MemoryManager.cpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright notice, this
  9. * list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright notice,
  12. * this list of conditions and the following disclaimer in the documentation
  13. * and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  18. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  21. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  22. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  23. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include <AK/Assertions.h>
  27. #include <AK/Memory.h>
  28. #include <AK/Singleton.h>
  29. #include <AK/StringView.h>
  30. #include <Kernel/Arch/i386/CPU.h>
  31. #include <Kernel/CMOS.h>
  32. #include <Kernel/FileSystem/Inode.h>
  33. #include <Kernel/Multiboot.h>
  34. #include <Kernel/Process.h>
  35. #include <Kernel/VM/AnonymousVMObject.h>
  36. #include <Kernel/VM/ContiguousVMObject.h>
  37. #include <Kernel/VM/MemoryManager.h>
  38. #include <Kernel/VM/PageDirectory.h>
  39. #include <Kernel/VM/PhysicalRegion.h>
  40. #include <Kernel/VM/PurgeableVMObject.h>
  41. #include <Kernel/VM/SharedInodeVMObject.h>
  42. #include <Kernel/StdLib.h>
  43. //#define MM_DEBUG
  44. //#define PAGE_FAULT_DEBUG
  45. extern FlatPtr start_of_kernel_text;
  46. extern FlatPtr start_of_kernel_data;
  47. extern FlatPtr end_of_kernel_bss;
  48. namespace Kernel {
  49. static auto s_the = AK::make_singleton<MemoryManager>();
  50. RecursiveSpinLock s_mm_lock;
  51. MemoryManager& MM
  52. {
  53. return *s_the;
  54. }
  55. MemoryManager::MemoryManager()
  56. {
  57. ASSERT(!s_the.is_initialized());
  58. ScopedSpinLock lock(s_mm_lock);
  59. m_kernel_page_directory = PageDirectory::create_kernel_page_directory();
  60. parse_memory_map();
  61. write_cr3(kernel_page_directory().cr3());
  62. protect_kernel_image();
  63. m_shared_zero_page = allocate_user_physical_page();
  64. }
  65. MemoryManager::~MemoryManager()
  66. {
  67. }
  68. void MemoryManager::protect_kernel_image()
  69. {
  70. // Disable writing to the kernel text and rodata segments.
  71. for (size_t i = (FlatPtr)&start_of_kernel_text; i < (FlatPtr)&start_of_kernel_data; i += PAGE_SIZE) {
  72. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  73. pte.set_writable(false);
  74. }
  75. if (Processor::current().has_feature(CPUFeature::NX)) {
  76. // Disable execution of the kernel data and bss segments.
  77. for (size_t i = (FlatPtr)&start_of_kernel_data; i < (FlatPtr)&end_of_kernel_bss; i += PAGE_SIZE) {
  78. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  79. pte.set_execute_disabled(true);
  80. }
  81. }
  82. }
  83. void MemoryManager::parse_memory_map()
  84. {
  85. RefPtr<PhysicalRegion> region;
  86. bool region_is_super = false;
  87. auto* mmap = (multiboot_memory_map_t*)(low_physical_to_virtual(multiboot_info_ptr->mmap_addr));
  88. for (; (unsigned long)mmap < (low_physical_to_virtual(multiboot_info_ptr->mmap_addr)) + (multiboot_info_ptr->mmap_length); mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  89. klog() << "MM: Multiboot mmap: base_addr = " << String::format("0x%08x", mmap->addr) << ", length = " << String::format("0x%08x", mmap->len) << ", type = 0x" << String::format("%x", mmap->type);
  90. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  91. continue;
  92. // FIXME: Maybe make use of stuff below the 1MiB mark?
  93. if (mmap->addr < (1 * MiB))
  94. continue;
  95. if ((mmap->addr + mmap->len) > 0xffffffff)
  96. continue;
  97. auto diff = (FlatPtr)mmap->addr % PAGE_SIZE;
  98. if (diff != 0) {
  99. klog() << "MM: got an unaligned region base from the bootloader; correcting " << String::format("%p", mmap->addr) << " by " << diff << " bytes";
  100. diff = PAGE_SIZE - diff;
  101. mmap->addr += diff;
  102. mmap->len -= diff;
  103. }
  104. if ((mmap->len % PAGE_SIZE) != 0) {
  105. klog() << "MM: got an unaligned region length from the bootloader; correcting " << mmap->len << " by " << (mmap->len % PAGE_SIZE) << " bytes";
  106. mmap->len -= mmap->len % PAGE_SIZE;
  107. }
  108. if (mmap->len < PAGE_SIZE) {
  109. klog() << "MM: memory region from bootloader is too small; we want >= " << PAGE_SIZE << " bytes, but got " << mmap->len << " bytes";
  110. continue;
  111. }
  112. #ifdef MM_DEBUG
  113. klog() << "MM: considering memory at " << String::format("%p", (FlatPtr)mmap->addr) << " - " << String::format("%p", (FlatPtr)(mmap->addr + mmap->len));
  114. #endif
  115. for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  116. auto addr = PhysicalAddress(page_base);
  117. if (page_base < 7 * MiB) {
  118. // nothing
  119. } else if (page_base >= 7 * MiB && page_base < 8 * MiB) {
  120. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  121. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  122. region = m_super_physical_regions.last();
  123. region_is_super = true;
  124. } else {
  125. region->expand(region->lower(), addr);
  126. }
  127. } else {
  128. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  129. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  130. region = m_user_physical_regions.last();
  131. region_is_super = false;
  132. } else {
  133. region->expand(region->lower(), addr);
  134. }
  135. }
  136. }
  137. }
  138. for (auto& region : m_super_physical_regions)
  139. m_super_physical_pages += region.finalize_capacity();
  140. for (auto& region : m_user_physical_regions)
  141. m_user_physical_pages += region.finalize_capacity();
  142. ASSERT(m_super_physical_pages > 0);
  143. ASSERT(m_user_physical_pages > 0);
  144. }
  145. const PageTableEntry* MemoryManager::pte(const PageDirectory& page_directory, VirtualAddress vaddr)
  146. {
  147. ASSERT_INTERRUPTS_DISABLED();
  148. ASSERT(s_mm_lock.own_lock());
  149. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  150. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  151. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  152. auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
  153. const PageDirectoryEntry& pde = pd[page_directory_index];
  154. if (!pde.is_present())
  155. return nullptr;
  156. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  157. }
  158. PageTableEntry& MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  159. {
  160. ASSERT_INTERRUPTS_DISABLED();
  161. ASSERT(s_mm_lock.own_lock());
  162. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  163. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  164. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  165. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  166. PageDirectoryEntry& pde = pd[page_directory_index];
  167. if (!pde.is_present()) {
  168. #ifdef MM_DEBUG
  169. dbg() << "MM: PDE " << page_directory_index << " not present (requested for " << vaddr << "), allocating";
  170. #endif
  171. auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes);
  172. #ifdef MM_DEBUG
  173. dbg() << "MM: PD K" << &page_directory << " (" << (&page_directory == m_kernel_page_directory ? "Kernel" : "User") << ") at " << PhysicalAddress(page_directory.cr3()) << " allocated page table #" << page_directory_index << " (for " << vaddr << ") at " << page_table->paddr();
  174. #endif
  175. pde.set_page_table_base(page_table->paddr().get());
  176. pde.set_user_allowed(true);
  177. pde.set_present(true);
  178. pde.set_writable(true);
  179. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  180. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  181. }
  182. return quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  183. }
  184. void MemoryManager::initialize(u32 cpu)
  185. {
  186. auto mm_data = new MemoryManagerData;
  187. #ifdef MM_DEBUG
  188. dbg() << "MM: Processor #" << cpu << " specific data at " << VirtualAddress(mm_data);
  189. #endif
  190. Processor::current().set_mm_data(*mm_data);
  191. if (cpu == 0)
  192. s_the.ensure_instance();
  193. }
  194. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  195. {
  196. ScopedSpinLock lock(s_mm_lock);
  197. for (auto& region : MM.m_kernel_regions) {
  198. if (region.contains(vaddr))
  199. return &region;
  200. }
  201. return nullptr;
  202. }
  203. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  204. {
  205. ScopedSpinLock lock(s_mm_lock);
  206. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  207. for (auto& region : process.m_regions) {
  208. if (region.contains(vaddr))
  209. return &region;
  210. }
  211. #ifdef MM_DEBUG
  212. dbg() << process << " Couldn't find user region for " << vaddr;
  213. #endif
  214. return nullptr;
  215. }
  216. Region* MemoryManager::find_region_from_vaddr(Process& process, VirtualAddress vaddr)
  217. {
  218. ScopedSpinLock lock(s_mm_lock);
  219. if (auto* region = user_region_from_vaddr(process, vaddr))
  220. return region;
  221. return kernel_region_from_vaddr(vaddr);
  222. }
  223. const Region* MemoryManager::find_region_from_vaddr(const Process& process, VirtualAddress vaddr)
  224. {
  225. ScopedSpinLock lock(s_mm_lock);
  226. if (auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr))
  227. return region;
  228. return kernel_region_from_vaddr(vaddr);
  229. }
  230. Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr)
  231. {
  232. ScopedSpinLock lock(s_mm_lock);
  233. if (auto* region = kernel_region_from_vaddr(vaddr))
  234. return region;
  235. auto page_directory = PageDirectory::find_by_cr3(read_cr3());
  236. if (!page_directory)
  237. return nullptr;
  238. ASSERT(page_directory->process());
  239. return user_region_from_vaddr(*page_directory->process(), vaddr);
  240. }
  241. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  242. {
  243. ASSERT_INTERRUPTS_DISABLED();
  244. ASSERT(Thread::current() != nullptr);
  245. ScopedSpinLock lock(s_mm_lock);
  246. if (Processor::current().in_irq()) {
  247. dbg() << "CPU[" << Processor::current().id() << "] BUG! Page fault while handling IRQ! code=" << fault.code() << ", vaddr=" << fault.vaddr() << ", irq level: " << Processor::current().in_irq();
  248. dump_kernel_regions();
  249. return PageFaultResponse::ShouldCrash;
  250. }
  251. #ifdef PAGE_FAULT_DEBUG
  252. dbg() << "MM: CPU[" << Processor::current().id() << "] handle_page_fault(" << String::format("%w", fault.code()) << ") at " << fault.vaddr();
  253. #endif
  254. auto* region = find_region_from_vaddr(fault.vaddr());
  255. if (!region) {
  256. klog() << "CPU[" << Processor::current().id() << "] NP(error) fault at invalid address " << fault.vaddr();
  257. return PageFaultResponse::ShouldCrash;
  258. }
  259. return region->handle_fault(fault);
  260. }
  261. OwnPtr<Region> MemoryManager::allocate_contiguous_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  262. {
  263. ASSERT(!(size % PAGE_SIZE));
  264. ScopedSpinLock lock(s_mm_lock);
  265. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  266. if (!range.is_valid())
  267. return nullptr;
  268. auto vmobject = ContiguousVMObject::create_with_size(size);
  269. auto region = allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  270. if (!region)
  271. return nullptr;
  272. return region;
  273. }
  274. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool should_commit, bool cacheable)
  275. {
  276. ASSERT(!(size % PAGE_SIZE));
  277. ScopedSpinLock lock(s_mm_lock);
  278. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  279. if (!range.is_valid())
  280. return nullptr;
  281. auto vmobject = AnonymousVMObject::create_with_size(size);
  282. auto region = allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  283. if (!region)
  284. return nullptr;
  285. if (should_commit && !region->commit())
  286. return nullptr;
  287. return region;
  288. }
  289. OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  290. {
  291. ASSERT(!(size % PAGE_SIZE));
  292. ScopedSpinLock lock(s_mm_lock);
  293. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  294. if (!range.is_valid())
  295. return nullptr;
  296. auto vmobject = AnonymousVMObject::create_for_physical_range(paddr, size);
  297. if (!vmobject)
  298. return nullptr;
  299. return allocate_kernel_region_with_vmobject(range, *vmobject, name, access, user_accessible, cacheable);
  300. }
  301. OwnPtr<Region> MemoryManager::allocate_kernel_region_identity(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  302. {
  303. ASSERT(!(size % PAGE_SIZE));
  304. ScopedSpinLock lock(s_mm_lock);
  305. auto range = kernel_page_directory().identity_range_allocator().allocate_specific(VirtualAddress(paddr.get()), size);
  306. if (!range.is_valid())
  307. return nullptr;
  308. auto vmobject = AnonymousVMObject::create_for_physical_range(paddr, size);
  309. if (!vmobject)
  310. return nullptr;
  311. return allocate_kernel_region_with_vmobject(range, *vmobject, name, access, user_accessible, cacheable);
  312. }
  313. OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name, u8 access, bool cacheable)
  314. {
  315. return allocate_kernel_region(size, name, access, true, true, cacheable);
  316. }
  317. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(const Range& range, VMObject& vmobject, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  318. {
  319. ScopedSpinLock lock(s_mm_lock);
  320. OwnPtr<Region> region;
  321. if (user_accessible)
  322. region = Region::create_user_accessible(range, vmobject, 0, name, access, cacheable);
  323. else
  324. region = Region::create_kernel_only(range, vmobject, 0, name, access, cacheable);
  325. if (region)
  326. region->map(kernel_page_directory());
  327. return region;
  328. }
  329. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  330. {
  331. ASSERT(!(size % PAGE_SIZE));
  332. ScopedSpinLock lock(s_mm_lock);
  333. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  334. if (!range.is_valid())
  335. return nullptr;
  336. return allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  337. }
  338. void MemoryManager::deallocate_user_physical_page(PhysicalPage&& page)
  339. {
  340. ScopedSpinLock lock(s_mm_lock);
  341. for (auto& region : m_user_physical_regions) {
  342. if (!region.contains(page)) {
  343. klog() << "MM: deallocate_user_physical_page: " << page.paddr() << " not in " << region.lower() << " -> " << region.upper();
  344. continue;
  345. }
  346. region.return_page(move(page));
  347. --m_user_physical_pages_used;
  348. return;
  349. }
  350. klog() << "MM: deallocate_user_physical_page couldn't figure out region for user page @ " << page.paddr();
  351. ASSERT_NOT_REACHED();
  352. }
  353. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page()
  354. {
  355. ASSERT(s_mm_lock.is_locked());
  356. RefPtr<PhysicalPage> page;
  357. for (auto& region : m_user_physical_regions) {
  358. page = region.take_free_page(false);
  359. if (!page.is_null())
  360. break;
  361. }
  362. return page;
  363. }
  364. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
  365. {
  366. ScopedSpinLock lock(s_mm_lock);
  367. auto page = find_free_user_physical_page();
  368. if (!page) {
  369. // We didn't have a single free physical page. Let's try to free something up!
  370. // First, we look for a purgeable VMObject in the volatile state.
  371. for_each_vmobject_of_type<PurgeableVMObject>([&](auto& vmobject) {
  372. int purged_page_count = vmobject.purge_with_interrupts_disabled({});
  373. if (purged_page_count) {
  374. klog() << "MM: Purge saved the day! Purged " << purged_page_count << " pages from PurgeableVMObject{" << &vmobject << "}";
  375. page = find_free_user_physical_page();
  376. ASSERT(page);
  377. return IterationDecision::Break;
  378. }
  379. return IterationDecision::Continue;
  380. });
  381. if (!page) {
  382. klog() << "MM: no user physical pages available";
  383. return {};
  384. }
  385. }
  386. #ifdef MM_DEBUG
  387. dbg() << "MM: allocate_user_physical_page vending " << page->paddr();
  388. #endif
  389. if (should_zero_fill == ShouldZeroFill::Yes) {
  390. auto* ptr = quickmap_page(*page);
  391. memset(ptr, 0, PAGE_SIZE);
  392. unquickmap_page();
  393. }
  394. ++m_user_physical_pages_used;
  395. return page;
  396. }
  397. void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage&& page)
  398. {
  399. ScopedSpinLock lock(s_mm_lock);
  400. for (auto& region : m_super_physical_regions) {
  401. if (!region.contains(page)) {
  402. klog() << "MM: deallocate_supervisor_physical_page: " << page.paddr() << " not in " << region.lower() << " -> " << region.upper();
  403. continue;
  404. }
  405. region.return_page(move(page));
  406. --m_super_physical_pages_used;
  407. return;
  408. }
  409. klog() << "MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ " << page.paddr();
  410. ASSERT_NOT_REACHED();
  411. }
  412. NonnullRefPtrVector<PhysicalPage> MemoryManager::allocate_contiguous_supervisor_physical_pages(size_t size)
  413. {
  414. ASSERT(!(size % PAGE_SIZE));
  415. ScopedSpinLock lock(s_mm_lock);
  416. size_t count = ceil_div(size, PAGE_SIZE);
  417. NonnullRefPtrVector<PhysicalPage> physical_pages;
  418. for (auto& region : m_super_physical_regions) {
  419. physical_pages = region.take_contiguous_free_pages((count), true);
  420. if (physical_pages.is_empty())
  421. continue;
  422. }
  423. if (physical_pages.is_empty()) {
  424. if (m_super_physical_regions.is_empty()) {
  425. klog() << "MM: no super physical regions available (?)";
  426. }
  427. klog() << "MM: no super physical pages available";
  428. ASSERT_NOT_REACHED();
  429. return {};
  430. }
  431. auto cleanup_region = MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write);
  432. fast_u32_fill((u32*)cleanup_region->vaddr().as_ptr(), 0, (PAGE_SIZE * count) / sizeof(u32));
  433. m_super_physical_pages_used += count;
  434. return physical_pages;
  435. }
  436. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  437. {
  438. ScopedSpinLock lock(s_mm_lock);
  439. RefPtr<PhysicalPage> page;
  440. for (auto& region : m_super_physical_regions) {
  441. page = region.take_free_page(true);
  442. if (page.is_null())
  443. continue;
  444. }
  445. if (!page) {
  446. if (m_super_physical_regions.is_empty()) {
  447. klog() << "MM: no super physical regions available (?)";
  448. }
  449. klog() << "MM: no super physical pages available";
  450. ASSERT_NOT_REACHED();
  451. return {};
  452. }
  453. #ifdef MM_DEBUG
  454. dbg() << "MM: allocate_supervisor_physical_page vending " << page->paddr();
  455. #endif
  456. fast_u32_fill((u32*)page->paddr().offset(0xc0000000).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  457. ++m_super_physical_pages_used;
  458. return page;
  459. }
  460. void MemoryManager::enter_process_paging_scope(Process& process)
  461. {
  462. auto current_thread = Thread::current();
  463. ASSERT(current_thread != nullptr);
  464. ScopedSpinLock lock(s_mm_lock);
  465. current_thread->tss().cr3 = process.page_directory().cr3();
  466. write_cr3(process.page_directory().cr3());
  467. }
  468. void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
  469. {
  470. #ifdef MM_DEBUG
  471. dbg() << "MM: Flush " << page_count << " pages at " << vaddr << " on CPU#" << Processor::current().id();
  472. #endif
  473. Processor::flush_tlb_local(vaddr, page_count);
  474. }
  475. void MemoryManager::flush_tlb(VirtualAddress vaddr, size_t page_count)
  476. {
  477. #ifdef MM_DEBUG
  478. dbg() << "MM: Flush " << page_count << " pages at " << vaddr;
  479. #endif
  480. Processor::flush_tlb(vaddr, page_count);
  481. }
  482. extern "C" PageTableEntry boot_pd3_pt1023[1024];
  483. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  484. {
  485. ASSERT(s_mm_lock.own_lock());
  486. auto& pte = boot_pd3_pt1023[4];
  487. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  488. if (pte.physical_page_base() != pd_paddr.as_ptr()) {
  489. #ifdef MM_DEBUG
  490. dbg() << "quickmap_pd: Mapping P" << (void*)directory.m_directory_pages[pdpt_index]->paddr().as_ptr() << " at 0xffe04000 in pte @ " << &pte;
  491. #endif
  492. pte.set_physical_page_base(pd_paddr.get());
  493. pte.set_present(true);
  494. pte.set_writable(true);
  495. pte.set_user_allowed(false);
  496. // Because we must continue to hold the MM lock while we use this
  497. // mapping, it is sufficient to only flush on the current CPU. Other
  498. // CPUs trying to use this API must wait on the MM lock anyway
  499. flush_tlb_local(VirtualAddress(0xffe04000));
  500. }
  501. return (PageDirectoryEntry*)0xffe04000;
  502. }
  503. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  504. {
  505. ASSERT(s_mm_lock.own_lock());
  506. auto& pte = boot_pd3_pt1023[0];
  507. if (pte.physical_page_base() != pt_paddr.as_ptr()) {
  508. #ifdef MM_DEBUG
  509. dbg() << "quickmap_pt: Mapping P" << (void*)pt_paddr.as_ptr() << " at 0xffe00000 in pte @ " << &pte;
  510. #endif
  511. pte.set_physical_page_base(pt_paddr.get());
  512. pte.set_present(true);
  513. pte.set_writable(true);
  514. pte.set_user_allowed(false);
  515. // Because we must continue to hold the MM lock while we use this
  516. // mapping, it is sufficient to only flush on the current CPU. Other
  517. // CPUs trying to use this API must wait on the MM lock anyway
  518. flush_tlb_local(VirtualAddress(0xffe00000));
  519. }
  520. return (PageTableEntry*)0xffe00000;
  521. }
  522. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  523. {
  524. ASSERT_INTERRUPTS_DISABLED();
  525. auto& mm_data = get_data();
  526. mm_data.m_quickmap_prev_flags = mm_data.m_quickmap_in_use.lock();
  527. ScopedSpinLock lock(s_mm_lock);
  528. u32 pte_idx = 8 + Processor::current().id();
  529. VirtualAddress vaddr(0xffe00000 + pte_idx * PAGE_SIZE);
  530. auto& pte = boot_pd3_pt1023[pte_idx];
  531. if (pte.physical_page_base() != physical_page.paddr().as_ptr()) {
  532. #ifdef MM_DEBUG
  533. dbg() << "quickmap_page: Mapping P" << (void*)physical_page.paddr().as_ptr() << " at 0xffe08000 in pte @ " << &pte;
  534. #endif
  535. pte.set_physical_page_base(physical_page.paddr().get());
  536. pte.set_present(true);
  537. pte.set_writable(true);
  538. pte.set_user_allowed(false);
  539. flush_tlb_local(vaddr);
  540. }
  541. return vaddr.as_ptr();
  542. }
  543. void MemoryManager::unquickmap_page()
  544. {
  545. ASSERT_INTERRUPTS_DISABLED();
  546. ScopedSpinLock lock(s_mm_lock);
  547. auto& mm_data = get_data();
  548. ASSERT(mm_data.m_quickmap_in_use.is_locked());
  549. u32 pte_idx = 8 + Processor::current().id();
  550. VirtualAddress vaddr(0xffe00000 + pte_idx * PAGE_SIZE);
  551. auto& pte = boot_pd3_pt1023[pte_idx];
  552. pte.clear();
  553. flush_tlb_local(vaddr);
  554. mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_prev_flags);
  555. }
  556. template<MemoryManager::AccessSpace space, MemoryManager::AccessType access_type>
  557. bool MemoryManager::validate_range(const Process& process, VirtualAddress base_vaddr, size_t size) const
  558. {
  559. ASSERT(s_mm_lock.is_locked());
  560. ASSERT(size);
  561. if (base_vaddr > base_vaddr.offset(size)) {
  562. dbg() << "Shenanigans! Asked to validate wrappy " << base_vaddr << " size=" << size;
  563. return false;
  564. }
  565. VirtualAddress vaddr = base_vaddr.page_base();
  566. VirtualAddress end_vaddr = base_vaddr.offset(size - 1).page_base();
  567. if (end_vaddr < vaddr) {
  568. dbg() << "Shenanigans! Asked to validate " << base_vaddr << " size=" << size;
  569. return false;
  570. }
  571. const Region* region = nullptr;
  572. while (vaddr <= end_vaddr) {
  573. if (!region || !region->contains(vaddr)) {
  574. if (space == AccessSpace::Kernel)
  575. region = kernel_region_from_vaddr(vaddr);
  576. if (!region || !region->contains(vaddr))
  577. region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  578. if (!region
  579. || (space == AccessSpace::User && !region->is_user_accessible())
  580. || (access_type == AccessType::Read && !region->is_readable())
  581. || (access_type == AccessType::Write && !region->is_writable())) {
  582. return false;
  583. }
  584. }
  585. vaddr = region->range().end();
  586. }
  587. return true;
  588. }
  589. bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
  590. {
  591. if (!is_user_address(vaddr))
  592. return false;
  593. ScopedSpinLock lock(s_mm_lock);
  594. auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  595. return region && region->is_user_accessible() && region->is_stack();
  596. }
  597. bool MemoryManager::validate_kernel_read(const Process& process, VirtualAddress vaddr, size_t size) const
  598. {
  599. ScopedSpinLock lock(s_mm_lock);
  600. return validate_range<AccessSpace::Kernel, AccessType::Read>(process, vaddr, size);
  601. }
  602. bool MemoryManager::can_read_without_faulting(const Process& process, VirtualAddress vaddr, size_t size) const
  603. {
  604. // FIXME: Use the size argument!
  605. UNUSED_PARAM(size);
  606. ScopedSpinLock lock(s_mm_lock);
  607. auto* pte = const_cast<MemoryManager*>(this)->pte(process.page_directory(), vaddr);
  608. if (!pte)
  609. return false;
  610. return pte->is_present();
  611. }
  612. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr, size_t size) const
  613. {
  614. if (!is_user_address(vaddr))
  615. return false;
  616. ScopedSpinLock lock(s_mm_lock);
  617. return validate_range<AccessSpace::User, AccessType::Read>(process, vaddr, size);
  618. }
  619. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr, size_t size) const
  620. {
  621. if (!is_user_address(vaddr))
  622. return false;
  623. ScopedSpinLock lock(s_mm_lock);
  624. return validate_range<AccessSpace::User, AccessType::Write>(process, vaddr, size);
  625. }
  626. void MemoryManager::register_vmobject(VMObject& vmobject)
  627. {
  628. ScopedSpinLock lock(s_mm_lock);
  629. m_vmobjects.append(&vmobject);
  630. }
  631. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  632. {
  633. ScopedSpinLock lock(s_mm_lock);
  634. m_vmobjects.remove(&vmobject);
  635. }
  636. void MemoryManager::register_region(Region& region)
  637. {
  638. ScopedSpinLock lock(s_mm_lock);
  639. if (region.is_kernel())
  640. m_kernel_regions.append(&region);
  641. else
  642. m_user_regions.append(&region);
  643. }
  644. void MemoryManager::unregister_region(Region& region)
  645. {
  646. ScopedSpinLock lock(s_mm_lock);
  647. if (region.is_kernel())
  648. m_kernel_regions.remove(&region);
  649. else
  650. m_user_regions.remove(&region);
  651. }
  652. void MemoryManager::dump_kernel_regions()
  653. {
  654. klog() << "Kernel regions:";
  655. klog() << "BEGIN END SIZE ACCESS NAME";
  656. ScopedSpinLock lock(s_mm_lock);
  657. for (auto& region : MM.m_kernel_regions) {
  658. klog() << String::format("%08x", region.vaddr().get()) << " -- " << String::format("%08x", region.vaddr().offset(region.size() - 1).get()) << " " << String::format("%08x", region.size()) << " " << (region.is_readable() ? 'R' : ' ') << (region.is_writable() ? 'W' : ' ') << (region.is_executable() ? 'X' : ' ') << (region.is_shared() ? 'S' : ' ') << (region.is_stack() ? 'T' : ' ') << (region.vmobject().is_purgeable() ? 'P' : ' ') << " " << region.name().characters();
  659. }
  660. }
  661. }