo.page_count());
  458. #endif
  459. for (size_t i = 0; i < region.page_count(); ++i) {
  460. auto page_laddr = laddr.offset(i * PAGE_SIZE);
  461. auto pte = ensure_pte(page_directory, page_laddr);
  462. auto& physical_page = vmo.physical_pages()[region.first_page_index() + i];
  463. if (physical_page) {
  464. pte.set_physical_page_base(physical_page->paddr().get());
  465. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  466. // FIXME: It seems wrong that the *region* cow map is essentially using *VMO* relative indices.
  467. if (region.m_cow_map.get(region.first_page_index() + i))
  468. pte.set_writable(false);
  469. else
  470. pte.set_writable(region.is_writable());
  471. } else {
  472. pte.set_physical_page_base(0);
  473. pte.set_present(false);
  474. pte.set_writable(region.is_writable());
  475. }
  476. pte.set_user_allowed(user_allowed);
  477. page_directory.flush(page_laddr);
  478. #ifdef MM_DEBUG
  479. dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", &page_directory, region.name().characters(), page_laddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
  480. #endif
  481. }
  482. }
  483. bool MemoryManager::unmap_region(Region& region)
  484. {
  485. ASSERT(region.page_directory());
  486. InterruptDisabler disabler;
  487. for (size_t i = 0; i < region.page_count(); ++i) {
  488. auto laddr = region.laddr().offset(i * PAGE_SIZE);
  489. auto pte = ensure_pte(*region.page_directory(), laddr);
  490. pte.set_physical_page_base(0);
  491. pte.set_present(false);
  492. pte.set_writable(false);
  493. pte.set_user_allowed(false);
  494. region.page_directory()->flush(laddr);
  495. #ifdef MM_DEBUG
  496. auto& physical_page = region.vmo().physical_pages()[region.first_page_index() + i];
  497. dbgprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, physical_page ? physical_page->paddr().get() : 0);
  498. #endif
  499. }
  500. region.release_page_directory();
  501. return true;
  502. }
  503. bool MemoryManager::map_region(Process& process, Region& region)
  504. {
  505. map_region_at_address(process.page_directory(), region, region.laddr(), true);
  506. return true;
  507. }
  508. bool MemoryManager::validate_user_read(const Process& process, LinearAddress laddr) const
  509. {
  510. auto* region = region_from_laddr(process, laddr);
  511. return region && region->is_readable();
  512. }
  513. bool MemoryManager::validate_user_write(const Process& process, LinearAddress laddr) const
  514. {
  515. auto* region = region_from_laddr(process, laddr);
  516. return region && region->is_writable();
  517. }
  518. RetainPtr<Region> Region::clone()
  519. {
  520. InterruptDisabler disabler;
  521. if (m_shared || (m_readable && !m_writable)) {
  522. // Create a new region backed by the same VMObject.
  523. return adopt(*new Region(laddr(), size(), m_vmo.copy_ref(), m_offset_in_vmo, String(m_name), m_readable, m_writable));
  524. }
  525. dbgprintf("%s<%u> Region::clone(): cowing %s (L%x)\n",
  526. current->name().characters(),
  527. current->pid(),
  528. m_name.characters(),
  529. laddr().get());
  530. // Set up a COW region. The parent (this) region becomes COW as well!
  531. for (size_t i = 0; i < page_count(); ++i)
  532. m_cow_map.set(i, true);
  533. MM.remap_region(*current, *this);
  534. return adopt(*new Region(laddr(), size(), m_vmo->clone(), m_offset_in_vmo, String(m_name), m_readable, m_writable, true));
  535. }
  536. Region::Region(LinearAddress a, size_t s, String&& n, bool r, bool w, bool cow)
  537. : m_laddr(a)
  538. , m_size(s)
  539. , m_vmo(VMObject::create_anonymous(s))
  540. , m_name(move(n))
  541. , m_readable(r)
  542. , m_writable(w)
  543. , m_cow_map(Bitmap::create(m_vmo->page_count(), cow))
  544. {
  545. m_vmo->set_name(m_name);
  546. MM.register_region(*this);
  547. }
  548. Region::Region(LinearAddress a, size_t s, RetainPtr<Inode>&& inode, String&& n, bool r, bool w)
  549. : m_laddr(a)
  550. , m_size(s)
  551. , m_vmo(VMObject::create_file_backed(move(inode), s))
  552. , m_name(move(n))
  553. , m_readable(r)
  554. , m_writable(w)
  555. , m_cow_map(Bitmap::create(m_vmo->page_count()))
  556. {
  557. MM.register_region(*this);
  558. }
  559. Region::Region(LinearAddress a, size_t s, RetainPtr<VMObject>&& vmo, size_t offset_in_vmo, String&& n, bool r, bool w, bool cow)
  560. : m_laddr(a)
  561. , m_size(s)
  562. , m_offset_in_vmo(offset_in_vmo)
  563. , m_vmo(move(vmo))
  564. , m_name(move(n))
  565. , m_readable(r)
  566. , m_writable(w)
  567. , m_cow_map(Bitmap::create(m_vmo->page_count(), cow))
  568. {
  569. MM.register_region(*this);
  570. }
  571. Region::~Region()
  572. {
  573. if (m_page_directory) {
  574. MM.unmap_region(*this);
  575. ASSERT(!m_page_directory);
  576. }
  577. MM.unregister_region(*this);
  578. }
  579. PhysicalPage::PhysicalPage(PhysicalAddress paddr, bool supervisor)
  580. : m_supervisor(supervisor)
  581. , m_paddr(paddr)
  582. {
  583. }
  584. void PhysicalPage::return_to_freelist()
  585. {
  586. ASSERT((paddr().get() & ~PAGE_MASK) == 0);
  587. InterruptDisabler disabler;
  588. m_retain_count = 1;
  589. if (m_supervisor)
  590. MM.m_free_supervisor_physical_pages.append(adopt(*this));
  591. else
  592. MM.m_free_physical_pages.append(adopt(*this));
  593. #ifdef MM_DEBUG
  594. dbgprintf("MM: P%x released to freelist\n", m_paddr.get());
  595. #endif
  596. }
  597. RetainPtr<VMObject> VMObject::create_file_backed(RetainPtr<Inode>&& inode, size_t size)
  598. {
  599. InterruptDisabler disabler;
  600. if (inode->vmo())
  601. return static_cast<VMObject*>(inode->vmo());
  602. size = ceil_div(size, PAGE_SIZE) * PAGE_SIZE;
  603. auto vmo = adopt(*new VMObject(move(inode), size));
  604. vmo->inode()->set_vmo(vmo.ptr());
  605. return vmo;
  606. }
  607. RetainPtr<VMObject> VMObject::create_anonymous(size_t size)
  608. {
  609. size = ceil_div(size, PAGE_SIZE) * PAGE_SIZE;
  610. return adopt(*new VMObject(size));
  611. }
  612. RetainPtr<VMObject> VMObject::create_framebuffer_wrapper(PhysicalAddress paddr, size_t size)
  613. {
  614. size = ceil_div(size, PAGE_SIZE) * PAGE_SIZE;
  615. return adopt(*new VMObject(paddr, size));
  616. }
  617. RetainPtr<VMObject> VMObject::clone()
  618. {
  619. return adopt(*new VMObject(*this));
  620. }
  621. VMObject::VMObject(VMObject& other)
  622. : m_name(other.m_name)
  623. , m_anonymous(other.m_anonymous)
  624. , m_inode_offset(other.m_inode_offset)
  625. , m_size(other.m_size)
  626. , m_inode(other.m_inode)
  627. , m_physical_pages(other.m_physical_pages)
  628. {
  629. MM.register_vmo(*this);
  630. }
  631. VMObject::VMObject(size_t size)
  632. : m_anonymous(true)
  633. , m_size(size)
  634. {
  635. MM.register_vmo(*this);
  636. m_physical_pages.resize(page_count());
  637. }
  638. VMObject::VMObject(PhysicalAddress paddr, size_t size)
  639. : m_anonymous(true)
  640. , m_size(size)
  641. {
  642. MM.register_vmo(*this);
  643. for (size_t i = 0; i < size; i += PAGE_SIZE) {
  644. m_physical_pages.append(adopt(*new PhysicalPage(paddr.offset(i), false)));
  645. }
  646. ASSERT(m_physical_pages.size() == page_count());
  647. }
  648. VMObject::VMObject(RetainPtr<Inode>&& inode, size_t size)
  649. : m_size(size)
  650. , m_inode(move(inode))
  651. {
  652. m_physical_pages.resize(page_count());
  653. MM.register_vmo(*this);
  654. }
  655. VMObject::~VMObject()
  656. {
  657. if (m_inode) {
  658. ASSERT(m_inode->vmo() == this);
  659. m_inode->set_vmo(nullptr);
  660. }
  661. MM.unregister_vmo(*this);
  662. }
  663. int Region::commit()
  664. {
  665. InterruptDisabler disabler;
  666. #ifdef MM_DEBUG
  667. dbgprintf("MM: commit %u pages in Region %p (VMO=%p) at L%x\n", vmo().page_count(), this, &vmo(), laddr().get());
  668. #endif
  669. for (size_t i = first_page_index(); i <= last_page_index(); ++i) {
  670. if (!vmo().physical_pages()[i].is_null())
  671. continue;
  672. auto physical_page = MM.allocate_physical_page(MemoryManager::ShouldZeroFill::Yes);
  673. if (!physical_page) {
  674. kprintf("MM: commit was unable to allocate a physical page\n");
  675. return -ENOMEM;
  676. }
  677. vmo().physical_pages()[i] = move(physical_page);
  678. MM.remap_region_page(*this, i, true);
  679. }
  680. return 0;
  681. }
  682. void MemoryManager::register_vmo(VMObject& vmo)
  683. {
  684. InterruptDisabler disabler;
  685. m_vmos.set(&vmo);
  686. }
  687. void MemoryManager::unregister_vmo(VMObject& vmo)
  688. {
  689. InterruptDisabler disabler;
  690. m_vmos.remove(&vmo);
  691. }
  692. void MemoryManager::register_region(Region& region)
  693. {
  694. InterruptDisabler disabler;
  695. m_regions.set(&region);
  696. }
  697. void MemoryManager::unregister_region(Region& region)
  698. {
  699. InterruptDisabler disabler;
  700. m_regions.remove(&region);
  701. }
  702. size_t Region::amount_resident() const
  703. {
  704. size_t bytes = 0;
  705. for (size_t i = 0; i < page_count(); ++i) {
  706. if (m_vmo->physical_pages()[first_page_index() + i])
  707. bytes += PAGE_SIZE;
  708. }
  709. return bytes;
  710. }
  711. size_t Region::amount_shared() const
  712. {
  713. size_t bytes = 0;
  714. for (size_t i = 0; i < page_count(); ++i) {
  715. auto& physical_page = m_vmo->physical_pages()[first_page_index() + i];
  716. if (physical_page && physical_page->retain_count() > 1)
  717. bytes += PAGE_SIZE;
  718. }
  719. return bytes;
  720. }
  721. PageDirectory::~PageDirectory()
  722. {
  723. ASSERT_INTERRUPTS_DISABLED();
  724. #ifdef MM_DEBUG
  725. dbgprintf("MM: ~PageDirectory K%x\n", this);
  726. #endif
  727. }
  728. void PageDirectory::flush(LinearAddress laddr)
  729. {
  730. if (&current->page_directory() == this)
  731. MM.flush_tlb(laddr);
  732. }