Thread.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586
  1. #include <Kernel/FileSystem/FileDescription.h>
  2. #include <Kernel/Process.h>
  3. #include <Kernel/Scheduler.h>
  4. #include <Kernel/Thread.h>
  5. #include <Kernel/VM/MemoryManager.h>
  6. #include <LibC/signal_numbers.h>
  7. //#define SIGNAL_DEBUG
  8. HashTable<Thread*>& thread_table()
  9. {
  10. ASSERT_INTERRUPTS_DISABLED();
  11. static HashTable<Thread*>* table;
  12. if (!table)
  13. table = new HashTable<Thread*>;
  14. return *table;
  15. }
  16. InlineLinkedList<Thread>* g_runnable_threads;
  17. InlineLinkedList<Thread>* g_nonrunnable_threads;
  18. static const u32 default_kernel_stack_size = 65536;
  19. static const u32 default_userspace_stack_size = 65536;
  20. Thread::Thread(Process& process)
  21. : m_process(process)
  22. , m_tid(process.m_next_tid++)
  23. {
  24. dbgprintf("Thread{%p}: New thread TID=%u in %s(%u)\n", this, m_tid, process.name().characters(), process.pid());
  25. set_default_signal_dispositions();
  26. m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
  27. memset(&m_tss, 0, sizeof(m_tss));
  28. // Only IF is set when a process boots.
  29. m_tss.eflags = 0x0202;
  30. u16 cs, ds, ss;
  31. if (m_process.is_ring0()) {
  32. cs = 0x08;
  33. ds = 0x10;
  34. ss = 0x10;
  35. } else {
  36. cs = 0x1b;
  37. ds = 0x23;
  38. ss = 0x23;
  39. }
  40. m_tss.ds = ds;
  41. m_tss.es = ds;
  42. m_tss.fs = ds;
  43. m_tss.gs = ds;
  44. m_tss.ss = ss;
  45. m_tss.cs = cs;
  46. m_tss.cr3 = m_process.page_directory().cr3();
  47. if (m_process.is_ring0()) {
  48. // FIXME: This memory is leaked.
  49. // But uh, there's also no kernel process termination, so I guess it's not technically leaked...
  50. m_kernel_stack_base = (u32)kmalloc_eternal(default_kernel_stack_size);
  51. m_tss.esp = (m_kernel_stack_base + default_kernel_stack_size) & 0xfffffff8u;
  52. } else {
  53. // Ring3 processes need a separate stack for Ring0.
  54. m_kernel_stack_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Stack (Thread %d)", m_tid));
  55. m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
  56. m_tss.ss0 = 0x10;
  57. m_tss.esp0 = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & 0xfffffff8u;
  58. }
  59. // HACK: Ring2 SS in the TSS is the current PID.
  60. m_tss.ss2 = m_process.pid();
  61. m_far_ptr.offset = 0x98765432;
  62. if (m_process.pid() != 0) {
  63. InterruptDisabler disabler;
  64. thread_table().set(this);
  65. set_thread_list(g_nonrunnable_threads);
  66. }
  67. }
  68. Thread::~Thread()
  69. {
  70. dbgprintf("~Thread{%p}\n", this);
  71. kfree_aligned(m_fpu_state);
  72. {
  73. InterruptDisabler disabler;
  74. if (m_thread_list)
  75. m_thread_list->remove(this);
  76. thread_table().remove(this);
  77. }
  78. if (g_last_fpu_thread == this)
  79. g_last_fpu_thread = nullptr;
  80. if (selector())
  81. gdt_free_entry(selector());
  82. }
  83. void Thread::unblock()
  84. {
  85. m_blocker = nullptr;
  86. if (current == this) {
  87. set_state(Thread::Running);
  88. return;
  89. }
  90. ASSERT(m_state != Thread::Runnable && m_state != Thread::Running);
  91. set_state(Thread::Runnable);
  92. }
  93. void Thread::block_until(Function<bool()>&& condition)
  94. {
  95. m_blocker = make<ConditionBlocker>(condition);
  96. block(Thread::Blocked);
  97. Scheduler::yield();
  98. }
  99. void Thread::block(Thread::State new_state)
  100. {
  101. bool did_unlock = process().big_lock().unlock_if_locked();
  102. if (state() != Thread::Running) {
  103. dbgprintf("Thread::block: %s(%u) block(%u/%s) with state=%u/%s\n", process().name().characters(), process().pid(), new_state, to_string(new_state), state(), to_string(state()));
  104. }
  105. ASSERT(state() == Thread::Running);
  106. m_was_interrupted_while_blocked = false;
  107. set_state(new_state);
  108. Scheduler::yield();
  109. if (did_unlock)
  110. process().big_lock().lock();
  111. }
  112. void Thread::block(Blocker& blocker)
  113. {
  114. m_blocker = &blocker;
  115. block(Thread::Blocked);
  116. }
  117. u64 Thread::sleep(u32 ticks)
  118. {
  119. ASSERT(state() == Thread::Running);
  120. u64 wakeup_time = g_uptime + ticks;
  121. current->block(*new Thread::SleepBlocker(wakeup_time));
  122. return wakeup_time;
  123. }
  124. const char* to_string(Thread::State state)
  125. {
  126. switch (state) {
  127. case Thread::Invalid:
  128. return "Invalid";
  129. case Thread::Runnable:
  130. return "Runnable";
  131. case Thread::Running:
  132. return "Running";
  133. case Thread::Dying:
  134. return "Dying";
  135. case Thread::Dead:
  136. return "Dead";
  137. case Thread::Stopped:
  138. return "Stopped";
  139. case Thread::Skip1SchedulerPass:
  140. return "Skip1";
  141. case Thread::Skip0SchedulerPasses:
  142. return "Skip0";
  143. case Thread::Blocked:
  144. return "Blocked";
  145. }
  146. kprintf("to_string(Thread::State): Invalid state: %u\n", state);
  147. ASSERT_NOT_REACHED();
  148. return nullptr;
  149. }
  150. void Thread::finalize()
  151. {
  152. dbgprintf("Finalizing Thread %u in %s(%u)\n", tid(), m_process.name().characters(), pid());
  153. set_state(Thread::State::Dead);
  154. m_blocker = nullptr;
  155. if (this == &m_process.main_thread())
  156. m_process.finalize();
  157. }
  158. void Thread::finalize_dying_threads()
  159. {
  160. Vector<Thread*, 32> dying_threads;
  161. {
  162. InterruptDisabler disabler;
  163. for_each_in_state(Thread::State::Dying, [&](Thread& thread) {
  164. dying_threads.append(&thread);
  165. });
  166. }
  167. for (auto* thread : dying_threads)
  168. thread->finalize();
  169. }
  170. bool Thread::tick()
  171. {
  172. ++m_ticks;
  173. if (tss().cs & 3)
  174. ++m_process.m_ticks_in_user;
  175. else
  176. ++m_process.m_ticks_in_kernel;
  177. return --m_ticks_left;
  178. }
  179. void Thread::send_signal(u8 signal, Process* sender)
  180. {
  181. ASSERT(signal < 32);
  182. InterruptDisabler disabler;
  183. // FIXME: Figure out what to do for masked signals. Should we also ignore them here?
  184. if (should_ignore_signal(signal)) {
  185. dbg() << "signal " << signal << " was ignored by " << process();
  186. return;
  187. }
  188. if (sender)
  189. dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, process().name().characters(), pid());
  190. else
  191. dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, process().name().characters(), pid());
  192. m_pending_signals |= 1 << signal;
  193. }
  194. bool Thread::has_unmasked_pending_signals() const
  195. {
  196. return m_pending_signals & ~m_signal_mask;
  197. }
  198. ShouldUnblockThread Thread::dispatch_one_pending_signal()
  199. {
  200. ASSERT_INTERRUPTS_DISABLED();
  201. u32 signal_candidates = m_pending_signals & ~m_signal_mask;
  202. ASSERT(signal_candidates);
  203. u8 signal = 0;
  204. for (; signal < 32; ++signal) {
  205. if (signal_candidates & (1 << signal)) {
  206. break;
  207. }
  208. }
  209. return dispatch_signal(signal);
  210. }
  211. enum class DefaultSignalAction {
  212. Terminate,
  213. Ignore,
  214. DumpCore,
  215. Stop,
  216. Continue,
  217. };
  218. DefaultSignalAction default_signal_action(u8 signal)
  219. {
  220. ASSERT(signal && signal < NSIG);
  221. switch (signal) {
  222. case SIGHUP:
  223. case SIGINT:
  224. case SIGKILL:
  225. case SIGPIPE:
  226. case SIGALRM:
  227. case SIGUSR1:
  228. case SIGUSR2:
  229. case SIGVTALRM:
  230. case SIGSTKFLT:
  231. case SIGIO:
  232. case SIGPROF:
  233. case SIGTERM:
  234. case SIGPWR:
  235. return DefaultSignalAction::Terminate;
  236. case SIGCHLD:
  237. case SIGURG:
  238. case SIGWINCH:
  239. return DefaultSignalAction::Ignore;
  240. case SIGQUIT:
  241. case SIGILL:
  242. case SIGTRAP:
  243. case SIGABRT:
  244. case SIGBUS:
  245. case SIGFPE:
  246. case SIGSEGV:
  247. case SIGXCPU:
  248. case SIGXFSZ:
  249. case SIGSYS:
  250. return DefaultSignalAction::DumpCore;
  251. case SIGCONT:
  252. return DefaultSignalAction::Continue;
  253. case SIGSTOP:
  254. case SIGTSTP:
  255. case SIGTTIN:
  256. case SIGTTOU:
  257. return DefaultSignalAction::Stop;
  258. }
  259. ASSERT_NOT_REACHED();
  260. }
  261. bool Thread::should_ignore_signal(u8 signal) const
  262. {
  263. ASSERT(signal < 32);
  264. auto& action = m_signal_action_data[signal];
  265. if (action.handler_or_sigaction.is_null())
  266. return default_signal_action(signal) == DefaultSignalAction::Ignore;
  267. if (action.handler_or_sigaction.as_ptr() == SIG_IGN)
  268. return true;
  269. return false;
  270. }
  271. ShouldUnblockThread Thread::dispatch_signal(u8 signal)
  272. {
  273. ASSERT_INTERRUPTS_DISABLED();
  274. ASSERT(signal < 32);
  275. #ifdef SIGNAL_DEBUG
  276. kprintf("dispatch_signal %s(%u) <- %u\n", process().name().characters(), pid(), signal);
  277. #endif
  278. auto& action = m_signal_action_data[signal];
  279. // FIXME: Implement SA_SIGINFO signal handlers.
  280. ASSERT(!(action.flags & SA_SIGINFO));
  281. // Mark this signal as handled.
  282. m_pending_signals &= ~(1 << signal);
  283. if (signal == SIGSTOP) {
  284. set_state(Stopped);
  285. return ShouldUnblockThread::No;
  286. }
  287. if (signal == SIGCONT && state() == Stopped)
  288. set_state(Runnable);
  289. auto handler_vaddr = action.handler_or_sigaction;
  290. if (handler_vaddr.is_null()) {
  291. switch (default_signal_action(signal)) {
  292. case DefaultSignalAction::Stop:
  293. set_state(Stopped);
  294. return ShouldUnblockThread::No;
  295. case DefaultSignalAction::DumpCore:
  296. case DefaultSignalAction::Terminate:
  297. m_process.terminate_due_to_signal(signal);
  298. return ShouldUnblockThread::No;
  299. case DefaultSignalAction::Ignore:
  300. ASSERT_NOT_REACHED();
  301. case DefaultSignalAction::Continue:
  302. return ShouldUnblockThread::Yes;
  303. }
  304. ASSERT_NOT_REACHED();
  305. }
  306. if (handler_vaddr.as_ptr() == SIG_IGN) {
  307. #ifdef SIGNAL_DEBUG
  308. kprintf("%s(%u) ignored signal %u\n", process().name().characters(), pid(), signal);
  309. #endif
  310. return ShouldUnblockThread::Yes;
  311. }
  312. u32 old_signal_mask = m_signal_mask;
  313. u32 new_signal_mask = action.mask;
  314. if (action.flags & SA_NODEFER)
  315. new_signal_mask &= ~(1 << signal);
  316. else
  317. new_signal_mask |= 1 << signal;
  318. m_signal_mask |= new_signal_mask;
  319. Scheduler::prepare_to_modify_tss(*this);
  320. u16 ret_cs = m_tss.cs;
  321. u32 ret_eip = m_tss.eip;
  322. u32 ret_eflags = m_tss.eflags;
  323. bool interrupting_in_kernel = (ret_cs & 3) == 0;
  324. ProcessPagingScope paging_scope(m_process);
  325. m_process.create_signal_trampolines_if_needed();
  326. if (interrupting_in_kernel) {
  327. #ifdef SIGNAL_DEBUG
  328. kprintf("dispatch_signal to %s(%u) in state=%s with return to %w:%x\n", process().name().characters(), pid(), to_string(state()), ret_cs, ret_eip);
  329. #endif
  330. ASSERT(is_blocked());
  331. m_tss_to_resume_kernel = make<TSS32>(m_tss);
  332. #ifdef SIGNAL_DEBUG
  333. kprintf("resume tss pc: %w:%x stack: %w:%x flags: %x cr3: %x\n", m_tss_to_resume_kernel->cs, m_tss_to_resume_kernel->eip, m_tss_to_resume_kernel->ss, m_tss_to_resume_kernel->esp, m_tss_to_resume_kernel->eflags, m_tss_to_resume_kernel->cr3);
  334. #endif
  335. if (!m_signal_stack_user_region) {
  336. m_signal_stack_user_region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, String::format("User Signal Stack (Thread %d)", m_tid));
  337. ASSERT(m_signal_stack_user_region);
  338. }
  339. if (!m_kernel_stack_for_signal_handler_region)
  340. m_kernel_stack_for_signal_handler_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Signal Stack (Thread %d)", m_tid));
  341. m_tss.ss = 0x23;
  342. m_tss.esp = m_signal_stack_user_region->vaddr().offset(default_userspace_stack_size).get();
  343. m_tss.ss0 = 0x10;
  344. m_tss.esp0 = m_kernel_stack_for_signal_handler_region->vaddr().offset(default_kernel_stack_size).get();
  345. push_value_on_stack(0);
  346. } else {
  347. push_value_on_stack(ret_eip);
  348. push_value_on_stack(ret_eflags);
  349. // PUSHA
  350. u32 old_esp = m_tss.esp;
  351. push_value_on_stack(m_tss.eax);
  352. push_value_on_stack(m_tss.ecx);
  353. push_value_on_stack(m_tss.edx);
  354. push_value_on_stack(m_tss.ebx);
  355. push_value_on_stack(old_esp);
  356. push_value_on_stack(m_tss.ebp);
  357. push_value_on_stack(m_tss.esi);
  358. push_value_on_stack(m_tss.edi);
  359. // Align the stack.
  360. m_tss.esp -= 12;
  361. }
  362. // PUSH old_signal_mask
  363. push_value_on_stack(old_signal_mask);
  364. m_tss.cs = 0x1b;
  365. m_tss.ds = 0x23;
  366. m_tss.es = 0x23;
  367. m_tss.fs = 0x23;
  368. m_tss.gs = 0x23;
  369. m_tss.eip = handler_vaddr.get();
  370. // FIXME: Should we worry about the stack being 16 byte aligned when entering a signal handler?
  371. push_value_on_stack(signal);
  372. if (interrupting_in_kernel)
  373. push_value_on_stack(m_process.m_return_to_ring0_from_signal_trampoline.get());
  374. else
  375. push_value_on_stack(m_process.m_return_to_ring3_from_signal_trampoline.get());
  376. ASSERT((m_tss.esp % 16) == 0);
  377. // FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal.
  378. set_state(Skip1SchedulerPass);
  379. #ifdef SIGNAL_DEBUG
  380. kprintf("signal: Okay, %s(%u) {%s} has been primed with signal handler %w:%x\n", process().name().characters(), pid(), to_string(state()), m_tss.cs, m_tss.eip);
  381. #endif
  382. return ShouldUnblockThread::Yes;
  383. }
  384. void Thread::set_default_signal_dispositions()
  385. {
  386. // FIXME: Set up all the right default actions. See signal(7).
  387. memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
  388. m_signal_action_data[SIGCHLD].handler_or_sigaction = VirtualAddress((u32)SIG_IGN);
  389. m_signal_action_data[SIGWINCH].handler_or_sigaction = VirtualAddress((u32)SIG_IGN);
  390. }
  391. void Thread::push_value_on_stack(u32 value)
  392. {
  393. m_tss.esp -= 4;
  394. u32* stack_ptr = (u32*)m_tss.esp;
  395. *stack_ptr = value;
  396. }
  397. void Thread::make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment)
  398. {
  399. auto* region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, "Stack (Main thread)");
  400. ASSERT(region);
  401. m_tss.esp = region->vaddr().offset(default_userspace_stack_size).get();
  402. char* stack_base = (char*)region->vaddr().get();
  403. int argc = arguments.size();
  404. char** argv = (char**)stack_base;
  405. char** env = argv + arguments.size() + 1;
  406. char* bufptr = stack_base + (sizeof(char*) * (arguments.size() + 1)) + (sizeof(char*) * (environment.size() + 1));
  407. size_t total_blob_size = 0;
  408. for (auto& a : arguments)
  409. total_blob_size += a.length() + 1;
  410. for (auto& e : environment)
  411. total_blob_size += e.length() + 1;
  412. size_t total_meta_size = sizeof(char*) * (arguments.size() + 1) + sizeof(char*) * (environment.size() + 1);
  413. // FIXME: It would be better if this didn't make us panic.
  414. ASSERT((total_blob_size + total_meta_size) < default_userspace_stack_size);
  415. for (int i = 0; i < arguments.size(); ++i) {
  416. argv[i] = bufptr;
  417. memcpy(bufptr, arguments[i].characters(), arguments[i].length());
  418. bufptr += arguments[i].length();
  419. *(bufptr++) = '\0';
  420. }
  421. argv[arguments.size()] = nullptr;
  422. for (int i = 0; i < environment.size(); ++i) {
  423. env[i] = bufptr;
  424. memcpy(bufptr, environment[i].characters(), environment[i].length());
  425. bufptr += environment[i].length();
  426. *(bufptr++) = '\0';
  427. }
  428. env[environment.size()] = nullptr;
  429. // NOTE: The stack needs to be 16-byte aligned.
  430. push_value_on_stack((u32)env);
  431. push_value_on_stack((u32)argv);
  432. push_value_on_stack((u32)argc);
  433. push_value_on_stack(0);
  434. }
  435. void Thread::make_userspace_stack_for_secondary_thread(void* argument)
  436. {
  437. auto* region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, String::format("Stack (Thread %d)", tid()));
  438. ASSERT(region);
  439. m_tss.esp = region->vaddr().offset(default_userspace_stack_size).get();
  440. // NOTE: The stack needs to be 16-byte aligned.
  441. push_value_on_stack((u32)argument);
  442. push_value_on_stack(0);
  443. }
  444. Thread* Thread::clone(Process& process)
  445. {
  446. auto* clone = new Thread(process);
  447. memcpy(clone->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
  448. clone->m_signal_mask = m_signal_mask;
  449. clone->m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
  450. memcpy(clone->m_fpu_state, m_fpu_state, sizeof(FPUState));
  451. clone->m_has_used_fpu = m_has_used_fpu;
  452. return clone;
  453. }
  454. KResult Thread::wait_for_connect(FileDescription& description)
  455. {
  456. ASSERT(description.is_socket());
  457. auto& socket = *description.socket();
  458. if (socket.is_connected())
  459. return KSuccess;
  460. block(*new Thread::ConnectBlocker(description));
  461. Scheduler::yield();
  462. if (!socket.is_connected())
  463. return KResult(-ECONNREFUSED);
  464. return KSuccess;
  465. }
  466. void Thread::initialize()
  467. {
  468. g_runnable_threads = new InlineLinkedList<Thread>;
  469. g_nonrunnable_threads = new InlineLinkedList<Thread>;
  470. Scheduler::initialize();
  471. }
  472. Vector<Thread*> Thread::all_threads()
  473. {
  474. Vector<Thread*> threads;
  475. InterruptDisabler disabler;
  476. threads.ensure_capacity(thread_table().size());
  477. for (auto* thread : thread_table())
  478. threads.unchecked_append(thread);
  479. return threads;
  480. }
  481. bool Thread::is_thread(void* ptr)
  482. {
  483. ASSERT_INTERRUPTS_DISABLED();
  484. return thread_table().contains((Thread*)ptr);
  485. }
  486. void Thread::set_thread_list(InlineLinkedList<Thread>* thread_list)
  487. {
  488. ASSERT_INTERRUPTS_DISABLED();
  489. ASSERT(pid() != 0);
  490. if (m_thread_list == thread_list)
  491. return;
  492. if (m_thread_list)
  493. m_thread_list->remove(this);
  494. if (thread_list)
  495. thread_list->append(this);
  496. m_thread_list = thread_list;
  497. }
  498. void Thread::set_state(State new_state)
  499. {
  500. InterruptDisabler disabler;
  501. m_state = new_state;
  502. if (m_process.pid() != 0)
  503. set_thread_list(thread_list_for_state(new_state));
  504. }