NumberFormat.cpp 79 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865
  1. /*
  2. * Copyright (c) 2021-2022, Tim Flynn <trflynn89@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Checked.h>
  7. #include <AK/Utf8View.h>
  8. #include <LibCrypto/BigInt/SignedBigInteger.h>
  9. #include <LibJS/Runtime/AbstractOperations.h>
  10. #include <LibJS/Runtime/Array.h>
  11. #include <LibJS/Runtime/BigInt.h>
  12. #include <LibJS/Runtime/GlobalObject.h>
  13. #include <LibJS/Runtime/Intl/NumberFormat.h>
  14. #include <LibJS/Runtime/Intl/NumberFormatFunction.h>
  15. #include <LibJS/Runtime/Intl/PluralRules.h>
  16. #include <LibUnicode/CurrencyCode.h>
  17. #include <math.h>
  18. #include <stdlib.h>
  19. namespace JS::Intl {
  20. NumberFormatBase::NumberFormatBase(Object& prototype)
  21. : Object(prototype)
  22. {
  23. }
  24. // 15 NumberFormat Objects, https://tc39.es/ecma402/#numberformat-objects
  25. NumberFormat::NumberFormat(Object& prototype)
  26. : NumberFormatBase(prototype)
  27. {
  28. }
  29. void NumberFormat::visit_edges(Cell::Visitor& visitor)
  30. {
  31. Base::visit_edges(visitor);
  32. if (m_bound_format)
  33. visitor.visit(m_bound_format);
  34. }
  35. void NumberFormat::set_style(StringView style)
  36. {
  37. if (style == "decimal"sv)
  38. m_style = Style::Decimal;
  39. else if (style == "percent"sv)
  40. m_style = Style::Percent;
  41. else if (style == "currency"sv)
  42. m_style = Style::Currency;
  43. else if (style == "unit"sv)
  44. m_style = Style::Unit;
  45. else
  46. VERIFY_NOT_REACHED();
  47. }
  48. StringView NumberFormat::style_string() const
  49. {
  50. switch (m_style) {
  51. case Style::Decimal:
  52. return "decimal"sv;
  53. case Style::Percent:
  54. return "percent"sv;
  55. case Style::Currency:
  56. return "currency"sv;
  57. case Style::Unit:
  58. return "unit"sv;
  59. default:
  60. VERIFY_NOT_REACHED();
  61. }
  62. }
  63. void NumberFormat::set_currency_display(StringView currency_display)
  64. {
  65. m_resolved_currency_display.clear();
  66. if (currency_display == "code"sv)
  67. m_currency_display = CurrencyDisplay::Code;
  68. else if (currency_display == "symbol"sv)
  69. m_currency_display = CurrencyDisplay::Symbol;
  70. else if (currency_display == "narrowSymbol"sv)
  71. m_currency_display = CurrencyDisplay::NarrowSymbol;
  72. else if (currency_display == "name"sv)
  73. m_currency_display = CurrencyDisplay::Name;
  74. else
  75. VERIFY_NOT_REACHED();
  76. }
  77. StringView NumberFormat::resolve_currency_display()
  78. {
  79. if (m_resolved_currency_display.has_value())
  80. return *m_resolved_currency_display;
  81. switch (currency_display()) {
  82. case NumberFormat::CurrencyDisplay::Code:
  83. m_resolved_currency_display = currency();
  84. break;
  85. case NumberFormat::CurrencyDisplay::Symbol:
  86. m_resolved_currency_display = Unicode::get_locale_short_currency_mapping(data_locale(), currency());
  87. break;
  88. case NumberFormat::CurrencyDisplay::NarrowSymbol:
  89. m_resolved_currency_display = Unicode::get_locale_narrow_currency_mapping(data_locale(), currency());
  90. break;
  91. case NumberFormat::CurrencyDisplay::Name:
  92. m_resolved_currency_display = Unicode::get_locale_numeric_currency_mapping(data_locale(), currency());
  93. break;
  94. default:
  95. VERIFY_NOT_REACHED();
  96. }
  97. if (!m_resolved_currency_display.has_value())
  98. m_resolved_currency_display = currency();
  99. return *m_resolved_currency_display;
  100. }
  101. StringView NumberFormat::currency_display_string() const
  102. {
  103. VERIFY(m_currency_display.has_value());
  104. switch (*m_currency_display) {
  105. case CurrencyDisplay::Code:
  106. return "code"sv;
  107. case CurrencyDisplay::Symbol:
  108. return "symbol"sv;
  109. case CurrencyDisplay::NarrowSymbol:
  110. return "narrowSymbol"sv;
  111. case CurrencyDisplay::Name:
  112. return "name"sv;
  113. default:
  114. VERIFY_NOT_REACHED();
  115. }
  116. }
  117. void NumberFormat::set_currency_sign(StringView currency_sign)
  118. {
  119. if (currency_sign == "standard"sv)
  120. m_currency_sign = CurrencySign::Standard;
  121. else if (currency_sign == "accounting"sv)
  122. m_currency_sign = CurrencySign::Accounting;
  123. else
  124. VERIFY_NOT_REACHED();
  125. }
  126. StringView NumberFormat::currency_sign_string() const
  127. {
  128. VERIFY(m_currency_sign.has_value());
  129. switch (*m_currency_sign) {
  130. case CurrencySign::Standard:
  131. return "standard"sv;
  132. case CurrencySign::Accounting:
  133. return "accounting"sv;
  134. default:
  135. VERIFY_NOT_REACHED();
  136. }
  137. }
  138. StringView NumberFormatBase::rounding_type_string() const
  139. {
  140. switch (m_rounding_type) {
  141. case RoundingType::SignificantDigits:
  142. return "significantDigits"sv;
  143. case RoundingType::FractionDigits:
  144. return "fractionDigits"sv;
  145. case RoundingType::MorePrecision:
  146. return "morePrecision"sv;
  147. case RoundingType::LessPrecision:
  148. return "lessPrecision"sv;
  149. default:
  150. VERIFY_NOT_REACHED();
  151. }
  152. }
  153. StringView NumberFormatBase::rounding_mode_string() const
  154. {
  155. switch (m_rounding_mode) {
  156. case RoundingMode::Ceil:
  157. return "ceil"sv;
  158. case RoundingMode::Expand:
  159. return "expand"sv;
  160. case RoundingMode::Floor:
  161. return "floor"sv;
  162. case RoundingMode::HalfCeil:
  163. return "halfCeil"sv;
  164. case RoundingMode::HalfEven:
  165. return "halfEven"sv;
  166. case RoundingMode::HalfExpand:
  167. return "halfExpand"sv;
  168. case RoundingMode::HalfFloor:
  169. return "halfFloor"sv;
  170. case RoundingMode::HalfTrunc:
  171. return "halfTrunc"sv;
  172. case RoundingMode::Trunc:
  173. return "trunc"sv;
  174. default:
  175. VERIFY_NOT_REACHED();
  176. }
  177. }
  178. void NumberFormatBase::set_rounding_mode(StringView rounding_mode)
  179. {
  180. if (rounding_mode == "ceil"sv)
  181. m_rounding_mode = RoundingMode::Ceil;
  182. else if (rounding_mode == "expand"sv)
  183. m_rounding_mode = RoundingMode::Expand;
  184. else if (rounding_mode == "floor"sv)
  185. m_rounding_mode = RoundingMode::Floor;
  186. else if (rounding_mode == "halfCeil"sv)
  187. m_rounding_mode = RoundingMode::HalfCeil;
  188. else if (rounding_mode == "halfEven"sv)
  189. m_rounding_mode = RoundingMode::HalfEven;
  190. else if (rounding_mode == "halfExpand"sv)
  191. m_rounding_mode = RoundingMode::HalfExpand;
  192. else if (rounding_mode == "halfFloor"sv)
  193. m_rounding_mode = RoundingMode::HalfFloor;
  194. else if (rounding_mode == "halfTrunc"sv)
  195. m_rounding_mode = RoundingMode::HalfTrunc;
  196. else if (rounding_mode == "trunc"sv)
  197. m_rounding_mode = RoundingMode::Trunc;
  198. else
  199. VERIFY_NOT_REACHED();
  200. }
  201. StringView NumberFormatBase::trailing_zero_display_string() const
  202. {
  203. switch (m_trailing_zero_display) {
  204. case TrailingZeroDisplay::Auto:
  205. return "auto"sv;
  206. case TrailingZeroDisplay::StripIfInteger:
  207. return "stripIfInteger"sv;
  208. default:
  209. VERIFY_NOT_REACHED();
  210. }
  211. }
  212. void NumberFormatBase::set_trailing_zero_display(StringView trailing_zero_display)
  213. {
  214. if (trailing_zero_display == "auto"sv)
  215. m_trailing_zero_display = TrailingZeroDisplay::Auto;
  216. else if (trailing_zero_display == "stripIfInteger"sv)
  217. m_trailing_zero_display = TrailingZeroDisplay::StripIfInteger;
  218. else
  219. VERIFY_NOT_REACHED();
  220. }
  221. Value NumberFormat::use_grouping_to_value(GlobalObject& global_object) const
  222. {
  223. auto& vm = global_object.vm();
  224. switch (m_use_grouping) {
  225. case UseGrouping::Always:
  226. return js_string(vm, "always"sv);
  227. case UseGrouping::Auto:
  228. return js_string(vm, "auto"sv);
  229. case UseGrouping::Min2:
  230. return js_string(vm, "min2"sv);
  231. case UseGrouping::False:
  232. return Value(false);
  233. default:
  234. VERIFY_NOT_REACHED();
  235. }
  236. }
  237. void NumberFormat::set_use_grouping(StringOrBoolean const& use_grouping)
  238. {
  239. use_grouping.visit(
  240. [this](StringView grouping) {
  241. if (grouping == "always"sv)
  242. m_use_grouping = UseGrouping::Always;
  243. else if (grouping == "auto"sv)
  244. m_use_grouping = UseGrouping::Auto;
  245. else if (grouping == "min2"sv)
  246. m_use_grouping = UseGrouping::Min2;
  247. else
  248. VERIFY_NOT_REACHED();
  249. },
  250. [this](bool grouping) {
  251. VERIFY(!grouping);
  252. m_use_grouping = UseGrouping::False;
  253. });
  254. }
  255. void NumberFormat::set_notation(StringView notation)
  256. {
  257. if (notation == "standard"sv)
  258. m_notation = Notation::Standard;
  259. else if (notation == "scientific"sv)
  260. m_notation = Notation::Scientific;
  261. else if (notation == "engineering"sv)
  262. m_notation = Notation::Engineering;
  263. else if (notation == "compact"sv)
  264. m_notation = Notation::Compact;
  265. else
  266. VERIFY_NOT_REACHED();
  267. }
  268. StringView NumberFormat::notation_string() const
  269. {
  270. switch (m_notation) {
  271. case Notation::Standard:
  272. return "standard"sv;
  273. case Notation::Scientific:
  274. return "scientific"sv;
  275. case Notation::Engineering:
  276. return "engineering"sv;
  277. case Notation::Compact:
  278. return "compact"sv;
  279. default:
  280. VERIFY_NOT_REACHED();
  281. }
  282. }
  283. void NumberFormat::set_compact_display(StringView compact_display)
  284. {
  285. if (compact_display == "short"sv)
  286. m_compact_display = CompactDisplay::Short;
  287. else if (compact_display == "long"sv)
  288. m_compact_display = CompactDisplay::Long;
  289. else
  290. VERIFY_NOT_REACHED();
  291. }
  292. StringView NumberFormat::compact_display_string() const
  293. {
  294. VERIFY(m_compact_display.has_value());
  295. switch (*m_compact_display) {
  296. case CompactDisplay::Short:
  297. return "short"sv;
  298. case CompactDisplay::Long:
  299. return "long"sv;
  300. default:
  301. VERIFY_NOT_REACHED();
  302. }
  303. }
  304. void NumberFormat::set_sign_display(StringView sign_display)
  305. {
  306. if (sign_display == "auto"sv)
  307. m_sign_display = SignDisplay::Auto;
  308. else if (sign_display == "never"sv)
  309. m_sign_display = SignDisplay::Never;
  310. else if (sign_display == "always"sv)
  311. m_sign_display = SignDisplay::Always;
  312. else if (sign_display == "exceptZero"sv)
  313. m_sign_display = SignDisplay::ExceptZero;
  314. else if (sign_display == "negative"sv)
  315. m_sign_display = SignDisplay::Negative;
  316. else
  317. VERIFY_NOT_REACHED();
  318. }
  319. StringView NumberFormat::sign_display_string() const
  320. {
  321. switch (m_sign_display) {
  322. case SignDisplay::Auto:
  323. return "auto"sv;
  324. case SignDisplay::Never:
  325. return "never"sv;
  326. case SignDisplay::Always:
  327. return "always"sv;
  328. case SignDisplay::ExceptZero:
  329. return "exceptZero"sv;
  330. case SignDisplay::Negative:
  331. return "negative"sv;
  332. default:
  333. VERIFY_NOT_REACHED();
  334. }
  335. }
  336. // 15.5.1 CurrencyDigits ( currency ), https://tc39.es/ecma402/#sec-currencydigits
  337. int currency_digits(StringView currency)
  338. {
  339. // 1. If the ISO 4217 currency and funds code list contains currency as an alphabetic code, return the minor
  340. // unit value corresponding to the currency from the list; otherwise, return 2.
  341. if (auto currency_code = Unicode::get_currency_code(currency); currency_code.has_value())
  342. return currency_code->minor_unit.value_or(2);
  343. return 2;
  344. }
  345. // 15.5.3 FormatNumericToString ( intlObject, x ), https://tc39.es/ecma402/#sec-formatnumberstring
  346. // 1.1.5 FormatNumericToString ( intlObject, x ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-formatnumberstring
  347. FormatResult format_numeric_to_string(NumberFormatBase const& intl_object, MathematicalValue number)
  348. {
  349. bool is_negative = false;
  350. // 1. If x is negative-zero, then
  351. if (number.is_negative_zero()) {
  352. // a. Let isNegative be true.
  353. is_negative = true;
  354. // b. Let x be the mathematical value 0.
  355. number = MathematicalValue(0.0);
  356. }
  357. // 2. Assert: x is a mathematical value.
  358. VERIFY(number.is_mathematical_value());
  359. // 3. If x < 0, let isNegative be true; else let isNegative be false.
  360. // FIXME: Spec issue: this step would override step 1a, see https://github.com/tc39/proposal-intl-numberformat-v3/issues/67
  361. if (number.is_negative()) {
  362. is_negative = true;
  363. // 4. If isNegative, then
  364. // a. Let x be -x.
  365. number.negate();
  366. }
  367. // 5. Let unsignedRoundingMode be GetUnsignedRoundingMode(intlObject.[[RoundingMode]], isNegative).
  368. // FIXME: Spec issue: Intl.PluralRules does not have [[RoundingMode]], see https://github.com/tc39/proposal-intl-numberformat-v3/issues/103
  369. Optional<NumberFormat::UnsignedRoundingMode> unsigned_rounding_mode;
  370. if (intl_object.rounding_mode() != NumberFormat::RoundingMode::Invalid)
  371. unsigned_rounding_mode = get_unsigned_rounding_mode(intl_object.rounding_mode(), is_negative);
  372. RawFormatResult result {};
  373. switch (intl_object.rounding_type()) {
  374. // 6. If intlObject.[[RoundingType]] is significantDigits, then
  375. case NumberFormatBase::RoundingType::SignificantDigits:
  376. // a. Let result be ToRawPrecision(x, intlObject.[[MinimumSignificantDigits]], intlObject.[[MaximumSignificantDigits]], unsignedRoundingMode).
  377. result = to_raw_precision(number, intl_object.min_significant_digits(), intl_object.max_significant_digits(), unsigned_rounding_mode);
  378. break;
  379. // 7. Else if intlObject.[[RoundingType]] is fractionDigits, then
  380. case NumberFormatBase::RoundingType::FractionDigits:
  381. // a. Let result be ToRawFixed(x, intlObject.[[MinimumFractionDigits]], intlObject.[[MaximumFractionDigits]], intlObject.[[RoundingIncrement]], unsignedRoundingMode).
  382. result = to_raw_fixed(number, intl_object.min_fraction_digits(), intl_object.max_fraction_digits(), intl_object.rounding_increment(), unsigned_rounding_mode);
  383. break;
  384. // 8. Else,
  385. case NumberFormatBase::RoundingType::MorePrecision:
  386. case NumberFormatBase::RoundingType::LessPrecision: {
  387. // a. Let sResult be ToRawPrecision(x, intlObject.[[MinimumSignificantDigits]], intlObject.[[MaximumSignificantDigits]], unsignedRoundingMode).
  388. auto significant_result = to_raw_precision(number, intl_object.min_significant_digits(), intl_object.max_significant_digits(), unsigned_rounding_mode);
  389. // b. Let fResult be ToRawFixed(x, intlObject.[[MinimumFractionDigits]], intlObject.[[MaximumFractionDigits]], intlObject.[[RoundingIncrement]], unsignedRoundingMode).
  390. auto fraction_result = to_raw_fixed(number, intl_object.min_fraction_digits(), intl_object.max_fraction_digits(), intl_object.rounding_increment(), unsigned_rounding_mode);
  391. // c. If intlObj.[[RoundingType]] is morePrecision, then
  392. if (intl_object.rounding_type() == NumberFormatBase::RoundingType::MorePrecision) {
  393. // i. If sResult.[[RoundingMagnitude]] ≤ fResult.[[RoundingMagnitude]], then
  394. if (significant_result.rounding_magnitude <= fraction_result.rounding_magnitude) {
  395. // 1. Let result be sResult.
  396. result = move(significant_result);
  397. }
  398. // ii. Else,
  399. else {
  400. // 2. Let result be fResult.
  401. result = move(fraction_result);
  402. }
  403. }
  404. // d. Else,
  405. else {
  406. // i. Assert: intlObj.[[RoundingType]] is lessPrecision.
  407. VERIFY(intl_object.rounding_type() == NumberFormatBase::RoundingType::LessPrecision);
  408. // ii. If sResult.[[RoundingMagnitude]] ≤ fResult.[[RoundingMagnitude]], then
  409. if (significant_result.rounding_magnitude <= fraction_result.rounding_magnitude) {
  410. // 1. Let result be fResult.
  411. result = move(fraction_result);
  412. }
  413. // iii. Else,
  414. else {
  415. // 1. Let result be sResult.
  416. result = move(significant_result);
  417. }
  418. }
  419. break;
  420. }
  421. default:
  422. VERIFY_NOT_REACHED();
  423. }
  424. // 9. Let x be result.[[RoundedNumber]].
  425. number = move(result.rounded_number);
  426. // 10. Let string be result.[[FormattedString]].
  427. auto string = move(result.formatted_string);
  428. // 11. If intlObject.[[TrailingZeroDisplay]] is "stripIfInteger" and x modulo 1 = 0, then
  429. if ((intl_object.trailing_zero_display() == NumberFormat::TrailingZeroDisplay::StripIfInteger) && number.modulo_is_zero(1)) {
  430. // a. If string contains ".", then
  431. if (auto index = string.find('.'); index.has_value()) {
  432. // i. Set string to the substring of string from index 0 to the index of ".".
  433. string = string.substring(0, *index);
  434. }
  435. }
  436. // 12. Let int be result.[[IntegerDigitsCount]].
  437. int digits = result.digits;
  438. // 13. Let minInteger be intlObject.[[MinimumIntegerDigits]].
  439. int min_integer = intl_object.min_integer_digits();
  440. // 14. If int < minInteger, then
  441. if (digits < min_integer) {
  442. // a. Let forwardZeros be the String consisting of minInteger–int occurrences of the character "0".
  443. auto forward_zeros = String::repeated('0', min_integer - digits);
  444. // b. Set string to the string-concatenation of forwardZeros and string.
  445. string = String::formatted("{}{}", forward_zeros, string);
  446. }
  447. // 15. If isNegative and x is 0, then
  448. if (is_negative && number.is_zero()) {
  449. // a. Let x be -0.
  450. number = MathematicalValue { MathematicalValue::Symbol::NegativeZero };
  451. }
  452. // 16. Else if isNegative, then
  453. else if (is_negative) {
  454. // b. Let x be -x.
  455. number.negate();
  456. }
  457. // 17. Return the Record { [[RoundedNumber]]: x, [[FormattedString]]: string }.
  458. return { move(string), move(number) };
  459. }
  460. // 15.5.4 PartitionNumberPattern ( numberFormat, x ), https://tc39.es/ecma402/#sec-partitionnumberpattern
  461. // 1.1.6 PartitionNumberPattern ( numberFormat, x ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-partitionnumberpattern
  462. Vector<PatternPartition> partition_number_pattern(GlobalObject& global_object, NumberFormat& number_format, MathematicalValue number)
  463. {
  464. // 1. Let exponent be 0.
  465. int exponent = 0;
  466. String formatted_string;
  467. // 2. If x is not-a-number, then
  468. if (number.is_nan()) {
  469. // a. Let n be an implementation- and locale-dependent (ILD) String value indicating the NaN value.
  470. formatted_string = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::NaN).value_or("NaN"sv);
  471. }
  472. // 3. Else if x is positive-infinity, then
  473. else if (number.is_positive_infinity()) {
  474. // a. Let n be an ILD String value indicating positive infinity.
  475. formatted_string = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::Infinity).value_or("infinity"sv);
  476. }
  477. // 4. Else if x is negative-infinity, then
  478. else if (number.is_negative_infinity()) {
  479. // a. Let n be an ILD String value indicating negative infinity.
  480. // NOTE: The CLDR does not contain unique strings for negative infinity. The negative sign will
  481. // be inserted by the pattern returned from GetNumberFormatPattern.
  482. formatted_string = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::Infinity).value_or("infinity"sv);
  483. }
  484. // 5. Else,
  485. else {
  486. // a. If x is not negative-zero,
  487. if (!number.is_negative_zero()) {
  488. // i. Assert: x is a mathematical value.
  489. VERIFY(number.is_mathematical_value());
  490. // ii. If numberFormat.[[Style]] is "percent", let x be 100 × x.
  491. if (number_format.style() == NumberFormat::Style::Percent)
  492. number = number.multiplied_by(100);
  493. // iii. Let exponent be ComputeExponent(numberFormat, x).
  494. exponent = compute_exponent(number_format, number);
  495. // iv. Let x be x × 10^-exponent.
  496. number = number.multiplied_by_power(-exponent);
  497. }
  498. // b. Let formatNumberResult be FormatNumericToString(numberFormat, x).
  499. auto format_number_result = format_numeric_to_string(number_format, move(number));
  500. // c. Let n be formatNumberResult.[[FormattedString]].
  501. formatted_string = move(format_number_result.formatted_string);
  502. // d. Let x be formatNumberResult.[[RoundedNumber]].
  503. number = move(format_number_result.rounded_number);
  504. }
  505. Unicode::NumberFormat found_pattern {};
  506. // 6. Let pattern be GetNumberFormatPattern(numberFormat, x).
  507. auto pattern = get_number_format_pattern(global_object, number_format, number, found_pattern);
  508. if (!pattern.has_value())
  509. return {};
  510. // 7. Let result be a new empty List.
  511. Vector<PatternPartition> result;
  512. // 8. Let patternParts be PartitionPattern(pattern).
  513. auto pattern_parts = pattern->visit([](auto const& p) { return partition_pattern(p); });
  514. // 9. For each Record { [[Type]], [[Value]] } patternPart of patternParts, do
  515. for (auto& pattern_part : pattern_parts) {
  516. // a. Let p be patternPart.[[Type]].
  517. auto part = pattern_part.type;
  518. // b. If p is "literal", then
  519. if (part == "literal"sv) {
  520. // i. Append a new Record { [[Type]]: "literal", [[Value]]: patternPart.[[Value]] } as the last element of result.
  521. result.append({ "literal"sv, move(pattern_part.value) });
  522. }
  523. // c. Else if p is equal to "number", then
  524. else if (part == "number"sv) {
  525. // i. Let notationSubParts be PartitionNotationSubPattern(numberFormat, x, n, exponent).
  526. auto notation_sub_parts = partition_notation_sub_pattern(number_format, number, formatted_string, exponent);
  527. // ii. Append all elements of notationSubParts to result.
  528. result.extend(move(notation_sub_parts));
  529. }
  530. // d. Else if p is equal to "plusSign", then
  531. else if (part == "plusSign"sv) {
  532. // i. Let plusSignSymbol be the ILND String representing the plus sign.
  533. auto plus_sign_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::PlusSign).value_or("+"sv);
  534. // ii. Append a new Record { [[Type]]: "plusSign", [[Value]]: plusSignSymbol } as the last element of result.
  535. result.append({ "plusSign"sv, plus_sign_symbol });
  536. }
  537. // e. Else if p is equal to "minusSign", then
  538. else if (part == "minusSign"sv) {
  539. // i. Let minusSignSymbol be the ILND String representing the minus sign.
  540. auto minus_sign_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::MinusSign).value_or("-"sv);
  541. // ii. Append a new Record { [[Type]]: "minusSign", [[Value]]: minusSignSymbol } as the last element of result.
  542. result.append({ "minusSign"sv, minus_sign_symbol });
  543. }
  544. // f. Else if p is equal to "percentSign" and numberFormat.[[Style]] is "percent", then
  545. else if ((part == "percentSign"sv) && (number_format.style() == NumberFormat::Style::Percent)) {
  546. // i. Let percentSignSymbol be the ILND String representing the percent sign.
  547. auto percent_sign_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::PercentSign).value_or("%"sv);
  548. // ii. Append a new Record { [[Type]]: "percentSign", [[Value]]: percentSignSymbol } as the last element of result.
  549. result.append({ "percentSign"sv, percent_sign_symbol });
  550. }
  551. // g. Else if p is equal to "unitPrefix" and numberFormat.[[Style]] is "unit", then
  552. // h. Else if p is equal to "unitSuffix" and numberFormat.[[Style]] is "unit", then
  553. else if ((part.starts_with("unitIdentifier:"sv)) && (number_format.style() == NumberFormat::Style::Unit)) {
  554. // Note: Our implementation combines "unitPrefix" and "unitSuffix" into one field, "unitIdentifier".
  555. auto identifier_index = part.substring_view("unitIdentifier:"sv.length()).to_uint();
  556. VERIFY(identifier_index.has_value());
  557. // i. Let unit be numberFormat.[[Unit]].
  558. // ii. Let unitDisplay be numberFormat.[[UnitDisplay]].
  559. // iii. Let mu be an ILD String value representing unit before x in unitDisplay form, which may depend on x in languages having different plural forms.
  560. auto unit_identifier = found_pattern.identifiers[*identifier_index];
  561. // iv. Append a new Record { [[Type]]: "unit", [[Value]]: mu } as the last element of result.
  562. result.append({ "unit"sv, unit_identifier });
  563. }
  564. // i. Else if p is equal to "currencyCode" and numberFormat.[[Style]] is "currency", then
  565. // j. Else if p is equal to "currencyPrefix" and numberFormat.[[Style]] is "currency", then
  566. // k. Else if p is equal to "currencySuffix" and numberFormat.[[Style]] is "currency", then
  567. //
  568. // Note: Our implementation manipulates the format string to inject/remove spacing around the
  569. // currency code during GetNumberFormatPattern so that we do not have to do currency
  570. // display / plurality lookups more than once.
  571. else if ((part == "currency"sv) && (number_format.style() == NumberFormat::Style::Currency)) {
  572. result.append({ "currency"sv, number_format.resolve_currency_display() });
  573. }
  574. // l. Else,
  575. else {
  576. // i. Let unknown be an ILND String based on x and p.
  577. // ii. Append a new Record { [[Type]]: "unknown", [[Value]]: unknown } as the last element of result.
  578. // LibUnicode doesn't generate any "unknown" patterns.
  579. VERIFY_NOT_REACHED();
  580. }
  581. }
  582. // 10. Return result.
  583. return result;
  584. }
  585. static Vector<StringView> separate_integer_into_groups(Unicode::NumberGroupings const& grouping_sizes, StringView integer, NumberFormat::UseGrouping use_grouping)
  586. {
  587. Utf8View utf8_integer { integer };
  588. if (utf8_integer.length() <= grouping_sizes.primary_grouping_size)
  589. return { integer };
  590. size_t index = utf8_integer.length() - grouping_sizes.primary_grouping_size;
  591. switch (use_grouping) {
  592. case NumberFormat::UseGrouping::Min2:
  593. if (utf8_integer.length() < 5)
  594. return { integer };
  595. break;
  596. case NumberFormat::UseGrouping::Auto:
  597. if (index < grouping_sizes.minimum_grouping_digits)
  598. return { integer };
  599. break;
  600. case NumberFormat::UseGrouping::Always:
  601. break;
  602. default:
  603. VERIFY_NOT_REACHED();
  604. }
  605. Vector<StringView> groups;
  606. auto add_group = [&](size_t index, size_t length) {
  607. groups.prepend(utf8_integer.unicode_substring_view(index, length).as_string());
  608. };
  609. add_group(index, grouping_sizes.primary_grouping_size);
  610. while (index > grouping_sizes.secondary_grouping_size) {
  611. index -= grouping_sizes.secondary_grouping_size;
  612. add_group(index, grouping_sizes.secondary_grouping_size);
  613. }
  614. if (index > 0)
  615. add_group(0, index);
  616. return groups;
  617. }
  618. // 15.5.5 PartitionNotationSubPattern ( numberFormat, x, n, exponent ), https://tc39.es/ecma402/#sec-partitionnotationsubpattern
  619. // 1.1.7 PartitionNotationSubPattern ( numberFormat, x, n, exponent ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-partitionnotationsubpattern
  620. Vector<PatternPartition> partition_notation_sub_pattern(NumberFormat& number_format, MathematicalValue const& number, String formatted_string, int exponent)
  621. {
  622. // 1. Let result be a new empty List.
  623. Vector<PatternPartition> result;
  624. auto grouping_sizes = Unicode::get_number_system_groupings(number_format.data_locale(), number_format.numbering_system());
  625. if (!grouping_sizes.has_value())
  626. return {};
  627. // 2. If x is NaN, then
  628. if (number.is_nan()) {
  629. // a. Append a new Record { [[Type]]: "nan", [[Value]]: n } as the last element of result.
  630. result.append({ "nan"sv, move(formatted_string) });
  631. }
  632. // 3. Else if x is a non-finite Number, then
  633. else if (number.is_positive_infinity() || number.is_negative_infinity()) {
  634. // a. Append a new Record { [[Type]]: "infinity", [[Value]]: n } as the last element of result.
  635. result.append({ "infinity"sv, move(formatted_string) });
  636. }
  637. // 4. Else,
  638. else {
  639. // a. Let notationSubPattern be GetNotationSubPattern(numberFormat, exponent).
  640. auto notation_sub_pattern = get_notation_sub_pattern(number_format, exponent);
  641. if (!notation_sub_pattern.has_value())
  642. return {};
  643. // b. Let patternParts be PartitionPattern(notationSubPattern).
  644. auto pattern_parts = partition_pattern(*notation_sub_pattern);
  645. // c. For each Record { [[Type]], [[Value]] } patternPart of patternParts, do
  646. for (auto& pattern_part : pattern_parts) {
  647. // i. Let p be patternPart.[[Type]].
  648. auto part = pattern_part.type;
  649. // ii. If p is "literal", then
  650. if (part == "literal"sv) {
  651. // 1. Append a new Record { [[Type]]: "literal", [[Value]]: patternPart.[[Value]] } as the last element of result.
  652. result.append({ "literal"sv, move(pattern_part.value) });
  653. }
  654. // iii. Else if p is equal to "number", then
  655. else if (part == "number"sv) {
  656. // 1. If the numberFormat.[[NumberingSystem]] matches one of the values in the "Numbering System" column of Table 12 below, then
  657. // a. Let digits be a List whose 10 String valued elements are the UTF-16 string representations of the 10 digits specified in the "Digits" column of the matching row in Table 12.
  658. // b. Replace each digit in n with the value of digits[digit].
  659. // 2. Else use an implementation dependent algorithm to map n to the appropriate representation of n in the given numbering system.
  660. formatted_string = Unicode::replace_digits_for_number_system(number_format.numbering_system(), formatted_string);
  661. // 3. Let decimalSepIndex be StringIndexOf(n, ".", 0).
  662. auto decimal_sep_index = formatted_string.find('.');
  663. StringView integer;
  664. Optional<StringView> fraction;
  665. // 4. If decimalSepIndex > 0, then
  666. if (decimal_sep_index.has_value() && (*decimal_sep_index > 0)) {
  667. // a. Let integer be the substring of n from position 0, inclusive, to position decimalSepIndex, exclusive.
  668. integer = formatted_string.substring_view(0, *decimal_sep_index);
  669. // b. Let fraction be the substring of n from position decimalSepIndex, exclusive, to the end of n.
  670. fraction = formatted_string.substring_view(*decimal_sep_index + 1);
  671. }
  672. // 5. Else,
  673. else {
  674. // a. Let integer be n.
  675. integer = formatted_string;
  676. // b. Let fraction be undefined.
  677. }
  678. // 6. If the numberFormat.[[UseGrouping]] is false, then
  679. if (number_format.use_grouping() == NumberFormat::UseGrouping::False) {
  680. // a. Append a new Record { [[Type]]: "integer", [[Value]]: integer } as the last element of result.
  681. result.append({ "integer"sv, integer });
  682. }
  683. // 7. Else,
  684. else {
  685. // a. Let groupSepSymbol be the implementation-, locale-, and numbering system-dependent (ILND) String representing the grouping separator.
  686. auto group_sep_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::Group).value_or(","sv);
  687. // b. Let groups be a List whose elements are, in left to right order, the substrings defined by ILND set of locations within the integer, which may depend on the value of numberFormat.[[UseGrouping]].
  688. auto groups = separate_integer_into_groups(*grouping_sizes, integer, number_format.use_grouping());
  689. // c. Assert: The number of elements in groups List is greater than 0.
  690. VERIFY(!groups.is_empty());
  691. // d. Repeat, while groups List is not empty,
  692. while (!groups.is_empty()) {
  693. // i. Remove the first element from groups and let integerGroup be the value of that element.
  694. auto integer_group = groups.take_first();
  695. // ii. Append a new Record { [[Type]]: "integer", [[Value]]: integerGroup } as the last element of result.
  696. result.append({ "integer"sv, integer_group });
  697. // iii. If groups List is not empty, then
  698. if (!groups.is_empty()) {
  699. // i. Append a new Record { [[Type]]: "group", [[Value]]: groupSepSymbol } as the last element of result.
  700. result.append({ "group"sv, group_sep_symbol });
  701. }
  702. }
  703. }
  704. // 8. If fraction is not undefined, then
  705. if (fraction.has_value()) {
  706. // a. Let decimalSepSymbol be the ILND String representing the decimal separator.
  707. auto decimal_sep_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::Decimal).value_or("."sv);
  708. // b. Append a new Record { [[Type]]: "decimal", [[Value]]: decimalSepSymbol } as the last element of result.
  709. result.append({ "decimal"sv, decimal_sep_symbol });
  710. // c. Append a new Record { [[Type]]: "fraction", [[Value]]: fraction } as the last element of result.
  711. result.append({ "fraction"sv, fraction.release_value() });
  712. }
  713. }
  714. // iv. Else if p is equal to "compactSymbol", then
  715. // v. Else if p is equal to "compactName", then
  716. else if (part.starts_with("compactIdentifier:"sv)) {
  717. // Note: Our implementation combines "compactSymbol" and "compactName" into one field, "compactIdentifier".
  718. auto identifier_index = part.substring_view("compactIdentifier:"sv.length()).to_uint();
  719. VERIFY(identifier_index.has_value());
  720. // 1. Let compactSymbol be an ILD string representing exponent in short form, which may depend on x in languages having different plural forms. The implementation must be able to provide this string, or else the pattern would not have a "{compactSymbol}" placeholder.
  721. auto compact_identifier = number_format.compact_format().identifiers[*identifier_index];
  722. // 2. Append a new Record { [[Type]]: "compact", [[Value]]: compactSymbol } as the last element of result.
  723. result.append({ "compact"sv, compact_identifier });
  724. }
  725. // vi. Else if p is equal to "scientificSeparator", then
  726. else if (part == "scientificSeparator"sv) {
  727. // 1. Let scientificSeparator be the ILND String representing the exponent separator.
  728. auto scientific_separator = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::Exponential).value_or("E"sv);
  729. // 2. Append a new Record { [[Type]]: "exponentSeparator", [[Value]]: scientificSeparator } as the last element of result.
  730. result.append({ "exponentSeparator"sv, scientific_separator });
  731. }
  732. // vii. Else if p is equal to "scientificExponent", then
  733. else if (part == "scientificExponent"sv) {
  734. // 1. If exponent < 0, then
  735. if (exponent < 0) {
  736. // a. Let minusSignSymbol be the ILND String representing the minus sign.
  737. auto minus_sign_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::MinusSign).value_or("-"sv);
  738. // b. Append a new Record { [[Type]]: "exponentMinusSign", [[Value]]: minusSignSymbol } as the last element of result.
  739. result.append({ "exponentMinusSign"sv, minus_sign_symbol });
  740. // c. Let exponent be -exponent.
  741. exponent *= -1;
  742. }
  743. // 2. Let exponentResult be ToRawFixed(exponent, 0, 0, 1, undefined).
  744. auto exponent_value = MathematicalValue { static_cast<double>(exponent) };
  745. auto exponent_result = to_raw_fixed(exponent_value, 0, 0, 1, {});
  746. // FIXME: The spec does not say to do this, but all of major engines perform this replacement.
  747. // Without this, formatting with non-Latin numbering systems will produce non-localized results.
  748. exponent_result.formatted_string = Unicode::replace_digits_for_number_system(number_format.numbering_system(), exponent_result.formatted_string);
  749. // 3. Append a new Record { [[Type]]: "exponentInteger", [[Value]]: exponentResult.[[FormattedString]] } as the last element of result.
  750. result.append({ "exponentInteger"sv, move(exponent_result.formatted_string) });
  751. }
  752. // viii. Else,
  753. else {
  754. // 1. Let unknown be an ILND String based on x and p.
  755. // 2. Append a new Record { [[Type]]: "unknown", [[Value]]: unknown } as the last element of result.
  756. // LibUnicode doesn't generate any "unknown" patterns.
  757. VERIFY_NOT_REACHED();
  758. }
  759. }
  760. }
  761. // 5. Return result.
  762. return result;
  763. }
  764. // 15.5.6 FormatNumeric ( numberFormat, x ), https://tc39.es/ecma402/#sec-formatnumber
  765. String format_numeric(GlobalObject& global_object, NumberFormat& number_format, MathematicalValue number)
  766. {
  767. // 1. Let parts be ? PartitionNumberPattern(numberFormat, x).
  768. // Note: Our implementation of PartitionNumberPattern does not throw.
  769. auto parts = partition_number_pattern(global_object, number_format, move(number));
  770. // 2. Let result be the empty String.
  771. StringBuilder result;
  772. // 3. For each Record { [[Type]], [[Value]] } part in parts, do
  773. for (auto& part : parts) {
  774. // a. Set result to the string-concatenation of result and part.[[Value]].
  775. result.append(move(part.value));
  776. }
  777. // 4. Return result.
  778. return result.build();
  779. }
  780. // 15.5.7 FormatNumericToParts ( numberFormat, x ), https://tc39.es/ecma402/#sec-formatnumbertoparts
  781. Array* format_numeric_to_parts(GlobalObject& global_object, NumberFormat& number_format, MathematicalValue number)
  782. {
  783. auto& vm = global_object.vm();
  784. // 1. Let parts be ? PartitionNumberPattern(numberFormat, x).
  785. // Note: Our implementation of PartitionNumberPattern does not throw.
  786. auto parts = partition_number_pattern(global_object, number_format, move(number));
  787. // 2. Let result be ! ArrayCreate(0).
  788. auto* result = MUST(Array::create(global_object, 0));
  789. // 3. Let n be 0.
  790. size_t n = 0;
  791. // 4. For each Record { [[Type]], [[Value]] } part in parts, do
  792. for (auto& part : parts) {
  793. // a. Let O be OrdinaryObjectCreate(%Object.prototype%).
  794. auto* object = Object::create(global_object, global_object.object_prototype());
  795. // b. Perform ! CreateDataPropertyOrThrow(O, "type", part.[[Type]]).
  796. MUST(object->create_data_property_or_throw(vm.names.type, js_string(vm, part.type)));
  797. // c. Perform ! CreateDataPropertyOrThrow(O, "value", part.[[Value]]).
  798. MUST(object->create_data_property_or_throw(vm.names.value, js_string(vm, move(part.value))));
  799. // d. Perform ! CreateDataPropertyOrThrow(result, ! ToString(n), O).
  800. MUST(result->create_data_property_or_throw(n, object));
  801. // e. Increment n by 1.
  802. ++n;
  803. }
  804. // 5. Return result.
  805. return result;
  806. }
  807. static String cut_trailing_zeroes(StringView string, int cut)
  808. {
  809. // These steps are exactly the same between ToRawPrecision and ToRawFixed.
  810. // Repeat, while cut > 0 and the last character of m is "0",
  811. while ((cut > 0) && string.ends_with('0')) {
  812. // Remove the last character from m.
  813. string = string.substring_view(0, string.length() - 1);
  814. // Decrease cut by 1.
  815. --cut;
  816. }
  817. // If the last character of m is ".", then
  818. if (string.ends_with('.')) {
  819. // Remove the last character from m.
  820. string = string.substring_view(0, string.length() - 1);
  821. }
  822. return string.to_string();
  823. }
  824. enum class PreferredResult {
  825. LessThanNumber,
  826. GreaterThanNumber,
  827. };
  828. // ToRawPrecisionFn, https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#eqn-ToRawPrecisionFn
  829. static auto to_raw_precision_function(MathematicalValue const& number, int precision, PreferredResult mode)
  830. {
  831. struct {
  832. MathematicalValue number;
  833. int exponent { 0 };
  834. MathematicalValue rounded;
  835. } result {};
  836. result.exponent = number.logarithmic_floor();
  837. if (number.is_number()) {
  838. result.number = number.divided_by_power(result.exponent - precision + 1);
  839. switch (mode) {
  840. case PreferredResult::LessThanNumber:
  841. result.number = MathematicalValue { floor(result.number.as_number()) };
  842. break;
  843. case PreferredResult::GreaterThanNumber:
  844. result.number = MathematicalValue { ceil(result.number.as_number()) };
  845. break;
  846. }
  847. } else {
  848. // NOTE: In order to round the BigInt to the proper precision, this computation is initially off by a
  849. // factor of 10. This lets us inspect the ones digit and then round up if needed.
  850. result.number = number.divided_by_power(result.exponent - precision);
  851. // FIXME: Can we do this without string conversion?
  852. auto digits = result.number.to_string();
  853. auto digit = digits.substring_view(digits.length() - 1);
  854. result.number = result.number.divided_by(10);
  855. if (mode == PreferredResult::GreaterThanNumber && digit.to_uint().value() != 0)
  856. result.number = result.number.plus(1);
  857. }
  858. result.rounded = result.number.multiplied_by_power(result.exponent - precision + 1);
  859. return result;
  860. }
  861. // 15.5.8 ToRawPrecision ( x, minPrecision, maxPrecision ), https://tc39.es/ecma402/#sec-torawprecision
  862. // 1.1.10 ToRawPrecision ( x, minPrecision, maxPrecision, unsignedRoundingMode ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-torawprecision
  863. RawFormatResult to_raw_precision(MathematicalValue const& number, int min_precision, int max_precision, Optional<NumberFormat::UnsignedRoundingMode> const& unsigned_rounding_mode)
  864. {
  865. RawFormatResult result {};
  866. // 1. Let p be maxPrecision.
  867. int precision = max_precision;
  868. int exponent = 0;
  869. // 2. If x = 0, then
  870. if (number.is_zero()) {
  871. // a. Let m be the String consisting of p occurrences of the character "0".
  872. result.formatted_string = String::repeated('0', precision);
  873. // b. Let e be 0.
  874. exponent = 0;
  875. // c. Let xFinal be 0.
  876. result.rounded_number = MathematicalValue { 0.0 };
  877. }
  878. // 3. Else,
  879. else {
  880. // FIXME: The result of these steps isn't entirely accurate for large values of 'p' (which
  881. // defaults to 21, resulting in numbers on the order of 10^21). Either AK::format or
  882. // our Number::toString AO (double_to_string in Value.cpp) will need to be improved
  883. // to produce more accurate results.
  884. // a. Let n1 and e1 each be an integer and r1 a mathematical value, with r1 = ToRawPrecisionFn(n1, e1, p), such that r1 ≤ x and r1 is maximized.
  885. auto [number1, exponent1, rounded1] = to_raw_precision_function(number, precision, PreferredResult::LessThanNumber);
  886. // b. Let n2 and e2 each be an integer and r2 a mathematical value, with r2 = ToRawPrecisionFn(n2, e2, p), such that r2 ≥ x and r2 is minimized.
  887. auto [number2, exponent2, rounded2] = to_raw_precision_function(number, precision, PreferredResult::GreaterThanNumber);
  888. // c. Let r be ApplyUnsignedRoundingMode(x, r1, r2, unsignedRoundingMode).
  889. auto rounded = apply_unsigned_rounding_mode(number, rounded1, rounded2, unsigned_rounding_mode);
  890. MathematicalValue n;
  891. // d. If r is r1, then
  892. if (rounded == RoundingDecision::LowerValue) {
  893. // i. Let n be n1.
  894. n = move(number1);
  895. // ii. Let e be e1.
  896. exponent = exponent1;
  897. // iii. Let xFinal be r1.
  898. result.rounded_number = move(rounded1);
  899. }
  900. // e. Else,
  901. else {
  902. // i. Let n be n2.
  903. n = move(number2);
  904. // ii. Let e be e2.
  905. exponent = exponent2;
  906. // iii. Let xFinal be r2.
  907. result.rounded_number = move(rounded2);
  908. }
  909. // f. Let m be the String consisting of the digits of the decimal representation of n (in order, with no leading zeroes).
  910. result.formatted_string = n.to_string();
  911. }
  912. // 4. If e ≥ p–1, then
  913. if (exponent >= (precision - 1)) {
  914. // a. Let m be the string-concatenation of m and e–p+1 occurrences of the character "0".
  915. result.formatted_string = String::formatted(
  916. "{}{}",
  917. result.formatted_string,
  918. String::repeated('0', exponent - precision + 1));
  919. // b. Let int be e+1.
  920. result.digits = exponent + 1;
  921. }
  922. // 5. Else if e ≥ 0, then
  923. else if (exponent >= 0) {
  924. // a. Let m be the string-concatenation of the first e+1 characters of m, the character ".", and the remaining p–(e+1) characters of m.
  925. result.formatted_string = String::formatted(
  926. "{}.{}",
  927. result.formatted_string.substring_view(0, exponent + 1),
  928. result.formatted_string.substring_view(exponent + 1));
  929. // b. Let int be e+1.
  930. result.digits = exponent + 1;
  931. }
  932. // 6. Else,
  933. else {
  934. // a. Assert: e < 0.
  935. // b. Let m be the string-concatenation of "0.", –(e+1) occurrences of the character "0", and m.
  936. result.formatted_string = String::formatted(
  937. "0.{}{}",
  938. String::repeated('0', -1 * (exponent + 1)),
  939. result.formatted_string);
  940. // c. Let int be 1.
  941. result.digits = 1;
  942. }
  943. // 7. If m contains the character ".", and maxPrecision > minPrecision, then
  944. if (result.formatted_string.contains('.') && (max_precision > min_precision)) {
  945. // a. Let cut be maxPrecision – minPrecision.
  946. int cut = max_precision - min_precision;
  947. // Steps 8b-8c are implemented by cut_trailing_zeroes.
  948. result.formatted_string = cut_trailing_zeroes(result.formatted_string, cut);
  949. }
  950. // 8. Return the Record { [[FormattedString]]: m, [[RoundedNumber]]: xFinal, [[IntegerDigitsCount]]: int, [[RoundingMagnitude]]: e–p+1 }.
  951. result.rounding_magnitude = exponent - precision + 1;
  952. return result;
  953. }
  954. // ToRawFixedFn, https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#eqn-ToRawFixedFn
  955. static auto to_raw_fixed_function(MathematicalValue const& number, int fraction, int rounding_increment, PreferredResult mode)
  956. {
  957. struct {
  958. MathematicalValue number;
  959. MathematicalValue rounded;
  960. } result {};
  961. if (number.is_number()) {
  962. result.number = number.multiplied_by_power(fraction);
  963. switch (mode) {
  964. case PreferredResult::LessThanNumber:
  965. result.number = MathematicalValue { floor(result.number.as_number()) };
  966. break;
  967. case PreferredResult::GreaterThanNumber:
  968. result.number = MathematicalValue { ceil(result.number.as_number()) };
  969. break;
  970. }
  971. } else {
  972. // NOTE: In order to round the BigInt to the proper precision, this computation is initially off by a
  973. // factor of 10. This lets us inspect the ones digit and then round up if needed.
  974. result.number = number.multiplied_by_power(fraction - 1);
  975. // FIXME: Can we do this without string conversion?
  976. auto digits = result.number.to_string();
  977. auto digit = digits.substring_view(digits.length() - 1);
  978. result.number = result.number.multiplied_by(10);
  979. if (mode == PreferredResult::GreaterThanNumber && digit.to_uint().value() != 0)
  980. result.number = result.number.plus(1);
  981. }
  982. while (!result.number.modulo_is_zero(rounding_increment)) {
  983. switch (mode) {
  984. case PreferredResult::LessThanNumber:
  985. result.number = result.number.minus(1);
  986. break;
  987. case PreferredResult::GreaterThanNumber:
  988. result.number = result.number.plus(1);
  989. break;
  990. }
  991. }
  992. result.rounded = result.number.divided_by_power(fraction);
  993. return result;
  994. }
  995. // 15.5.9 ToRawFixed ( x, minInteger, minFraction, maxFraction ), https://tc39.es/ecma402/#sec-torawfixed
  996. // 1.1.11 ToRawFixed ( x, minFraction, maxFraction, roundingIncrement, unsignedRoundingMode ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-torawfixed
  997. RawFormatResult to_raw_fixed(MathematicalValue const& number, int min_fraction, int max_fraction, int rounding_increment, Optional<NumberFormat::UnsignedRoundingMode> const& unsigned_rounding_mode)
  998. {
  999. RawFormatResult result {};
  1000. // 1. Let f be maxFraction.
  1001. int fraction = max_fraction;
  1002. // 2. Let n1 be an integer and r1 a mathematical value, with r1 = ToRawFixedFn(n1, f), such that n1 modulo roundingIncrement = 0, r1 ≤ x, and r1 is maximized.
  1003. auto [number1, rounded1] = to_raw_fixed_function(number, fraction, rounding_increment, PreferredResult::LessThanNumber);
  1004. // 3. Let n2 be an integer and r2 a mathematical value, with r2 = ToRawFixedFn(n2, f), such that n2 modulo roundingIncrement = 0, r2 ≥ x, and r2 is minimized.
  1005. auto [number2, rounded2] = to_raw_fixed_function(number, fraction, rounding_increment, PreferredResult::GreaterThanNumber);
  1006. // 4. Let r be ApplyUnsignedRoundingMode(x, r1, r2, unsignedRoundingMode).
  1007. auto rounded = apply_unsigned_rounding_mode(number, rounded1, rounded2, unsigned_rounding_mode);
  1008. MathematicalValue n;
  1009. // 5. If r is r1, then
  1010. if (rounded == RoundingDecision::LowerValue) {
  1011. // a. Let n be n1.
  1012. n = move(number1);
  1013. // b. Let xFinal be r1.
  1014. result.rounded_number = move(rounded1);
  1015. }
  1016. // 6. Else,
  1017. else {
  1018. // a. Let n be n2.
  1019. n = move(number2);
  1020. // b. Let xFinal be r2.
  1021. result.rounded_number = move(rounded2);
  1022. }
  1023. // 7. If n = 0, let m be "0". Otherwise, let m be the String consisting of the digits of the decimal representation of n (in order, with no leading zeroes).
  1024. result.formatted_string = n.is_zero() ? String("0"sv) : n.to_string();
  1025. // 8. If f ≠ 0, then
  1026. if (fraction != 0) {
  1027. // a. Let k be the number of characters in m.
  1028. auto decimals = result.formatted_string.length();
  1029. // b. If k ≤ f, then
  1030. if (decimals <= static_cast<size_t>(fraction)) {
  1031. // i. Let z be the String value consisting of f+1–k occurrences of the character "0".
  1032. auto zeroes = String::repeated('0', fraction + 1 - decimals);
  1033. // ii. Let m be the string-concatenation of z and m.
  1034. result.formatted_string = String::formatted("{}{}", zeroes, result.formatted_string);
  1035. // iii. Let k be f+1.
  1036. decimals = fraction + 1;
  1037. }
  1038. // c. Let a be the first k–f characters of m, and let b be the remaining f characters of m.
  1039. auto a = result.formatted_string.substring_view(0, decimals - fraction);
  1040. auto b = result.formatted_string.substring_view(decimals - fraction, fraction);
  1041. // d. Let m be the string-concatenation of a, ".", and b.
  1042. result.formatted_string = String::formatted("{}.{}", a, b);
  1043. // e. Let int be the number of characters in a.
  1044. result.digits = a.length();
  1045. }
  1046. // 9. Else, let int be the number of characters in m.
  1047. else {
  1048. result.digits = result.formatted_string.length();
  1049. }
  1050. // 10. Let cut be maxFraction – minFraction.
  1051. int cut = max_fraction - min_fraction;
  1052. // Steps 11-12 are implemented by cut_trailing_zeroes.
  1053. result.formatted_string = cut_trailing_zeroes(result.formatted_string, cut);
  1054. // 13. Return the Record { [[FormattedString]]: m, [[RoundedNumber]]: xFinal, [[IntegerDigitsCount]]: int, [[RoundingMagnitude]]: –f }.
  1055. result.rounding_magnitude = -fraction;
  1056. return result;
  1057. }
  1058. // 15.5.11 GetNumberFormatPattern ( numberFormat, x ), https://tc39.es/ecma402/#sec-getnumberformatpattern
  1059. // 1.1.14 GetNumberFormatPattern ( numberFormat, x ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-getnumberformatpattern
  1060. Optional<Variant<StringView, String>> get_number_format_pattern(GlobalObject& global_object, NumberFormat& number_format, MathematicalValue const& number, Unicode::NumberFormat& found_pattern)
  1061. {
  1062. // 1. Let localeData be %NumberFormat%.[[LocaleData]].
  1063. // 2. Let dataLocale be numberFormat.[[DataLocale]].
  1064. // 3. Let dataLocaleData be localeData.[[<dataLocale>]].
  1065. // 4. Let patterns be dataLocaleData.[[patterns]].
  1066. // 5. Assert: patterns is a Record (see 15.3.3).
  1067. Optional<Unicode::NumberFormat> patterns;
  1068. // 6. Let style be numberFormat.[[Style]].
  1069. switch (number_format.style()) {
  1070. // 7. If style is "percent", then
  1071. case NumberFormat::Style::Percent:
  1072. // a. Let patterns be patterns.[[percent]].
  1073. patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Percent);
  1074. break;
  1075. // 8. Else if style is "unit", then
  1076. case NumberFormat::Style::Unit: {
  1077. // a. Let unit be numberFormat.[[Unit]].
  1078. // b. Let unitDisplay be numberFormat.[[UnitDisplay]].
  1079. // c. Let patterns be patterns.[[unit]].
  1080. // d. If patterns doesn't have a field [[<unit>]], then
  1081. // i. Let unit be "fallback".
  1082. // e. Let patterns be patterns.[[<unit>]].
  1083. // f. Let patterns be patterns.[[<unitDisplay>]].
  1084. auto formats = Unicode::get_unit_formats(number_format.data_locale(), number_format.unit(), number_format.unit_display());
  1085. auto plurality = resolve_plural(number_format, Unicode::PluralForm::Cardinal, number.to_value(global_object));
  1086. if (auto it = formats.find_if([&](auto& p) { return p.plurality == plurality; }); it != formats.end())
  1087. patterns = move(*it);
  1088. break;
  1089. }
  1090. // 9. Else if style is "currency", then
  1091. case NumberFormat::Style::Currency:
  1092. // a. Let currency be numberFormat.[[Currency]].
  1093. // b. Let currencyDisplay be numberFormat.[[CurrencyDisplay]].
  1094. // c. Let currencySign be numberFormat.[[CurrencySign]].
  1095. // d. Let patterns be patterns.[[currency]].
  1096. // e. If patterns doesn't have a field [[<currency>]], then
  1097. // i. Let currency be "fallback".
  1098. // f. Let patterns be patterns.[[<currency>]].
  1099. // g. Let patterns be patterns.[[<currencyDisplay>]].
  1100. // h. Let patterns be patterns.[[<currencySign>]].
  1101. // Handling of other [[CurrencyDisplay]] options will occur after [[SignDisplay]].
  1102. if (number_format.currency_display() == NumberFormat::CurrencyDisplay::Name) {
  1103. auto formats = Unicode::get_compact_number_system_formats(number_format.data_locale(), number_format.numbering_system(), Unicode::CompactNumberFormatType::CurrencyUnit);
  1104. auto plurality = resolve_plural(number_format, Unicode::PluralForm::Cardinal, number.to_value(global_object));
  1105. if (auto it = formats.find_if([&](auto& p) { return p.plurality == plurality; }); it != formats.end()) {
  1106. patterns = move(*it);
  1107. break;
  1108. }
  1109. }
  1110. switch (number_format.currency_sign()) {
  1111. case NumberFormat::CurrencySign::Standard:
  1112. patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Currency);
  1113. break;
  1114. case NumberFormat::CurrencySign::Accounting:
  1115. patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Accounting);
  1116. break;
  1117. }
  1118. break;
  1119. // 10. Else,
  1120. case NumberFormat::Style::Decimal:
  1121. // a. Assert: style is "decimal".
  1122. // b. Let patterns be patterns.[[decimal]].
  1123. patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Decimal);
  1124. break;
  1125. default:
  1126. VERIFY_NOT_REACHED();
  1127. }
  1128. if (!patterns.has_value())
  1129. return {};
  1130. StringView pattern;
  1131. // 11. Let signDisplay be numberFormat.[[SignDisplay]].
  1132. switch (number_format.sign_display()) {
  1133. // 12. If signDisplay is "never", then
  1134. case NumberFormat::SignDisplay::Never:
  1135. // a. Let pattern be patterns.[[zeroPattern]].
  1136. pattern = patterns->zero_format;
  1137. break;
  1138. // 13. Else if signDisplay is "auto", then
  1139. case NumberFormat::SignDisplay::Auto:
  1140. // a. If x is 0 or x > 0 or x is NaN, then
  1141. if (number.is_zero() || number.is_positive() || number.is_nan()) {
  1142. // i. Let pattern be patterns.[[zeroPattern]].
  1143. pattern = patterns->zero_format;
  1144. }
  1145. // b. Else,
  1146. else {
  1147. // i. Let pattern be patterns.[[negativePattern]].
  1148. pattern = patterns->negative_format;
  1149. }
  1150. break;
  1151. // 14. Else if signDisplay is "always", then
  1152. case NumberFormat::SignDisplay::Always:
  1153. // a. If x is 0 or x > 0 or x is NaN, then
  1154. if (number.is_zero() || number.is_positive() || number.is_nan()) {
  1155. // i. Let pattern be patterns.[[positivePattern]].
  1156. pattern = patterns->positive_format;
  1157. }
  1158. // b. Else,
  1159. else {
  1160. // i. Let pattern be patterns.[[negativePattern]].
  1161. pattern = patterns->negative_format;
  1162. }
  1163. break;
  1164. // 15. Else if signDisplay is "exceptZero", then
  1165. case NumberFormat::SignDisplay::ExceptZero:
  1166. // a. If x is 0 or x is -0 or x is NaN, then
  1167. if (number.is_zero() || number.is_negative_zero() || number.is_nan()) {
  1168. // i. Let pattern be patterns.[[zeroPattern]].
  1169. pattern = patterns->zero_format;
  1170. }
  1171. // b. Else if x > 0, then
  1172. else if (number.is_positive()) {
  1173. // i. Let pattern be patterns.[[positivePattern]].
  1174. pattern = patterns->positive_format;
  1175. }
  1176. // c. Else,
  1177. else {
  1178. // i. Let pattern be patterns.[[negativePattern]].
  1179. pattern = patterns->negative_format;
  1180. }
  1181. break;
  1182. // 16. Else,
  1183. case NumberFormat::SignDisplay::Negative:
  1184. // a. Assert: signDisplay is "negative".
  1185. // b. If x is 0 or x is -0 or x > 0 or x is NaN, then
  1186. if (number.is_zero() || number.is_negative_zero() || number.is_positive() || number.is_nan()) {
  1187. // i. Let pattern be patterns.[[zeroPattern]].
  1188. pattern = patterns->zero_format;
  1189. }
  1190. // c. Else,
  1191. else {
  1192. // i. Let pattern be patterns.[[negativePattern]].
  1193. pattern = patterns->negative_format;
  1194. }
  1195. break;
  1196. default:
  1197. VERIFY_NOT_REACHED();
  1198. }
  1199. found_pattern = patterns.release_value();
  1200. // Handling of steps 9b/9g: Depending on the currency display and the format pattern found above,
  1201. // we might need to mutate the format pattern to inject a space between the currency display and
  1202. // the currency number.
  1203. if (number_format.style() == NumberFormat::Style::Currency) {
  1204. auto modified_pattern = Unicode::augment_currency_format_pattern(number_format.resolve_currency_display(), pattern);
  1205. if (modified_pattern.has_value())
  1206. return modified_pattern.release_value();
  1207. }
  1208. // 16. Return pattern.
  1209. return pattern;
  1210. }
  1211. // 15.5.12 GetNotationSubPattern ( numberFormat, exponent ), https://tc39.es/ecma402/#sec-getnotationsubpattern
  1212. Optional<StringView> get_notation_sub_pattern(NumberFormat& number_format, int exponent)
  1213. {
  1214. // 1. Let localeData be %NumberFormat%.[[LocaleData]].
  1215. // 2. Let dataLocale be numberFormat.[[DataLocale]].
  1216. // 3. Let dataLocaleData be localeData.[[<dataLocale>]].
  1217. // 4. Let notationSubPatterns be dataLocaleData.[[notationSubPatterns]].
  1218. // 5. Assert: notationSubPatterns is a Record (see 15.3.3).
  1219. // 6. Let notation be numberFormat.[[Notation]].
  1220. auto notation = number_format.notation();
  1221. // 7. If notation is "scientific" or notation is "engineering", then
  1222. if ((notation == NumberFormat::Notation::Scientific) || (notation == NumberFormat::Notation::Engineering)) {
  1223. // a. Return notationSubPatterns.[[scientific]].
  1224. auto notation_sub_patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Scientific);
  1225. if (!notation_sub_patterns.has_value())
  1226. return {};
  1227. return notation_sub_patterns->zero_format;
  1228. }
  1229. // 8. Else if exponent is not 0, then
  1230. else if (exponent != 0) {
  1231. // a. Assert: notation is "compact".
  1232. VERIFY(notation == NumberFormat::Notation::Compact);
  1233. // b. Let compactDisplay be numberFormat.[[CompactDisplay]].
  1234. // c. Let compactPatterns be notationSubPatterns.[[compact]].[[<compactDisplay>]].
  1235. // d. Return compactPatterns.[[<exponent>]].
  1236. if (number_format.has_compact_format())
  1237. return number_format.compact_format().zero_format;
  1238. }
  1239. // 9. Else,
  1240. // a. Return "{number}".
  1241. return "{number}"sv;
  1242. }
  1243. // 15.5.13 ComputeExponent ( numberFormat, x ), https://tc39.es/ecma402/#sec-computeexponent
  1244. int compute_exponent(NumberFormat& number_format, MathematicalValue number)
  1245. {
  1246. // 1. If x = 0, then
  1247. if (number.is_zero()) {
  1248. // a. Return 0.
  1249. return 0;
  1250. }
  1251. // 2. If x < 0, then
  1252. if (number.is_negative()) {
  1253. // a. Let x = -x.
  1254. number.negate();
  1255. }
  1256. // 3. Let magnitude be the base 10 logarithm of x rounded down to the nearest integer.
  1257. int magnitude = number.logarithmic_floor();
  1258. // 4. Let exponent be ComputeExponentForMagnitude(numberFormat, magnitude).
  1259. int exponent = compute_exponent_for_magnitude(number_format, magnitude);
  1260. // 5. Let x be x × 10^(-exponent).
  1261. number = number.multiplied_by_power(-exponent);
  1262. // 6. Let formatNumberResult be FormatNumericToString(numberFormat, x).
  1263. auto format_number_result = format_numeric_to_string(number_format, move(number));
  1264. // 7. If formatNumberResult.[[RoundedNumber]] = 0, then
  1265. if (format_number_result.rounded_number.is_zero()) {
  1266. // a. Return exponent.
  1267. return exponent;
  1268. }
  1269. // 8. Let newMagnitude be the base 10 logarithm of formatNumberResult.[[RoundedNumber]] rounded down to the nearest integer.
  1270. int new_magnitude = format_number_result.rounded_number.logarithmic_floor();
  1271. // 9. If newMagnitude is magnitude – exponent, then
  1272. if (new_magnitude == magnitude - exponent) {
  1273. // a. Return exponent.
  1274. return exponent;
  1275. }
  1276. // 10. Return ComputeExponentForMagnitude(numberFormat, magnitude + 1).
  1277. return compute_exponent_for_magnitude(number_format, magnitude + 1);
  1278. }
  1279. // 15.5.14 ComputeExponentForMagnitude ( numberFormat, magnitude ), https://tc39.es/ecma402/#sec-computeexponentformagnitude
  1280. int compute_exponent_for_magnitude(NumberFormat& number_format, int magnitude)
  1281. {
  1282. // 1. Let notation be numberFormat.[[Notation]].
  1283. switch (number_format.notation()) {
  1284. // 2. If notation is "standard", then
  1285. case NumberFormat::Notation::Standard:
  1286. // a. Return 0.
  1287. return 0;
  1288. // 3. Else if notation is "scientific", then
  1289. case NumberFormat::Notation::Scientific:
  1290. // a. Return magnitude.
  1291. return magnitude;
  1292. // 4. Else if notation is "engineering", then
  1293. case NumberFormat::Notation::Engineering: {
  1294. // a. Let thousands be the greatest integer that is not greater than magnitude / 3.
  1295. double thousands = floor(static_cast<double>(magnitude) / 3.0);
  1296. // b. Return thousands × 3.
  1297. return static_cast<int>(thousands) * 3;
  1298. }
  1299. // 5. Else,
  1300. case NumberFormat::Notation::Compact: {
  1301. // a. Assert: notation is "compact".
  1302. VERIFY(number_format.has_compact_display());
  1303. // b. Let exponent be an implementation- and locale-dependent (ILD) integer by which to scale a number of the given magnitude in compact notation for the current locale.
  1304. // c. Return exponent.
  1305. Vector<Unicode::NumberFormat> format_rules;
  1306. if (number_format.style() == NumberFormat::Style::Currency)
  1307. format_rules = Unicode::get_compact_number_system_formats(number_format.data_locale(), number_format.numbering_system(), Unicode::CompactNumberFormatType::CurrencyShort);
  1308. else if (number_format.compact_display() == NumberFormat::CompactDisplay::Long)
  1309. format_rules = Unicode::get_compact_number_system_formats(number_format.data_locale(), number_format.numbering_system(), Unicode::CompactNumberFormatType::DecimalLong);
  1310. else
  1311. format_rules = Unicode::get_compact_number_system_formats(number_format.data_locale(), number_format.numbering_system(), Unicode::CompactNumberFormatType::DecimalShort);
  1312. Unicode::NumberFormat const* best_number_format = nullptr;
  1313. for (auto const& format_rule : format_rules) {
  1314. if (format_rule.magnitude > magnitude)
  1315. break;
  1316. best_number_format = &format_rule;
  1317. }
  1318. if (best_number_format == nullptr)
  1319. return 0;
  1320. number_format.set_compact_format(*best_number_format);
  1321. return best_number_format->exponent;
  1322. }
  1323. default:
  1324. VERIFY_NOT_REACHED();
  1325. }
  1326. }
  1327. // 1.1.18 ToIntlMathematicalValue ( value ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-tointlmathematicalvalue
  1328. ThrowCompletionOr<MathematicalValue> to_intl_mathematical_value(GlobalObject& global_object, Value value)
  1329. {
  1330. // 1. Let primValue be ? ToPrimitive(value, number).
  1331. auto primitive_value = TRY(value.to_primitive(global_object, Value::PreferredType::Number));
  1332. // 2. If Type(primValue) is BigInt, return the mathematical value of primValue.
  1333. if (primitive_value.is_bigint())
  1334. return primitive_value.as_bigint().big_integer();
  1335. // FIXME: The remaining steps are being refactored into a new Runtime Semantic, StringIntlMV.
  1336. // We short-circuit some of these steps to avoid known pitfalls.
  1337. // See: https://github.com/tc39/proposal-intl-numberformat-v3/pull/82
  1338. if (!primitive_value.is_string()) {
  1339. auto number = TRY(primitive_value.to_number(global_object));
  1340. return number.as_double();
  1341. }
  1342. // 3. If Type(primValue) is String,
  1343. // a. Let str be primValue.
  1344. auto const& string = primitive_value.as_string().string();
  1345. // Step 4 handled separately by the FIXME above.
  1346. // 5. If the grammar cannot interpret str as an expansion of StringNumericLiteral, return not-a-number.
  1347. // 6. Let mv be the MV, a mathematical value, of ? ToNumber(str), as described in 7.1.4.1.1.
  1348. auto mathematical_value = TRY(primitive_value.to_number(global_object)).as_double();
  1349. // 7. If mv is 0 and the first non white space code point in str is -, return negative-zero.
  1350. if (mathematical_value == 0.0 && string.view().trim_whitespace(TrimMode::Left).starts_with('-'))
  1351. return MathematicalValue::Symbol::NegativeZero;
  1352. // 8. If mv is 10^10000 and str contains Infinity, return positive-infinity.
  1353. if (mathematical_value == pow(10, 10000) && string.contains("Infinity"sv))
  1354. return MathematicalValue::Symbol::PositiveInfinity;
  1355. // 9. If mv is -10^10000 and str contains Infinity, return negative-infinity.
  1356. if (mathematical_value == pow(-10, 10000) && string.contains("Infinity"sv))
  1357. return MathematicalValue::Symbol::NegativeInfinity;
  1358. // 10. Return mv.
  1359. return mathematical_value;
  1360. }
  1361. // 1.1.19 GetUnsignedRoundingMode ( roundingMode, isNegative ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-getunsignedroundingmode
  1362. NumberFormat::UnsignedRoundingMode get_unsigned_rounding_mode(NumberFormat::RoundingMode rounding_mode, bool is_negative)
  1363. {
  1364. // 1. If isNegative is true, return the specification type in the third column of Table 2 where the first column is roundingMode and the second column is "negative".
  1365. // 2. Else, return the specification type in the third column of Table 2 where the first column is roundingMode and the second column is "positive".
  1366. // Table 2: Conversion from rounding mode to unsigned rounding mode, https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#table-intl-unsigned-rounding-modes
  1367. switch (rounding_mode) {
  1368. case NumberFormat::RoundingMode::Ceil:
  1369. return is_negative ? NumberFormat::UnsignedRoundingMode::Zero : NumberFormat::UnsignedRoundingMode::Infinity;
  1370. case NumberFormat::RoundingMode::Floor:
  1371. return is_negative ? NumberFormat::UnsignedRoundingMode::Infinity : NumberFormat::UnsignedRoundingMode::Zero;
  1372. case NumberFormat::RoundingMode::Expand:
  1373. return NumberFormat::UnsignedRoundingMode::Infinity;
  1374. case NumberFormat::RoundingMode::Trunc:
  1375. return NumberFormat::UnsignedRoundingMode::Zero;
  1376. case NumberFormat::RoundingMode::HalfCeil:
  1377. return is_negative ? NumberFormat::UnsignedRoundingMode::HalfZero : NumberFormat::UnsignedRoundingMode::HalfInfinity;
  1378. case NumberFormat::RoundingMode::HalfFloor:
  1379. return is_negative ? NumberFormat::UnsignedRoundingMode::HalfInfinity : NumberFormat::UnsignedRoundingMode::HalfZero;
  1380. case NumberFormat::RoundingMode::HalfExpand:
  1381. return NumberFormat::UnsignedRoundingMode::HalfInfinity;
  1382. case NumberFormat::RoundingMode::HalfTrunc:
  1383. return NumberFormat::UnsignedRoundingMode::HalfZero;
  1384. case NumberFormat::RoundingMode::HalfEven:
  1385. return NumberFormat::UnsignedRoundingMode::HalfEven;
  1386. default:
  1387. VERIFY_NOT_REACHED();
  1388. };
  1389. }
  1390. // 1.1.20 ApplyUnsignedRoundingMode ( x, r1, r2, unsignedRoundingMode ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-applyunsignedroundingmode
  1391. RoundingDecision apply_unsigned_rounding_mode(MathematicalValue const& x, MathematicalValue const& r1, MathematicalValue const& r2, Optional<NumberFormat::UnsignedRoundingMode> const& unsigned_rounding_mode)
  1392. {
  1393. // 1. If x is equal to r1, return r1.
  1394. if (x.is_equal_to(r1))
  1395. return RoundingDecision::LowerValue;
  1396. // FIXME: We skip this assertion due floating point inaccuracies. For example, entering "1.2345"
  1397. // in the JS REPL results in "1.234499999999999", and may cause this assertion to fail.
  1398. //
  1399. // This should be resolved when the "Intl mathematical value" is implemented to support
  1400. // arbitrarily precise decimals.
  1401. // https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#intl-mathematical-value
  1402. // 2. Assert: r1 < x < r2.
  1403. // 3. Assert: unsignedRoundingMode is not undefined.
  1404. VERIFY(unsigned_rounding_mode.has_value());
  1405. // 4. If unsignedRoundingMode is zero, return r1.
  1406. if (unsigned_rounding_mode == NumberFormat::UnsignedRoundingMode::Zero)
  1407. return RoundingDecision::LowerValue;
  1408. // 5. If unsignedRoundingMode is infinity, return r2.
  1409. if (unsigned_rounding_mode == NumberFormat::UnsignedRoundingMode::Infinity)
  1410. return RoundingDecision::HigherValue;
  1411. // 6. Let d1 be x – r1.
  1412. auto d1 = x.minus(r1);
  1413. // 7. Let d2 be r2 – x.
  1414. auto d2 = r2.minus(x);
  1415. // 8. If d1 < d2, return r1.
  1416. if (d1.is_less_than(d2))
  1417. return RoundingDecision::LowerValue;
  1418. // 9. If d2 < d1, return r2.
  1419. if (d2.is_less_than(d1))
  1420. return RoundingDecision::HigherValue;
  1421. // 10. Assert: d1 is equal to d2.
  1422. VERIFY(d1.is_equal_to(d2));
  1423. // 11. If unsignedRoundingMode is half-zero, return r1.
  1424. if (unsigned_rounding_mode == NumberFormat::UnsignedRoundingMode::HalfZero)
  1425. return RoundingDecision::LowerValue;
  1426. // 12. If unsignedRoundingMode is half-infinity, return r2.
  1427. if (unsigned_rounding_mode == NumberFormat::UnsignedRoundingMode::HalfInfinity)
  1428. return RoundingDecision::HigherValue;
  1429. // 13. Assert: unsignedRoundingMode is half-even.
  1430. VERIFY(unsigned_rounding_mode == NumberFormat::UnsignedRoundingMode::HalfEven);
  1431. // 14. Let cardinality be (r1 / (r2 – r1)) modulo 2.
  1432. auto cardinality = r1.divided_by(r2.minus(r1));
  1433. // 15. If cardinality is 0, return r1.
  1434. if (cardinality.modulo_is_zero(2))
  1435. return RoundingDecision::LowerValue;
  1436. // 16. Return r2.
  1437. return RoundingDecision::HigherValue;
  1438. }
  1439. // 1.1.21 PartitionNumberRangePattern ( numberFormat, x, y ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-partitionnumberrangepattern
  1440. ThrowCompletionOr<Vector<PatternPartitionWithSource>> partition_number_range_pattern(GlobalObject& global_object, NumberFormat& number_format, MathematicalValue start, MathematicalValue end)
  1441. {
  1442. auto& vm = global_object.vm();
  1443. // 1. If x is NaN or y is NaN, throw a RangeError exception.
  1444. if (start.is_nan())
  1445. return vm.throw_completion<RangeError>(global_object, ErrorType::IntlNumberIsNaN, "start"sv);
  1446. if (end.is_nan())
  1447. return vm.throw_completion<RangeError>(global_object, ErrorType::IntlNumberIsNaN, "end"sv);
  1448. // 2. If x is a mathematical value, then
  1449. if (start.is_mathematical_value()) {
  1450. // a. If y is a mathematical value and y < x, throw a RangeError exception.
  1451. if (end.is_mathematical_value() && end.is_less_than(start))
  1452. return vm.throw_completion<RangeError>(global_object, ErrorType::IntlNumberRangeIsInvalid, "start is a mathematical value, end is a mathematical value and end < start"sv);
  1453. // b. Else if y is -∞, throw a RangeError exception.
  1454. if (end.is_negative_infinity())
  1455. return vm.throw_completion<RangeError>(global_object, ErrorType::IntlNumberRangeIsInvalid, "start is a mathematical value, end is -∞"sv);
  1456. // c. Else if y is -0𝔽 and x ≥ 0, throw a RangeError exception.
  1457. if (end.is_negative_zero() && (start.is_zero() || start.is_positive()))
  1458. return vm.throw_completion<RangeError>(global_object, ErrorType::IntlNumberRangeIsInvalid, "start is a mathematical value, end is -0 and start ≥ 0"sv);
  1459. }
  1460. // 3. Else if x is +∞, then
  1461. else if (start.is_positive_infinity()) {
  1462. // a. If y is a mathematical value, throw a RangeError exception.
  1463. if (end.is_mathematical_value())
  1464. return vm.throw_completion<RangeError>(global_object, ErrorType::IntlNumberRangeIsInvalid, "start is +∞, end is a mathematical value"sv);
  1465. // b. Else if y is -∞, throw a RangeError exception.
  1466. if (end.is_negative_infinity())
  1467. return vm.throw_completion<RangeError>(global_object, ErrorType::IntlNumberRangeIsInvalid, "start is +∞, end is -∞"sv);
  1468. // c. Else if y is -0𝔽, throw a RangeError exception.
  1469. if (end.is_negative_zero())
  1470. return vm.throw_completion<RangeError>(global_object, ErrorType::IntlNumberRangeIsInvalid, "start is +∞, end is -0"sv);
  1471. }
  1472. // 4. Else if x is -0𝔽, then
  1473. else if (start.is_negative_zero()) {
  1474. // a. If y is a mathematical value and y < 0, throw a RangeError exception.
  1475. if (end.is_mathematical_value() && end.is_negative())
  1476. return vm.throw_completion<RangeError>(global_object, ErrorType::IntlNumberRangeIsInvalid, "start is -0, end is a mathematical value and end < 0"sv);
  1477. // b. Else if y is -∞, throw a RangeError exception.
  1478. if (end.is_negative_infinity())
  1479. return vm.throw_completion<RangeError>(global_object, ErrorType::IntlNumberRangeIsInvalid, "start is -0, end is -∞"sv);
  1480. }
  1481. // 5. Let result be a new empty List.
  1482. Vector<PatternPartitionWithSource> result;
  1483. // 6. Let xResult be ? PartitionNumberPattern(numberFormat, x).
  1484. auto raw_start_result = partition_number_pattern(global_object, number_format, move(start));
  1485. auto start_result = PatternPartitionWithSource::create_from_parent_list(move(raw_start_result));
  1486. // 7. Let yResult be ? PartitionNumberPattern(numberFormat, y).
  1487. auto raw_end_result = partition_number_pattern(global_object, number_format, move(end));
  1488. auto end_result = PatternPartitionWithSource::create_from_parent_list(move(raw_end_result));
  1489. // 8. If xResult is equal to yResult, return FormatApproximately(numberFormat, xResult).
  1490. if (start_result == end_result)
  1491. return format_approximately(number_format, move(start_result));
  1492. // 9. For each r in xResult, do
  1493. for (auto& part : start_result) {
  1494. // i. Set r.[[Source]] to "startRange".
  1495. part.source = "startRange"sv;
  1496. }
  1497. // 10. Add all elements in xResult to result in order.
  1498. result = move(start_result);
  1499. // 11. Let rangeSeparator be an ILND String value used to separate two numbers.
  1500. auto range_separator_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::RangeSeparator).value_or("-"sv);
  1501. auto range_separator = Unicode::augment_range_pattern(range_separator_symbol, result.last().value, end_result[0].value);
  1502. // 12. Append a new Record { [[Type]]: "literal", [[Value]]: rangeSeparator, [[Source]]: "shared" } element to result.
  1503. PatternPartitionWithSource part;
  1504. part.type = "literal"sv;
  1505. part.value = range_separator.value_or(range_separator_symbol);
  1506. part.source = "shared"sv;
  1507. result.append(move(part));
  1508. // 13. For each r in yResult, do
  1509. for (auto& part : end_result) {
  1510. // a. Set r.[[Source]] to "endRange".
  1511. part.source = "endRange"sv;
  1512. }
  1513. // 14. Add all elements in yResult to result in order.
  1514. result.extend(move(end_result));
  1515. // 15. Return ! CollapseNumberRange(result).
  1516. return collapse_number_range(move(result));
  1517. }
  1518. // 1.1.22 FormatApproximately ( numberFormat, result ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-formatapproximately
  1519. Vector<PatternPartitionWithSource> format_approximately(NumberFormat& number_format, Vector<PatternPartitionWithSource> result)
  1520. {
  1521. // 1. Let i be an index into result, determined by an implementation-defined algorithm based on numberFormat and result.
  1522. // 2. Let approximatelySign be an ILND String value used to signify that a number is approximate.
  1523. auto approximately_sign = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::ApproximatelySign).value_or("~"sv);
  1524. // 3. Insert a new Record { [[Type]]: "approximatelySign", [[Value]]: approximatelySign } at index i in result.
  1525. PatternPartitionWithSource partition;
  1526. partition.type = "approximatelySign"sv;
  1527. partition.value = approximately_sign;
  1528. result.insert_before_matching(move(partition), [](auto const& part) {
  1529. return part.type.is_one_of("integer"sv, "decimal"sv, "plusSign"sv, "minusSign"sv, "percentSign"sv, "currency"sv);
  1530. });
  1531. // 4. Return result.
  1532. return result;
  1533. }
  1534. // 1.1.23 CollapseNumberRange ( result ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-collapsenumberrange
  1535. Vector<PatternPartitionWithSource> collapse_number_range(Vector<PatternPartitionWithSource> result)
  1536. {
  1537. // Returning result unmodified is guaranteed to be a correct implementation of CollapseNumberRange.
  1538. return result;
  1539. }
  1540. // 1.1.24 FormatNumericRange( numberFormat, x, y ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-formatnumericrange
  1541. ThrowCompletionOr<String> format_numeric_range(GlobalObject& global_object, NumberFormat& number_format, MathematicalValue start, MathematicalValue end)
  1542. {
  1543. // 1. Let parts be ? PartitionNumberRangePattern(numberFormat, x, y).
  1544. auto parts = TRY(partition_number_range_pattern(global_object, number_format, move(start), move(end)));
  1545. // 2. Let result be the empty String.
  1546. StringBuilder result;
  1547. // 3. For each part in parts, do
  1548. for (auto& part : parts) {
  1549. // a. Set result to the string-concatenation of result and part.[[Value]].
  1550. result.append(move(part.value));
  1551. }
  1552. // 4. Return result.
  1553. return result.build();
  1554. }
  1555. }