123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158 |
- /*
- * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #include <AK/Assertions.h>
- #include <AK/Memory.h>
- #include <AK/StringView.h>
- #include <Kernel/BootInfo.h>
- #include <Kernel/CMOS.h>
- #include <Kernel/FileSystem/Inode.h>
- #include <Kernel/Heap/kmalloc.h>
- #include <Kernel/Multiboot.h>
- #include <Kernel/Panic.h>
- #include <Kernel/Process.h>
- #include <Kernel/Sections.h>
- #include <Kernel/StdLib.h>
- #include <Kernel/VM/AnonymousVMObject.h>
- #include <Kernel/VM/MemoryManager.h>
- #include <Kernel/VM/PageDirectory.h>
- #include <Kernel/VM/PhysicalRegion.h>
- #include <Kernel/VM/SharedInodeVMObject.h>
- extern u8 start_of_kernel_image[];
- extern u8 end_of_kernel_image[];
- extern u8 start_of_kernel_text[];
- extern u8 start_of_kernel_data[];
- extern u8 end_of_kernel_bss[];
- extern u8 start_of_ro_after_init[];
- extern u8 end_of_ro_after_init[];
- extern u8 start_of_unmap_after_init[];
- extern u8 end_of_unmap_after_init[];
- extern u8 start_of_kernel_ksyms[];
- extern u8 end_of_kernel_ksyms[];
- extern multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
- extern size_t multiboot_copy_boot_modules_count;
- // Treat the super pages as logically separate from .bss
- __attribute__((section(".super_pages"))) static u8 super_pages[1 * MiB];
- namespace Kernel {
- // NOTE: We can NOT use AK::Singleton for this class, because
- // MemoryManager::initialize is called *before* global constructors are
- // run. If we do, then AK::Singleton would get re-initialized, causing
- // the memory manager to be initialized twice!
- static MemoryManager* s_the;
- RecursiveSpinLock s_mm_lock;
- MemoryManager& MM
- {
- return *s_the;
- }
- bool MemoryManager::is_initialized()
- {
- return s_the != nullptr;
- }
- UNMAP_AFTER_INIT MemoryManager::MemoryManager()
- {
- s_the = this;
- ScopedSpinLock lock(s_mm_lock);
- parse_memory_map();
- write_cr3(kernel_page_directory().cr3());
- protect_kernel_image();
- // We're temporarily "committing" to two pages that we need to allocate below
- if (!commit_user_physical_pages(2))
- VERIFY_NOT_REACHED();
- m_shared_zero_page = allocate_committed_user_physical_page();
- // We're wasting a page here, we just need a special tag (physical
- // address) so that we know when we need to lazily allocate a page
- // that we should be drawing this page from the committed pool rather
- // than potentially failing if no pages are available anymore.
- // By using a tag we don't have to query the VMObject for every page
- // whether it was committed or not
- m_lazy_committed_page = allocate_committed_user_physical_page();
- }
- UNMAP_AFTER_INIT MemoryManager::~MemoryManager()
- {
- }
- UNMAP_AFTER_INIT void MemoryManager::protect_kernel_image()
- {
- ScopedSpinLock page_lock(kernel_page_directory().get_lock());
- // Disable writing to the kernel text and rodata segments.
- for (auto i = start_of_kernel_text; i < start_of_kernel_data; i += PAGE_SIZE) {
- auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
- pte.set_writable(false);
- }
- if (Processor::current().has_feature(CPUFeature::NX)) {
- // Disable execution of the kernel data, bss and heap segments.
- for (auto i = start_of_kernel_data; i < end_of_kernel_image; i += PAGE_SIZE) {
- auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
- pte.set_execute_disabled(true);
- }
- }
- }
- UNMAP_AFTER_INIT void MemoryManager::protect_readonly_after_init_memory()
- {
- ScopedSpinLock mm_lock(s_mm_lock);
- ScopedSpinLock page_lock(kernel_page_directory().get_lock());
- // Disable writing to the .ro_after_init section
- for (auto i = (FlatPtr)&start_of_ro_after_init; i < (FlatPtr)&end_of_ro_after_init; i += PAGE_SIZE) {
- auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
- pte.set_writable(false);
- flush_tlb(&kernel_page_directory(), VirtualAddress(i));
- }
- }
- void MemoryManager::unmap_text_after_init()
- {
- ScopedSpinLock mm_lock(s_mm_lock);
- ScopedSpinLock page_lock(kernel_page_directory().get_lock());
- auto start = page_round_down((FlatPtr)&start_of_unmap_after_init);
- auto end = page_round_up((FlatPtr)&end_of_unmap_after_init);
- // Unmap the entire .unmap_after_init section
- for (auto i = start; i < end; i += PAGE_SIZE) {
- auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
- pte.clear();
- flush_tlb(&kernel_page_directory(), VirtualAddress(i));
- }
- dmesgln("Unmapped {} KiB of kernel text after init! :^)", (end - start) / KiB);
- }
- void MemoryManager::unmap_ksyms_after_init()
- {
- ScopedSpinLock mm_lock(s_mm_lock);
- ScopedSpinLock page_lock(kernel_page_directory().get_lock());
- auto start = page_round_down((FlatPtr)start_of_kernel_ksyms);
- auto end = page_round_up((FlatPtr)end_of_kernel_ksyms);
- // Unmap the entire .ksyms section
- for (auto i = start; i < end; i += PAGE_SIZE) {
- auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
- pte.clear();
- flush_tlb(&kernel_page_directory(), VirtualAddress(i));
- }
- dmesgln("Unmapped {} KiB of kernel symbols after init! :^)", (end - start) / KiB);
- }
- UNMAP_AFTER_INIT void MemoryManager::register_reserved_ranges()
- {
- VERIFY(!m_physical_memory_ranges.is_empty());
- ContiguousReservedMemoryRange range;
- for (auto& current_range : m_physical_memory_ranges) {
- if (current_range.type != PhysicalMemoryRangeType::Reserved) {
- if (range.start.is_null())
- continue;
- m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, current_range.start.get() - range.start.get() });
- range.start.set((FlatPtr) nullptr);
- continue;
- }
- if (!range.start.is_null()) {
- continue;
- }
- range.start = current_range.start;
- }
- if (m_physical_memory_ranges.last().type != PhysicalMemoryRangeType::Reserved)
- return;
- if (range.start.is_null())
- return;
- m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, m_physical_memory_ranges.last().start.get() + m_physical_memory_ranges.last().length - range.start.get() });
- }
- bool MemoryManager::is_allowed_to_mmap_to_userspace(PhysicalAddress start_address, Range const& range) const
- {
- VERIFY(!m_reserved_memory_ranges.is_empty());
- for (auto& current_range : m_reserved_memory_ranges) {
- if (!(current_range.start <= start_address))
- continue;
- if (!(current_range.start.offset(current_range.length) > start_address))
- continue;
- if (current_range.length < range.size())
- return false;
- return true;
- }
- return false;
- }
- UNMAP_AFTER_INIT void MemoryManager::parse_memory_map()
- {
- // Register used memory regions that we know of.
- m_used_memory_ranges.ensure_capacity(4);
- m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::LowMemory, PhysicalAddress(0x00000000), PhysicalAddress(1 * MiB) });
- m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Prekernel, start_of_prekernel_image, end_of_prekernel_image });
- m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Kernel, PhysicalAddress(virtual_to_low_physical((FlatPtr)start_of_kernel_image)), PhysicalAddress(page_round_up(virtual_to_low_physical((FlatPtr)end_of_kernel_image))) });
- if (multiboot_flags & 0x4) {
- auto* bootmods_start = multiboot_copy_boot_modules_array;
- auto* bootmods_end = bootmods_start + multiboot_copy_boot_modules_count;
- for (auto* bootmod = bootmods_start; bootmod < bootmods_end; bootmod++) {
- m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::BootModule, PhysicalAddress(bootmod->start), PhysicalAddress(bootmod->end) });
- }
- }
- auto* mmap_begin = multiboot_memory_map;
- auto* mmap_end = multiboot_memory_map + multiboot_memory_map_count;
- struct ContiguousPhysicalRange {
- PhysicalAddress lower;
- PhysicalAddress upper;
- };
- Vector<ContiguousPhysicalRange> contiguous_physical_ranges;
- for (auto* mmap = mmap_begin; mmap < mmap_end; mmap++) {
- dmesgln("MM: Multiboot mmap: address={:p}, length={}, type={}", mmap->addr, mmap->len, mmap->type);
- auto start_address = PhysicalAddress(mmap->addr);
- auto length = mmap->len;
- switch (mmap->type) {
- case (MULTIBOOT_MEMORY_AVAILABLE):
- m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Usable, start_address, length });
- break;
- case (MULTIBOOT_MEMORY_RESERVED):
- m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Reserved, start_address, length });
- break;
- case (MULTIBOOT_MEMORY_ACPI_RECLAIMABLE):
- m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_Reclaimable, start_address, length });
- break;
- case (MULTIBOOT_MEMORY_NVS):
- m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_NVS, start_address, length });
- break;
- case (MULTIBOOT_MEMORY_BADRAM):
- dmesgln("MM: Warning, detected bad memory range!");
- m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::BadMemory, start_address, length });
- break;
- default:
- dbgln("MM: Unknown range!");
- m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Unknown, start_address, length });
- break;
- }
- if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
- continue;
- // Fix up unaligned memory regions.
- auto diff = (FlatPtr)mmap->addr % PAGE_SIZE;
- if (diff != 0) {
- dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting {:p} by {} bytes", mmap->addr, diff);
- diff = PAGE_SIZE - diff;
- mmap->addr += diff;
- mmap->len -= diff;
- }
- if ((mmap->len % PAGE_SIZE) != 0) {
- dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting length {} by {} bytes", mmap->len, mmap->len % PAGE_SIZE);
- mmap->len -= mmap->len % PAGE_SIZE;
- }
- if (mmap->len < PAGE_SIZE) {
- dmesgln("MM: Memory physical_region from bootloader is too small; we want >= {} bytes, but got {} bytes", PAGE_SIZE, mmap->len);
- continue;
- }
- for (PhysicalSize page_base = mmap->addr; page_base <= (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
- auto addr = PhysicalAddress(page_base);
- // Skip used memory ranges.
- bool should_skip = false;
- for (auto& used_range : m_used_memory_ranges) {
- if (addr.get() >= used_range.start.get() && addr.get() <= used_range.end.get()) {
- should_skip = true;
- break;
- }
- }
- if (should_skip)
- continue;
- if (contiguous_physical_ranges.is_empty() || contiguous_physical_ranges.last().upper.offset(PAGE_SIZE) != addr) {
- contiguous_physical_ranges.append(ContiguousPhysicalRange {
- .lower = addr,
- .upper = addr,
- });
- } else {
- contiguous_physical_ranges.last().upper = addr;
- }
- }
- }
- for (auto& range : contiguous_physical_ranges) {
- m_user_physical_regions.append(PhysicalRegion::try_create(range.lower, range.upper).release_nonnull());
- }
- // Super pages are guaranteed to be in the first 16MB of physical memory
- VERIFY(virtual_to_low_physical((FlatPtr)super_pages) + sizeof(super_pages) < 0x1000000);
- // Append statically-allocated super physical physical_region.
- m_super_physical_regions.append(PhysicalRegion::try_create(
- PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages))),
- PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages + sizeof(super_pages)))))
- .release_nonnull());
- for (auto& region : m_super_physical_regions)
- m_system_memory_info.super_physical_pages += region.size();
- for (auto& region : m_user_physical_regions)
- m_system_memory_info.user_physical_pages += region.size();
- register_reserved_ranges();
- for (auto& range : m_reserved_memory_ranges) {
- dmesgln("MM: Contiguous reserved range from {}, length is {}", range.start, range.length);
- }
- initialize_physical_pages();
- VERIFY(m_system_memory_info.super_physical_pages > 0);
- VERIFY(m_system_memory_info.user_physical_pages > 0);
- // We start out with no committed pages
- m_system_memory_info.user_physical_pages_uncommitted = m_system_memory_info.user_physical_pages;
- for (auto& used_range : m_used_memory_ranges) {
- dmesgln("MM: {} range @ {} - {} (size {:#x})", UserMemoryRangeTypeNames[to_underlying(used_range.type)], used_range.start, used_range.end.offset(-1), used_range.end.as_ptr() - used_range.start.as_ptr());
- }
- for (auto& region : m_super_physical_regions) {
- dmesgln("MM: Super physical region: {} - {} (size {:#x})", region.lower(), region.upper().offset(-1), PAGE_SIZE * region.size());
- region.initialize_zones();
- }
- for (auto& region : m_user_physical_regions) {
- dmesgln("MM: User physical region: {} - {} (size {:#x})", region.lower(), region.upper().offset(-1), PAGE_SIZE * region.size());
- region.initialize_zones();
- }
- }
- UNMAP_AFTER_INIT void MemoryManager::initialize_physical_pages()
- {
- // We assume that the physical page range is contiguous and doesn't contain huge gaps!
- PhysicalAddress highest_physical_address;
- for (auto& range : m_used_memory_ranges) {
- if (range.end.get() > highest_physical_address.get())
- highest_physical_address = range.end;
- }
- for (auto& region : m_physical_memory_ranges) {
- auto range_end = PhysicalAddress(region.start).offset(region.length);
- if (range_end.get() > highest_physical_address.get())
- highest_physical_address = range_end;
- }
- // Calculate how many total physical pages the array will have
- m_physical_page_entries_count = PhysicalAddress::physical_page_index(highest_physical_address.get()) + 1;
- VERIFY(m_physical_page_entries_count != 0);
- VERIFY(!Checked<decltype(m_physical_page_entries_count)>::multiplication_would_overflow(m_physical_page_entries_count, sizeof(PhysicalPageEntry)));
- // Calculate how many bytes the array will consume
- auto physical_page_array_size = m_physical_page_entries_count * sizeof(PhysicalPageEntry);
- auto physical_page_array_pages = page_round_up(physical_page_array_size) / PAGE_SIZE;
- VERIFY(physical_page_array_pages * PAGE_SIZE >= physical_page_array_size);
- // Calculate how many page tables we will need to be able to map them all
- auto needed_page_table_count = (physical_page_array_pages + 512 - 1) / 512;
- auto physical_page_array_pages_and_page_tables_count = physical_page_array_pages + needed_page_table_count;
- // Now that we know how much memory we need for a contiguous array of PhysicalPage instances, find a memory region that can fit it
- PhysicalRegion* found_region { nullptr };
- Optional<size_t> found_region_index;
- for (size_t i = 0; i < m_user_physical_regions.size(); ++i) {
- auto& region = m_user_physical_regions[i];
- if (region.size() >= physical_page_array_pages_and_page_tables_count) {
- found_region = ®ion;
- found_region_index = i;
- break;
- }
- }
- if (!found_region) {
- dmesgln("MM: Need {} bytes for physical page management, but no memory region is large enough!", physical_page_array_pages_and_page_tables_count);
- VERIFY_NOT_REACHED();
- }
- VERIFY(m_system_memory_info.user_physical_pages >= physical_page_array_pages_and_page_tables_count);
- m_system_memory_info.user_physical_pages -= physical_page_array_pages_and_page_tables_count;
- if (found_region->size() == physical_page_array_pages_and_page_tables_count) {
- // We're stealing the entire region
- m_physical_pages_region = m_user_physical_regions.take(*found_region_index);
- } else {
- m_physical_pages_region = found_region->try_take_pages_from_beginning(physical_page_array_pages_and_page_tables_count);
- }
- m_used_memory_ranges.append({ UsedMemoryRangeType::PhysicalPages, m_physical_pages_region->lower(), m_physical_pages_region->upper() });
- // Create the bare page directory. This is not a fully constructed page directory and merely contains the allocators!
- m_kernel_page_directory = PageDirectory::create_kernel_page_directory();
- // Allocate a virtual address range for our array
- auto range = m_kernel_page_directory->range_allocator().allocate_anywhere(physical_page_array_pages * PAGE_SIZE);
- if (!range.has_value()) {
- dmesgln("MM: Could not allocate {} bytes to map physical page array!", physical_page_array_pages * PAGE_SIZE);
- VERIFY_NOT_REACHED();
- }
- // Now that we have our special m_physical_pages_region region with enough pages to hold the entire array
- // try to map the entire region into kernel space so we always have it
- // We can't use ensure_pte here because it would try to allocate a PhysicalPage and we don't have the array
- // mapped yet so we can't create them
- ScopedSpinLock lock(s_mm_lock);
- // Create page tables at the beginning of m_physical_pages_region, followed by the PhysicalPageEntry array
- auto page_tables_base = m_physical_pages_region->lower();
- auto physical_page_array_base = page_tables_base.offset(needed_page_table_count * PAGE_SIZE);
- auto physical_page_array_current_page = physical_page_array_base.get();
- auto virtual_page_array_base = range.value().base().get();
- auto virtual_page_array_current_page = virtual_page_array_base;
- for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
- auto virtual_page_base_for_this_pt = virtual_page_array_current_page;
- auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
- auto* pt = reinterpret_cast<PageTableEntry*>(quickmap_page(pt_paddr));
- __builtin_memset(pt, 0, PAGE_SIZE);
- for (size_t pte_index = 0; pte_index < PAGE_SIZE / sizeof(PageTableEntry); pte_index++) {
- auto& pte = pt[pte_index];
- pte.set_physical_page_base(physical_page_array_current_page);
- pte.set_user_allowed(false);
- pte.set_writable(true);
- if (Processor::current().has_feature(CPUFeature::NX))
- pte.set_execute_disabled(false);
- pte.set_global(true);
- pte.set_present(true);
- physical_page_array_current_page += PAGE_SIZE;
- virtual_page_array_current_page += PAGE_SIZE;
- }
- unquickmap_page();
- // Hook the page table into the kernel page directory
- u32 page_directory_index = (virtual_page_base_for_this_pt >> 21) & 0x1ff;
- auto* pd = reinterpret_cast<PageDirectoryEntry*>(quickmap_page(boot_pd_kernel));
- PageDirectoryEntry& pde = pd[page_directory_index];
- VERIFY(!pde.is_present()); // Nothing should be using this PD yet
- // We can't use ensure_pte quite yet!
- pde.set_page_table_base(pt_paddr.get());
- pde.set_user_allowed(false);
- pde.set_present(true);
- pde.set_writable(true);
- pde.set_global(true);
- unquickmap_page();
- flush_tlb_local(VirtualAddress(virtual_page_base_for_this_pt));
- }
- // We now have the entire PhysicalPageEntry array mapped!
- m_physical_page_entries = (PhysicalPageEntry*)range.value().base().get();
- for (size_t i = 0; i < m_physical_page_entries_count; i++)
- new (&m_physical_page_entries[i]) PageTableEntry();
- // Now we should be able to allocate PhysicalPage instances,
- // so finish setting up the kernel page directory
- m_kernel_page_directory->allocate_kernel_directory();
- // Now create legit PhysicalPage objects for the page tables we created, so that
- // we can put them into kernel_page_directory().m_page_tables
- auto& kernel_page_tables = kernel_page_directory().m_page_tables;
- virtual_page_array_current_page = virtual_page_array_base;
- for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
- VERIFY(virtual_page_array_current_page <= range.value().end().get());
- auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
- auto physical_page_index = PhysicalAddress::physical_page_index(pt_paddr.get());
- auto& physical_page_entry = m_physical_page_entries[physical_page_index];
- auto physical_page = adopt_ref(*new (&physical_page_entry.allocated.physical_page) PhysicalPage(MayReturnToFreeList::No));
- auto result = kernel_page_tables.set(virtual_page_array_current_page & ~0x1fffff, move(physical_page));
- VERIFY(result == AK::HashSetResult::InsertedNewEntry);
- virtual_page_array_current_page += (PAGE_SIZE / sizeof(PageTableEntry)) * PAGE_SIZE;
- }
- dmesgln("MM: Physical page entries: {}", range.value());
- }
- PhysicalPageEntry& MemoryManager::get_physical_page_entry(PhysicalAddress physical_address)
- {
- VERIFY(m_physical_page_entries);
- auto physical_page_entry_index = PhysicalAddress::physical_page_index(physical_address.get());
- VERIFY(physical_page_entry_index < m_physical_page_entries_count);
- return m_physical_page_entries[physical_page_entry_index];
- }
- PhysicalAddress MemoryManager::get_physical_address(PhysicalPage const& physical_page)
- {
- PhysicalPageEntry const& physical_page_entry = *reinterpret_cast<PhysicalPageEntry const*>((u8 const*)&physical_page - __builtin_offsetof(PhysicalPageEntry, allocated.physical_page));
- VERIFY(m_physical_page_entries);
- size_t physical_page_entry_index = &physical_page_entry - m_physical_page_entries;
- VERIFY(physical_page_entry_index < m_physical_page_entries_count);
- return PhysicalAddress((PhysicalPtr)physical_page_entry_index * PAGE_SIZE);
- }
- PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr)
- {
- VERIFY_INTERRUPTS_DISABLED();
- VERIFY(s_mm_lock.own_lock());
- VERIFY(page_directory.get_lock().own_lock());
- u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
- u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
- u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
- auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
- PageDirectoryEntry const& pde = pd[page_directory_index];
- if (!pde.is_present())
- return nullptr;
- return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
- }
- PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
- {
- VERIFY_INTERRUPTS_DISABLED();
- VERIFY(s_mm_lock.own_lock());
- VERIFY(page_directory.get_lock().own_lock());
- u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
- u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
- u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
- auto* pd = quickmap_pd(page_directory, page_directory_table_index);
- PageDirectoryEntry& pde = pd[page_directory_index];
- if (!pde.is_present()) {
- bool did_purge = false;
- auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes, &did_purge);
- if (!page_table) {
- dbgln("MM: Unable to allocate page table to map {}", vaddr);
- return nullptr;
- }
- if (did_purge) {
- // If any memory had to be purged, ensure_pte may have been called as part
- // of the purging process. So we need to re-map the pd in this case to ensure
- // we're writing to the correct underlying physical page
- pd = quickmap_pd(page_directory, page_directory_table_index);
- VERIFY(&pde == &pd[page_directory_index]); // Sanity check
- VERIFY(!pde.is_present()); // Should have not changed
- }
- pde.set_page_table_base(page_table->paddr().get());
- pde.set_user_allowed(true);
- pde.set_present(true);
- pde.set_writable(true);
- pde.set_global(&page_directory == m_kernel_page_directory.ptr());
- // Use page_directory_table_index and page_directory_index as key
- // This allows us to release the page table entry when no longer needed
- auto result = page_directory.m_page_tables.set(vaddr.get() & ~(FlatPtr)0x1fffff, move(page_table));
- // If you're hitting this VERIFY on x86_64 chances are a 64-bit pointer was truncated somewhere
- VERIFY(result == AK::HashSetResult::InsertedNewEntry);
- }
- return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
- }
- void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, bool is_last_release)
- {
- VERIFY_INTERRUPTS_DISABLED();
- VERIFY(s_mm_lock.own_lock());
- VERIFY(page_directory.get_lock().own_lock());
- u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
- u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
- u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
- auto* pd = quickmap_pd(page_directory, page_directory_table_index);
- PageDirectoryEntry& pde = pd[page_directory_index];
- if (pde.is_present()) {
- auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()));
- auto& pte = page_table[page_table_index];
- pte.clear();
- if (is_last_release || page_table_index == 0x1ff) {
- // If this is the last PTE in a region or the last PTE in a page table then
- // check if we can also release the page table
- bool all_clear = true;
- for (u32 i = 0; i <= 0x1ff; i++) {
- if (!page_table[i].is_null()) {
- all_clear = false;
- break;
- }
- }
- if (all_clear) {
- pde.clear();
- auto result = page_directory.m_page_tables.remove(vaddr.get() & ~0x1fffff);
- VERIFY(result);
- }
- }
- }
- }
- UNMAP_AFTER_INIT void MemoryManager::initialize(u32 cpu)
- {
- auto mm_data = new MemoryManagerData;
- Processor::current().set_mm_data(*mm_data);
- if (cpu == 0) {
- new MemoryManager;
- kmalloc_enable_expand();
- }
- }
- Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
- {
- ScopedSpinLock lock(s_mm_lock);
- for (auto& region : MM.m_kernel_regions) {
- if (region.contains(vaddr))
- return ®ion;
- }
- return nullptr;
- }
- Region* MemoryManager::find_user_region_from_vaddr_no_lock(Space& space, VirtualAddress vaddr)
- {
- VERIFY(space.get_lock().own_lock());
- return space.find_region_containing({ vaddr, 1 });
- }
- Region* MemoryManager::find_user_region_from_vaddr(Space& space, VirtualAddress vaddr)
- {
- ScopedSpinLock lock(space.get_lock());
- return find_user_region_from_vaddr_no_lock(space, vaddr);
- }
- void MemoryManager::validate_syscall_preconditions(Space& space, RegisterState const& regs)
- {
- // We take the space lock once here and then use the no_lock variants
- // to avoid excessive spinlock recursion in this extemely common path.
- ScopedSpinLock lock(space.get_lock());
- auto unlock_and_handle_crash = [&lock, ®s](const char* description, int signal) {
- lock.unlock();
- handle_crash(regs, description, signal);
- };
- {
- VirtualAddress userspace_sp = VirtualAddress { regs.userspace_sp() };
- if (!MM.validate_user_stack_no_lock(space, userspace_sp)) {
- dbgln("Invalid stack pointer: {:p}", userspace_sp);
- unlock_and_handle_crash("Bad stack on syscall entry", SIGSTKFLT);
- }
- }
- {
- VirtualAddress ip = VirtualAddress { regs.ip() };
- auto* calling_region = MM.find_user_region_from_vaddr_no_lock(space, ip);
- if (!calling_region) {
- dbgln("Syscall from {:p} which has no associated region", ip);
- unlock_and_handle_crash("Syscall from unknown region", SIGSEGV);
- }
- if (calling_region->is_writable()) {
- dbgln("Syscall from writable memory at {:p}", ip);
- unlock_and_handle_crash("Syscall from writable memory", SIGSEGV);
- }
- if (space.enforces_syscall_regions() && !calling_region->is_syscall_region()) {
- dbgln("Syscall from non-syscall region");
- unlock_and_handle_crash("Syscall from non-syscall region", SIGSEGV);
- }
- }
- }
- Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr)
- {
- ScopedSpinLock lock(s_mm_lock);
- if (auto* region = kernel_region_from_vaddr(vaddr))
- return region;
- auto page_directory = PageDirectory::find_by_cr3(read_cr3());
- if (!page_directory)
- return nullptr;
- VERIFY(page_directory->space());
- return find_user_region_from_vaddr(*page_directory->space(), vaddr);
- }
- PageFaultResponse MemoryManager::handle_page_fault(PageFault const& fault)
- {
- VERIFY_INTERRUPTS_DISABLED();
- if (Processor::current().in_irq()) {
- dbgln("CPU[{}] BUG! Page fault while handling IRQ! code={}, vaddr={}, irq level: {}",
- Processor::id(), fault.code(), fault.vaddr(), Processor::current().in_irq());
- dump_kernel_regions();
- return PageFaultResponse::ShouldCrash;
- }
- dbgln_if(PAGE_FAULT_DEBUG, "MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::id(), fault.code(), fault.vaddr());
- auto* region = find_region_from_vaddr(fault.vaddr());
- if (!region) {
- return PageFaultResponse::ShouldCrash;
- }
- return region->handle_fault(fault);
- }
- OwnPtr<Region> MemoryManager::allocate_contiguous_kernel_region(size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
- {
- VERIFY(!(size % PAGE_SIZE));
- ScopedSpinLock lock(s_mm_lock);
- auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
- if (!range.has_value())
- return {};
- auto vmobject = AnonymousVMObject::try_create_physically_contiguous_with_size(size);
- if (!vmobject) {
- kernel_page_directory().range_allocator().deallocate(range.value());
- return {};
- }
- return allocate_kernel_region_with_vmobject(range.value(), *vmobject, name, access, cacheable);
- }
- OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, StringView name, Region::Access access, AllocationStrategy strategy, Region::Cacheable cacheable)
- {
- VERIFY(!(size % PAGE_SIZE));
- auto vm_object = AnonymousVMObject::try_create_with_size(size, strategy);
- if (!vm_object)
- return {};
- ScopedSpinLock lock(s_mm_lock);
- auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
- if (!range.has_value())
- return {};
- return allocate_kernel_region_with_vmobject(range.value(), vm_object.release_nonnull(), name, access, cacheable);
- }
- OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
- {
- auto vm_object = AnonymousVMObject::try_create_for_physical_range(paddr, size);
- if (!vm_object)
- return {};
- VERIFY(!(size % PAGE_SIZE));
- ScopedSpinLock lock(s_mm_lock);
- auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
- if (!range.has_value())
- return {};
- return allocate_kernel_region_with_vmobject(range.value(), *vm_object, name, access, cacheable);
- }
- OwnPtr<Region> MemoryManager::allocate_kernel_region_identity(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
- {
- auto vm_object = AnonymousVMObject::try_create_for_physical_range(paddr, size);
- if (!vm_object)
- return {};
- VERIFY(!(size % PAGE_SIZE));
- ScopedSpinLock lock(s_mm_lock);
- auto range = kernel_page_directory().identity_range_allocator().allocate_specific(VirtualAddress(paddr.get()), size);
- if (!range.has_value())
- return {};
- return allocate_kernel_region_with_vmobject(range.value(), *vm_object, name, access, cacheable);
- }
- OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(Range const& range, VMObject& vmobject, StringView name, Region::Access access, Region::Cacheable cacheable)
- {
- ScopedSpinLock lock(s_mm_lock);
- auto region = Region::try_create_kernel_only(range, vmobject, 0, KString::try_create(name), access, cacheable);
- if (region)
- region->map(kernel_page_directory());
- return region;
- }
- OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
- {
- VERIFY(!(size % PAGE_SIZE));
- ScopedSpinLock lock(s_mm_lock);
- auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
- if (!range.has_value())
- return {};
- return allocate_kernel_region_with_vmobject(range.value(), vmobject, name, access, cacheable);
- }
- bool MemoryManager::commit_user_physical_pages(size_t page_count)
- {
- VERIFY(page_count > 0);
- ScopedSpinLock lock(s_mm_lock);
- if (m_system_memory_info.user_physical_pages_uncommitted < page_count)
- return false;
- m_system_memory_info.user_physical_pages_uncommitted -= page_count;
- m_system_memory_info.user_physical_pages_committed += page_count;
- return true;
- }
- void MemoryManager::uncommit_user_physical_pages(size_t page_count)
- {
- VERIFY(page_count > 0);
- ScopedSpinLock lock(s_mm_lock);
- VERIFY(m_system_memory_info.user_physical_pages_committed >= page_count);
- m_system_memory_info.user_physical_pages_uncommitted += page_count;
- m_system_memory_info.user_physical_pages_committed -= page_count;
- }
- void MemoryManager::deallocate_physical_page(PhysicalAddress paddr)
- {
- ScopedSpinLock lock(s_mm_lock);
- // Are we returning a user page?
- for (auto& region : m_user_physical_regions) {
- if (!region.contains(paddr))
- continue;
- region.return_page(paddr);
- --m_system_memory_info.user_physical_pages_used;
- // Always return pages to the uncommitted pool. Pages that were
- // committed and allocated are only freed upon request. Once
- // returned there is no guarantee being able to get them back.
- ++m_system_memory_info.user_physical_pages_uncommitted;
- return;
- }
- // If it's not a user page, it should be a supervisor page.
- for (auto& region : m_super_physical_regions) {
- if (!region.contains(paddr)) {
- dbgln("MM: deallocate_supervisor_physical_page: {} not in {} - {}", paddr, region.lower(), region.upper());
- continue;
- }
- region.return_page(paddr);
- --m_system_memory_info.super_physical_pages_used;
- return;
- }
- PANIC("MM: deallocate_user_physical_page couldn't figure out region for page @ {}", paddr);
- }
- RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page(bool committed)
- {
- VERIFY(s_mm_lock.is_locked());
- RefPtr<PhysicalPage> page;
- if (committed) {
- // Draw from the committed pages pool. We should always have these pages available
- VERIFY(m_system_memory_info.user_physical_pages_committed > 0);
- m_system_memory_info.user_physical_pages_committed--;
- } else {
- // We need to make sure we don't touch pages that we have committed to
- if (m_system_memory_info.user_physical_pages_uncommitted == 0)
- return {};
- m_system_memory_info.user_physical_pages_uncommitted--;
- }
- for (auto& region : m_user_physical_regions) {
- page = region.take_free_page();
- if (!page.is_null()) {
- ++m_system_memory_info.user_physical_pages_used;
- break;
- }
- }
- VERIFY(!committed || !page.is_null());
- return page;
- }
- NonnullRefPtr<PhysicalPage> MemoryManager::allocate_committed_user_physical_page(ShouldZeroFill should_zero_fill)
- {
- ScopedSpinLock lock(s_mm_lock);
- auto page = find_free_user_physical_page(true);
- if (should_zero_fill == ShouldZeroFill::Yes) {
- auto* ptr = quickmap_page(*page);
- memset(ptr, 0, PAGE_SIZE);
- unquickmap_page();
- }
- return page.release_nonnull();
- }
- RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge)
- {
- ScopedSpinLock lock(s_mm_lock);
- auto page = find_free_user_physical_page(false);
- bool purged_pages = false;
- if (!page) {
- // We didn't have a single free physical page. Let's try to free something up!
- // First, we look for a purgeable VMObject in the volatile state.
- for_each_vmobject([&](auto& vmobject) {
- if (!vmobject.is_anonymous())
- return IterationDecision::Continue;
- auto& anonymous_vmobject = static_cast<AnonymousVMObject&>(vmobject);
- if (!anonymous_vmobject.is_purgeable() || !anonymous_vmobject.is_volatile())
- return IterationDecision::Continue;
- if (auto purged_page_count = anonymous_vmobject.purge()) {
- dbgln("MM: Purge saved the day! Purged {} pages from AnonymousVMObject", purged_page_count);
- page = find_free_user_physical_page(false);
- purged_pages = true;
- VERIFY(page);
- return IterationDecision::Break;
- }
- return IterationDecision::Continue;
- });
- if (!page) {
- dmesgln("MM: no user physical pages available");
- return {};
- }
- }
- if (should_zero_fill == ShouldZeroFill::Yes) {
- auto* ptr = quickmap_page(*page);
- memset(ptr, 0, PAGE_SIZE);
- unquickmap_page();
- }
- if (did_purge)
- *did_purge = purged_pages;
- return page;
- }
- NonnullRefPtrVector<PhysicalPage> MemoryManager::allocate_contiguous_supervisor_physical_pages(size_t size)
- {
- VERIFY(!(size % PAGE_SIZE));
- ScopedSpinLock lock(s_mm_lock);
- size_t count = ceil_div(size, static_cast<size_t>(PAGE_SIZE));
- NonnullRefPtrVector<PhysicalPage> physical_pages;
- for (auto& region : m_super_physical_regions) {
- physical_pages = region.take_contiguous_free_pages(count);
- if (!physical_pages.is_empty())
- continue;
- }
- if (physical_pages.is_empty()) {
- if (m_super_physical_regions.is_empty()) {
- dmesgln("MM: no super physical regions available (?)");
- }
- dmesgln("MM: no super physical pages available");
- VERIFY_NOT_REACHED();
- return {};
- }
- auto cleanup_region = MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write);
- fast_u32_fill((u32*)cleanup_region->vaddr().as_ptr(), 0, (PAGE_SIZE * count) / sizeof(u32));
- m_system_memory_info.super_physical_pages_used += count;
- return physical_pages;
- }
- RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
- {
- ScopedSpinLock lock(s_mm_lock);
- RefPtr<PhysicalPage> page;
- for (auto& region : m_super_physical_regions) {
- page = region.take_free_page();
- if (!page.is_null())
- break;
- }
- if (!page) {
- if (m_super_physical_regions.is_empty()) {
- dmesgln("MM: no super physical regions available (?)");
- }
- dmesgln("MM: no super physical pages available");
- VERIFY_NOT_REACHED();
- return {};
- }
- fast_u32_fill((u32*)page->paddr().offset(kernel_base).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
- ++m_system_memory_info.super_physical_pages_used;
- return page;
- }
- void MemoryManager::enter_process_paging_scope(Process& process)
- {
- enter_space(process.space());
- }
- void MemoryManager::enter_space(Space& space)
- {
- auto current_thread = Thread::current();
- VERIFY(current_thread != nullptr);
- ScopedSpinLock lock(s_mm_lock);
- current_thread->regs().cr3 = space.page_directory().cr3();
- write_cr3(space.page_directory().cr3());
- }
- void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
- {
- Processor::flush_tlb_local(vaddr, page_count);
- }
- void MemoryManager::flush_tlb(PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count)
- {
- Processor::flush_tlb(page_directory, vaddr, page_count);
- }
- PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
- {
- VERIFY(s_mm_lock.own_lock());
- auto& mm_data = get_data();
- auto& pte = boot_pd_kernel_pt1023[(KERNEL_QUICKMAP_PD - KERNEL_PT1024_BASE) / PAGE_SIZE];
- auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
- if (pte.physical_page_base() != pd_paddr.get()) {
- pte.set_physical_page_base(pd_paddr.get());
- pte.set_present(true);
- pte.set_writable(true);
- pte.set_user_allowed(false);
- // Because we must continue to hold the MM lock while we use this
- // mapping, it is sufficient to only flush on the current CPU. Other
- // CPUs trying to use this API must wait on the MM lock anyway
- flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PD));
- } else {
- // Even though we don't allow this to be called concurrently, it's
- // possible that this PD was mapped on a different CPU and we don't
- // broadcast the flush. If so, we still need to flush the TLB.
- if (mm_data.m_last_quickmap_pd != pd_paddr)
- flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PD));
- }
- mm_data.m_last_quickmap_pd = pd_paddr;
- return (PageDirectoryEntry*)KERNEL_QUICKMAP_PD;
- }
- PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
- {
- VERIFY(s_mm_lock.own_lock());
- auto& mm_data = get_data();
- auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[(KERNEL_QUICKMAP_PT - KERNEL_PT1024_BASE) / PAGE_SIZE];
- if (pte.physical_page_base() != pt_paddr.get()) {
- pte.set_physical_page_base(pt_paddr.get());
- pte.set_present(true);
- pte.set_writable(true);
- pte.set_user_allowed(false);
- // Because we must continue to hold the MM lock while we use this
- // mapping, it is sufficient to only flush on the current CPU. Other
- // CPUs trying to use this API must wait on the MM lock anyway
- flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PT));
- } else {
- // Even though we don't allow this to be called concurrently, it's
- // possible that this PT was mapped on a different CPU and we don't
- // broadcast the flush. If so, we still need to flush the TLB.
- if (mm_data.m_last_quickmap_pt != pt_paddr)
- flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PT));
- }
- mm_data.m_last_quickmap_pt = pt_paddr;
- return (PageTableEntry*)KERNEL_QUICKMAP_PT;
- }
- u8* MemoryManager::quickmap_page(PhysicalAddress const& physical_address)
- {
- VERIFY_INTERRUPTS_DISABLED();
- auto& mm_data = get_data();
- mm_data.m_quickmap_prev_flags = mm_data.m_quickmap_in_use.lock();
- ScopedSpinLock lock(s_mm_lock);
- VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::id() * PAGE_SIZE);
- u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
- auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
- if (pte.physical_page_base() != physical_address.get()) {
- pte.set_physical_page_base(physical_address.get());
- pte.set_present(true);
- pte.set_writable(true);
- pte.set_user_allowed(false);
- flush_tlb_local(vaddr);
- }
- return vaddr.as_ptr();
- }
- void MemoryManager::unquickmap_page()
- {
- VERIFY_INTERRUPTS_DISABLED();
- ScopedSpinLock lock(s_mm_lock);
- auto& mm_data = get_data();
- VERIFY(mm_data.m_quickmap_in_use.is_locked());
- VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::id() * PAGE_SIZE);
- u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
- auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
- pte.clear();
- flush_tlb_local(vaddr);
- mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_prev_flags);
- }
- bool MemoryManager::validate_user_stack_no_lock(Space& space, VirtualAddress vaddr) const
- {
- VERIFY(space.get_lock().own_lock());
- if (!is_user_address(vaddr))
- return false;
- auto* region = find_user_region_from_vaddr_no_lock(space, vaddr);
- return region && region->is_user() && region->is_stack();
- }
- bool MemoryManager::validate_user_stack(Space& space, VirtualAddress vaddr) const
- {
- ScopedSpinLock lock(space.get_lock());
- return validate_user_stack_no_lock(space, vaddr);
- }
- void MemoryManager::register_vmobject(VMObject& vmobject)
- {
- ScopedSpinLock lock(s_mm_lock);
- m_vmobjects.append(vmobject);
- }
- void MemoryManager::unregister_vmobject(VMObject& vmobject)
- {
- ScopedSpinLock lock(s_mm_lock);
- m_vmobjects.remove(vmobject);
- }
- void MemoryManager::register_region(Region& region)
- {
- ScopedSpinLock lock(s_mm_lock);
- if (region.is_kernel())
- m_kernel_regions.append(region);
- else
- m_user_regions.append(region);
- }
- void MemoryManager::unregister_region(Region& region)
- {
- ScopedSpinLock lock(s_mm_lock);
- if (region.is_kernel())
- m_kernel_regions.remove(region);
- else
- m_user_regions.remove(region);
- }
- void MemoryManager::dump_kernel_regions()
- {
- dbgln("Kernel regions:");
- #if ARCH(I386)
- auto addr_padding = "";
- #else
- auto addr_padding = " ";
- #endif
- dbgln("BEGIN{} END{} SIZE{} ACCESS NAME",
- addr_padding, addr_padding, addr_padding);
- ScopedSpinLock lock(s_mm_lock);
- for (auto& region : m_kernel_regions) {
- dbgln("{:p} -- {:p} {:p} {:c}{:c}{:c}{:c}{:c}{:c} {}",
- region.vaddr().get(),
- region.vaddr().offset(region.size() - 1).get(),
- region.size(),
- region.is_readable() ? 'R' : ' ',
- region.is_writable() ? 'W' : ' ',
- region.is_executable() ? 'X' : ' ',
- region.is_shared() ? 'S' : ' ',
- region.is_stack() ? 'T' : ' ',
- region.is_syscall_region() ? 'C' : ' ',
- region.name());
- }
- }
- void MemoryManager::set_page_writable_direct(VirtualAddress vaddr, bool writable)
- {
- ScopedSpinLock lock(s_mm_lock);
- ScopedSpinLock page_lock(kernel_page_directory().get_lock());
- auto* pte = ensure_pte(kernel_page_directory(), vaddr);
- VERIFY(pte);
- if (pte->is_writable() == writable)
- return;
- pte->set_writable(writable);
- flush_tlb(&kernel_page_directory(), vaddr);
- }
- }
|