MemoryManager.cpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787
  1. #include "CMOS.h"
  2. #include "Process.h"
  3. #include "StdLib.h"
  4. #include <AK/Assertions.h>
  5. #include <AK/kstdio.h>
  6. #include <Kernel/Arch/i386/CPU.h>
  7. #include <Kernel/FileSystem/Inode.h>
  8. #include <Kernel/Multiboot.h>
  9. #include <Kernel/VM/MemoryManager.h>
  10. //#define MM_DEBUG
  11. //#define PAGE_FAULT_DEBUG
  12. static MemoryManager* s_the;
  13. MemoryManager& MM
  14. {
  15. return *s_the;
  16. }
  17. MemoryManager::MemoryManager()
  18. {
  19. m_kernel_page_directory = PageDirectory::create_at_fixed_address(PhysicalAddress(0x4000));
  20. m_page_table_zero = (dword*)0x6000;
  21. m_page_table_one = (dword*)0x7000;
  22. initialize_paging();
  23. kprintf("MM initialized.\n");
  24. }
  25. MemoryManager::~MemoryManager()
  26. {
  27. }
  28. void MemoryManager::populate_page_directory(PageDirectory& page_directory)
  29. {
  30. page_directory.m_directory_page = allocate_supervisor_physical_page();
  31. page_directory.entries()[0] = kernel_page_directory().entries()[0];
  32. page_directory.entries()[1] = kernel_page_directory().entries()[1];
  33. // Defer to the kernel page tables for 0xC0000000-0xFFFFFFFF
  34. for (int i = 768; i < 1024; ++i)
  35. page_directory.entries()[i] = kernel_page_directory().entries()[i];
  36. }
  37. void MemoryManager::initialize_paging()
  38. {
  39. static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4);
  40. static_assert(sizeof(MemoryManager::PageTableEntry) == 4);
  41. memset(m_page_table_zero, 0, PAGE_SIZE);
  42. memset(m_page_table_one, 0, PAGE_SIZE);
  43. #ifdef MM_DEBUG
  44. dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
  45. #endif
  46. #ifdef MM_DEBUG
  47. dbgprintf("MM: Protect against null dereferences\n");
  48. #endif
  49. // Make null dereferences crash.
  50. map_protected(VirtualAddress(0), PAGE_SIZE);
  51. #ifdef MM_DEBUG
  52. dbgprintf("MM: Identity map bottom 5MB\n");
  53. #endif
  54. // The bottom 5 MB (except for the null page) are identity mapped & supervisor only.
  55. // Every process shares these mappings.
  56. create_identity_mapping(kernel_page_directory(), VirtualAddress(PAGE_SIZE), (5 * MB) - PAGE_SIZE);
  57. // Basic memory map:
  58. // 0 -> 512 kB Kernel code. Root page directory & PDE 0.
  59. // (last page before 1MB) Used by quickmap_page().
  60. // 1 MB -> 3 MB kmalloc_eternal() space.
  61. // 3 MB -> 4 MB kmalloc() space.
  62. // 4 MB -> 5 MB Supervisor physical pages (available for allocation!)
  63. // 5 MB -> 0xc0000000 Userspace physical pages (available for allocation!)
  64. // 0xc0000000-0xffffffff Kernel-only linear address space
  65. #ifdef MM_DEBUG
  66. dbgprintf("MM: Quickmap will use %p\n", m_quickmap_addr.get());
  67. #endif
  68. m_quickmap_addr = VirtualAddress((1 * MB) - PAGE_SIZE);
  69. RetainPtr<PhysicalRegion> region = nullptr;
  70. bool region_is_super = false;
  71. for (auto* mmap = (multiboot_memory_map_t*)multiboot_info_ptr->mmap_addr; (unsigned long)mmap < multiboot_info_ptr->mmap_addr + multiboot_info_ptr->mmap_length; mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  72. kprintf("MM: Multiboot mmap: base_addr = 0x%x%08x, length = 0x%x%08x, type = 0x%x\n",
  73. (dword)(mmap->addr >> 32),
  74. (dword)(mmap->addr & 0xffffffff),
  75. (dword)(mmap->len >> 32),
  76. (dword)(mmap->len & 0xffffffff),
  77. (dword)mmap->type);
  78. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  79. continue;
  80. // FIXME: Maybe make use of stuff below the 1MB mark?
  81. if (mmap->addr < (1 * MB))
  82. continue;
  83. #ifdef MM_DEBUG
  84. kprintf("MM: considering memory at %p - %p\n",
  85. (dword)mmap->addr, (dword)(mmap->addr + mmap->len));
  86. #endif
  87. for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  88. auto addr = PhysicalAddress(page_base);
  89. if (page_base < 4 * MB) {
  90. // nothing
  91. } else if (page_base >= 4 * MB && page_base < 5 * MB) {
  92. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  93. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  94. region = m_super_physical_regions.last();
  95. region_is_super = true;
  96. } else {
  97. region->expand(region->lower(), addr);
  98. }
  99. } else {
  100. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  101. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  102. region = m_user_physical_regions.last();
  103. region_is_super = false;
  104. } else {
  105. region->expand(region->lower(), addr);
  106. }
  107. }
  108. }
  109. }
  110. for (auto& region : m_super_physical_regions)
  111. m_super_physical_pages += region->finalize_capacity();
  112. for (auto& region : m_user_physical_regions)
  113. m_user_physical_pages += region->finalize_capacity();
  114. #ifdef MM_DEBUG
  115. dbgprintf("MM: Installing page directory\n");
  116. #endif
  117. asm volatile("movl %%eax, %%cr3" ::"a"(kernel_page_directory().cr3()));
  118. asm volatile(
  119. "movl %%cr0, %%eax\n"
  120. "orl $0x80000001, %%eax\n"
  121. "movl %%eax, %%cr0\n" ::
  122. : "%eax", "memory");
  123. #ifdef MM_DEBUG
  124. dbgprintf("MM: Paging initialized.\n");
  125. #endif
  126. }
  127. RetainPtr<PhysicalPage> MemoryManager::allocate_page_table(PageDirectory& page_directory, unsigned index)
  128. {
  129. ASSERT(!page_directory.m_physical_pages.contains(index));
  130. auto physical_page = allocate_supervisor_physical_page();
  131. if (!physical_page)
  132. return nullptr;
  133. page_directory.m_physical_pages.set(index, physical_page.copy_ref());
  134. return physical_page;
  135. }
  136. void MemoryManager::remove_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
  137. {
  138. InterruptDisabler disabler;
  139. // FIXME: ASSERT(vaddr is 4KB aligned);
  140. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  141. auto pte_address = vaddr.offset(offset);
  142. auto pte = ensure_pte(page_directory, pte_address);
  143. pte.set_physical_page_base(0);
  144. pte.set_user_allowed(false);
  145. pte.set_present(true);
  146. pte.set_writable(true);
  147. flush_tlb(pte_address);
  148. }
  149. }
  150. auto MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr) -> PageTableEntry
  151. {
  152. ASSERT_INTERRUPTS_DISABLED();
  153. dword page_directory_index = (vaddr.get() >> 22) & 0x3ff;
  154. dword page_table_index = (vaddr.get() >> 12) & 0x3ff;
  155. PageDirectoryEntry pde = PageDirectoryEntry(&page_directory.entries()[page_directory_index]);
  156. if (!pde.is_present()) {
  157. #ifdef MM_DEBUG
  158. dbgprintf("MM: PDE %u not present (requested for L%x), allocating\n", page_directory_index, vaddr.get());
  159. #endif
  160. if (page_directory_index == 0) {
  161. ASSERT(&page_directory == m_kernel_page_directory);
  162. pde.set_page_table_base((dword)m_page_table_zero);
  163. pde.set_user_allowed(false);
  164. pde.set_present(true);
  165. pde.set_writable(true);
  166. } else if (page_directory_index == 1) {
  167. ASSERT(&page_directory == m_kernel_page_directory);
  168. pde.set_page_table_base((dword)m_page_table_one);
  169. pde.set_user_allowed(false);
  170. pde.set_present(true);
  171. pde.set_writable(true);
  172. } else {
  173. //ASSERT(&page_directory != m_kernel_page_directory.ptr());
  174. auto page_table = allocate_page_table(page_directory, page_directory_index);
  175. #ifdef MM_DEBUG
  176. dbgprintf("MM: PD K%x (%s) at P%x allocated page table #%u (for L%x) at P%x\n",
  177. &page_directory,
  178. &page_directory == m_kernel_page_directory ? "Kernel" : "User",
  179. page_directory.cr3(),
  180. page_directory_index,
  181. vaddr.get(),
  182. page_table->paddr().get());
  183. #endif
  184. pde.set_page_table_base(page_table->paddr().get());
  185. pde.set_user_allowed(true);
  186. pde.set_present(true);
  187. pde.set_writable(true);
  188. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  189. }
  190. }
  191. return PageTableEntry(&pde.page_table_base()[page_table_index]);
  192. }
  193. void MemoryManager::map_protected(VirtualAddress vaddr, size_t length)
  194. {
  195. InterruptDisabler disabler;
  196. // FIXME: ASSERT(linearAddress is 4KB aligned);
  197. for (dword offset = 0; offset < length; offset += PAGE_SIZE) {
  198. auto pte_address = vaddr.offset(offset);
  199. auto pte = ensure_pte(kernel_page_directory(), pte_address);
  200. pte.set_physical_page_base(pte_address.get());
  201. pte.set_user_allowed(false);
  202. pte.set_present(false);
  203. pte.set_writable(false);
  204. flush_tlb(pte_address);
  205. }
  206. }
  207. void MemoryManager::create_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
  208. {
  209. InterruptDisabler disabler;
  210. ASSERT((vaddr.get() & ~PAGE_MASK) == 0);
  211. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  212. auto pte_address = vaddr.offset(offset);
  213. auto pte = ensure_pte(page_directory, pte_address);
  214. pte.set_physical_page_base(pte_address.get());
  215. pte.set_user_allowed(false);
  216. pte.set_present(true);
  217. pte.set_writable(true);
  218. page_directory.flush(pte_address);
  219. }
  220. }
  221. void MemoryManager::initialize()
  222. {
  223. s_the = new MemoryManager;
  224. }
  225. Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
  226. {
  227. ASSERT_INTERRUPTS_DISABLED();
  228. if (vaddr.get() >= 0xc0000000) {
  229. for (auto& region : MM.m_kernel_regions) {
  230. if (region->contains(vaddr))
  231. return region;
  232. }
  233. }
  234. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  235. for (auto& region : process.m_regions) {
  236. if (region->contains(vaddr))
  237. return region.ptr();
  238. }
  239. dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), vaddr.get(), process.page_directory().cr3());
  240. return nullptr;
  241. }
  242. const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
  243. {
  244. if (vaddr.get() >= 0xc0000000) {
  245. for (auto& region : MM.m_kernel_regions) {
  246. if (region->contains(vaddr))
  247. return region;
  248. }
  249. }
  250. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  251. for (auto& region : process.m_regions) {
  252. if (region->contains(vaddr))
  253. return region.ptr();
  254. }
  255. dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), vaddr.get(), process.page_directory().cr3());
  256. return nullptr;
  257. }
  258. bool MemoryManager::zero_page(Region& region, unsigned page_index_in_region)
  259. {
  260. ASSERT_INTERRUPTS_DISABLED();
  261. auto& vmo = region.vmo();
  262. auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
  263. sti();
  264. LOCKER(vmo.m_paging_lock);
  265. cli();
  266. if (!vmo_page.is_null()) {
  267. #ifdef PAGE_FAULT_DEBUG
  268. dbgprintf("MM: zero_page() but page already present. Fine with me!\n");
  269. #endif
  270. remap_region_page(region, page_index_in_region, true);
  271. return true;
  272. }
  273. auto physical_page = allocate_user_physical_page(ShouldZeroFill::Yes);
  274. #ifdef PAGE_FAULT_DEBUG
  275. dbgprintf(" >> ZERO P%x\n", physical_page->paddr().get());
  276. #endif
  277. region.set_should_cow(page_index_in_region, false);
  278. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  279. remap_region_page(region, page_index_in_region, true);
  280. return true;
  281. }
  282. bool MemoryManager::copy_on_write(Region& region, unsigned page_index_in_region)
  283. {
  284. ASSERT_INTERRUPTS_DISABLED();
  285. auto& vmo = region.vmo();
  286. if (vmo.physical_pages()[page_index_in_region]->retain_count() == 1) {
  287. #ifdef PAGE_FAULT_DEBUG
  288. dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
  289. #endif
  290. region.set_should_cow(page_index_in_region, false);
  291. remap_region_page(region, page_index_in_region, true);
  292. return true;
  293. }
  294. #ifdef PAGE_FAULT_DEBUG
  295. dbgprintf(" >> It's a COW page and it's time to COW!\n");
  296. #endif
  297. auto physical_page_to_copy = move(vmo.physical_pages()[page_index_in_region]);
  298. auto physical_page = allocate_user_physical_page(ShouldZeroFill::No);
  299. byte* dest_ptr = quickmap_page(*physical_page);
  300. const byte* src_ptr = region.vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  301. #ifdef PAGE_FAULT_DEBUG
  302. dbgprintf(" >> COW P%x <- P%x\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
  303. #endif
  304. memcpy(dest_ptr, src_ptr, PAGE_SIZE);
  305. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  306. unquickmap_page();
  307. region.set_should_cow(page_index_in_region, false);
  308. remap_region_page(region, page_index_in_region, true);
  309. return true;
  310. }
  311. bool MemoryManager::page_in_from_inode(Region& region, unsigned page_index_in_region)
  312. {
  313. ASSERT(region.page_directory());
  314. auto& vmo = region.vmo();
  315. ASSERT(!vmo.is_anonymous());
  316. ASSERT(vmo.inode());
  317. auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
  318. InterruptFlagSaver saver;
  319. sti();
  320. LOCKER(vmo.m_paging_lock);
  321. cli();
  322. if (!vmo_page.is_null()) {
  323. dbgprintf("MM: page_in_from_inode() but page already present. Fine with me!\n");
  324. remap_region_page(region, page_index_in_region, true);
  325. return true;
  326. }
  327. #ifdef MM_DEBUG
  328. dbgprintf("MM: page_in_from_inode ready to read from inode\n");
  329. #endif
  330. sti();
  331. byte page_buffer[PAGE_SIZE];
  332. auto& inode = *vmo.inode();
  333. auto nread = inode.read_bytes(vmo.inode_offset() + ((region.first_page_index() + page_index_in_region) * PAGE_SIZE), PAGE_SIZE, page_buffer, nullptr);
  334. if (nread < 0) {
  335. kprintf("MM: page_in_from_inode had error (%d) while reading!\n", nread);
  336. return false;
  337. }
  338. if (nread < PAGE_SIZE) {
  339. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  340. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  341. }
  342. cli();
  343. vmo_page = allocate_user_physical_page(ShouldZeroFill::No);
  344. if (vmo_page.is_null()) {
  345. kprintf("MM: page_in_from_inode was unable to allocate a physical page\n");
  346. return false;
  347. }
  348. remap_region_page(region, page_index_in_region, true);
  349. byte* dest_ptr = region.vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  350. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  351. return true;
  352. }
  353. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  354. {
  355. ASSERT_INTERRUPTS_DISABLED();
  356. ASSERT(current);
  357. #ifdef PAGE_FAULT_DEBUG
  358. dbgprintf("MM: handle_page_fault(%w) at L%x\n", fault.code(), fault.vaddr().get());
  359. #endif
  360. ASSERT(fault.vaddr() != m_quickmap_addr);
  361. auto* region = region_from_vaddr(current->process(), fault.vaddr());
  362. if (!region) {
  363. kprintf("NP(error) fault at invalid address L%x\n", fault.vaddr().get());
  364. return PageFaultResponse::ShouldCrash;
  365. }
  366. auto page_index_in_region = region->page_index_from_address(fault.vaddr());
  367. if (fault.is_not_present()) {
  368. if (region->vmo().inode()) {
  369. #ifdef PAGE_FAULT_DEBUG
  370. dbgprintf("NP(inode) fault in Region{%p}[%u]\n", region, page_index_in_region);
  371. #endif
  372. page_in_from_inode(*region, page_index_in_region);
  373. return PageFaultResponse::Continue;
  374. } else {
  375. #ifdef PAGE_FAULT_DEBUG
  376. dbgprintf("NP(zero) fault in Region{%p}[%u]\n", region, page_index_in_region);
  377. #endif
  378. zero_page(*region, page_index_in_region);
  379. return PageFaultResponse::Continue;
  380. }
  381. } else if (fault.is_protection_violation()) {
  382. if (region->should_cow(page_index_in_region)) {
  383. #ifdef PAGE_FAULT_DEBUG
  384. dbgprintf("PV(cow) fault in Region{%p}[%u]\n", region, page_index_in_region);
  385. #endif
  386. bool success = copy_on_write(*region, page_index_in_region);
  387. ASSERT(success);
  388. return PageFaultResponse::Continue;
  389. }
  390. kprintf("PV(error) fault in Region{%p}[%u] at L%x\n", region, page_index_in_region, fault.vaddr().get());
  391. } else {
  392. ASSERT_NOT_REACHED();
  393. }
  394. return PageFaultResponse::ShouldCrash;
  395. }
  396. RetainPtr<Region> MemoryManager::allocate_kernel_region(size_t size, String&& name)
  397. {
  398. InterruptDisabler disabler;
  399. ASSERT(!(size % PAGE_SIZE));
  400. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  401. ASSERT(range.is_valid());
  402. auto region = adopt(*new Region(range, move(name), PROT_READ | PROT_WRITE | PROT_EXEC, false));
  403. MM.map_region_at_address(*m_kernel_page_directory, *region, range.base(), false);
  404. // FIXME: It would be cool if these could zero-fill on demand instead.
  405. region->commit();
  406. return region;
  407. }
  408. void MemoryManager::deallocate_user_physical_page(PhysicalPage& page)
  409. {
  410. for (auto& region : m_user_physical_regions) {
  411. if (!region->contains(page)) {
  412. kprintf(
  413. "MM: deallocate_user_physical_page: %p not in %p -> %p\n",
  414. page.paddr(), region->lower().get(), region->upper().get());
  415. continue;
  416. }
  417. region->return_page(page);
  418. m_user_physical_pages_used--;
  419. return;
  420. }
  421. kprintf("MM: deallocate_user_physical_page couldn't figure out region for user page @ %p\n", page.paddr());
  422. ASSERT_NOT_REACHED();
  423. }
  424. RetainPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
  425. {
  426. InterruptDisabler disabler;
  427. RetainPtr<PhysicalPage> page = nullptr;
  428. for (auto& region : m_user_physical_regions) {
  429. page = region->take_free_page(false);
  430. if (page.is_null())
  431. continue;
  432. }
  433. if (!page) {
  434. if (m_user_physical_regions.is_empty()) {
  435. kprintf("MM: no user physical regions available (?)\n");
  436. }
  437. kprintf("MM: no user physical pages available\n");
  438. ASSERT_NOT_REACHED();
  439. return {};
  440. }
  441. #ifdef MM_DEBUG
  442. dbgprintf("MM: allocate_user_physical_page vending P%p\n", page->paddr().get());
  443. #endif
  444. if (should_zero_fill == ShouldZeroFill::Yes) {
  445. auto* ptr = (dword*)quickmap_page(*page);
  446. fast_dword_fill(ptr, 0, PAGE_SIZE / sizeof(dword));
  447. unquickmap_page();
  448. }
  449. m_user_physical_pages_used++;
  450. return page;
  451. }
  452. void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage& page)
  453. {
  454. for (auto& region : m_super_physical_regions) {
  455. if (!region->contains(page)) {
  456. kprintf(
  457. "MM: deallocate_supervisor_physical_page: %p not in %p -> %p\n",
  458. page.paddr(), region->lower().get(), region->upper().get());
  459. continue;
  460. }
  461. region->return_page(page);
  462. m_super_physical_pages_used--;
  463. return;
  464. }
  465. kprintf("MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ %p\n", page.paddr());
  466. ASSERT_NOT_REACHED();
  467. }
  468. RetainPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  469. {
  470. InterruptDisabler disabler;
  471. RetainPtr<PhysicalPage> page = nullptr;
  472. for (auto& region : m_super_physical_regions) {
  473. page = region->take_free_page(true);
  474. if (page.is_null())
  475. continue;
  476. }
  477. if (!page) {
  478. if (m_super_physical_regions.is_empty()) {
  479. kprintf("MM: no super physical regions available (?)\n");
  480. }
  481. kprintf("MM: no super physical pages available\n");
  482. ASSERT_NOT_REACHED();
  483. return {};
  484. }
  485. #ifdef MM_DEBUG
  486. dbgprintf("MM: allocate_supervisor_physical_page vending P%p\n", page->paddr().get());
  487. #endif
  488. fast_dword_fill((dword*)page->paddr().as_ptr(), 0, PAGE_SIZE / sizeof(dword));
  489. m_super_physical_pages_used++;
  490. return page;
  491. }
  492. void MemoryManager::enter_process_paging_scope(Process& process)
  493. {
  494. ASSERT(current);
  495. InterruptDisabler disabler;
  496. current->tss().cr3 = process.page_directory().cr3();
  497. asm volatile("movl %%eax, %%cr3" ::"a"(process.page_directory().cr3())
  498. : "memory");
  499. }
  500. void MemoryManager::flush_entire_tlb()
  501. {
  502. asm volatile(
  503. "mov %%cr3, %%eax\n"
  504. "mov %%eax, %%cr3\n" ::
  505. : "%eax", "memory");
  506. }
  507. void MemoryManager::flush_tlb(VirtualAddress vaddr)
  508. {
  509. asm volatile("invlpg %0"
  510. :
  511. : "m"(*(char*)vaddr.get())
  512. : "memory");
  513. }
  514. void MemoryManager::map_for_kernel(VirtualAddress vaddr, PhysicalAddress paddr)
  515. {
  516. auto pte = ensure_pte(kernel_page_directory(), vaddr);
  517. pte.set_physical_page_base(paddr.get());
  518. pte.set_present(true);
  519. pte.set_writable(true);
  520. pte.set_user_allowed(false);
  521. flush_tlb(vaddr);
  522. }
  523. byte* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  524. {
  525. ASSERT_INTERRUPTS_DISABLED();
  526. ASSERT(!m_quickmap_in_use);
  527. m_quickmap_in_use = true;
  528. auto page_vaddr = m_quickmap_addr;
  529. auto pte = ensure_pte(kernel_page_directory(), page_vaddr);
  530. pte.set_physical_page_base(physical_page.paddr().get());
  531. pte.set_present(true);
  532. pte.set_writable(true);
  533. pte.set_user_allowed(false);
  534. flush_tlb(page_vaddr);
  535. ASSERT((dword)pte.physical_page_base() == physical_page.paddr().get());
  536. #ifdef MM_DEBUG
  537. dbgprintf("MM: >> quickmap_page L%x => P%x @ PTE=%p\n", page_vaddr, physical_page.paddr().get(), pte.ptr());
  538. #endif
  539. return page_vaddr.as_ptr();
  540. }
  541. void MemoryManager::unquickmap_page()
  542. {
  543. ASSERT_INTERRUPTS_DISABLED();
  544. ASSERT(m_quickmap_in_use);
  545. auto page_vaddr = m_quickmap_addr;
  546. auto pte = ensure_pte(kernel_page_directory(), page_vaddr);
  547. #ifdef MM_DEBUG
  548. auto old_physical_address = pte.physical_page_base();
  549. #endif
  550. pte.set_physical_page_base(0);
  551. pte.set_present(false);
  552. pte.set_writable(false);
  553. flush_tlb(page_vaddr);
  554. #ifdef MM_DEBUG
  555. dbgprintf("MM: >> unquickmap_page L%x =/> P%x\n", page_vaddr, old_physical_address);
  556. #endif
  557. m_quickmap_in_use = false;
  558. }
  559. void MemoryManager::remap_region_page(Region& region, unsigned page_index_in_region, bool user_allowed)
  560. {
  561. ASSERT(region.page_directory());
  562. InterruptDisabler disabler;
  563. auto page_vaddr = region.vaddr().offset(page_index_in_region * PAGE_SIZE);
  564. auto pte = ensure_pte(*region.page_directory(), page_vaddr);
  565. auto& physical_page = region.vmo().physical_pages()[page_index_in_region];
  566. ASSERT(physical_page);
  567. pte.set_physical_page_base(physical_page->paddr().get());
  568. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  569. if (region.should_cow(page_index_in_region))
  570. pte.set_writable(false);
  571. else
  572. pte.set_writable(region.is_writable());
  573. pte.set_cache_disabled(!region.vmo().m_allow_cpu_caching);
  574. pte.set_write_through(!region.vmo().m_allow_cpu_caching);
  575. pte.set_user_allowed(user_allowed);
  576. region.page_directory()->flush(page_vaddr);
  577. #ifdef MM_DEBUG
  578. dbgprintf("MM: >> remap_region_page (PD=%x, PTE=P%x) '%s' L%x => P%x (@%p)\n", region.page_directory()->cr3(), pte.ptr(), region.name().characters(), page_vaddr.get(), physical_page->paddr().get(), physical_page.ptr());
  579. #endif
  580. }
  581. void MemoryManager::remap_region(PageDirectory& page_directory, Region& region)
  582. {
  583. InterruptDisabler disabler;
  584. ASSERT(region.page_directory() == &page_directory);
  585. map_region_at_address(page_directory, region, region.vaddr(), true);
  586. }
  587. void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region& region, VirtualAddress vaddr, bool user_allowed)
  588. {
  589. InterruptDisabler disabler;
  590. region.set_page_directory(page_directory);
  591. auto& vmo = region.vmo();
  592. #ifdef MM_DEBUG
  593. dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", region.first_page_index(), region.last_page_index(), vmo.page_count());
  594. #endif
  595. for (size_t i = 0; i < region.page_count(); ++i) {
  596. auto page_vaddr = vaddr.offset(i * PAGE_SIZE);
  597. auto pte = ensure_pte(page_directory, page_vaddr);
  598. auto& physical_page = vmo.physical_pages()[region.first_page_index() + i];
  599. if (physical_page) {
  600. pte.set_physical_page_base(physical_page->paddr().get());
  601. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  602. // FIXME: It seems wrong that the *region* cow map is essentially using *VMO* relative indices.
  603. if (region.should_cow(region.first_page_index() + i))
  604. pte.set_writable(false);
  605. else
  606. pte.set_writable(region.is_writable());
  607. pte.set_cache_disabled(!region.vmo().m_allow_cpu_caching);
  608. pte.set_write_through(!region.vmo().m_allow_cpu_caching);
  609. } else {
  610. pte.set_physical_page_base(0);
  611. pte.set_present(false);
  612. pte.set_writable(region.is_writable());
  613. }
  614. pte.set_user_allowed(user_allowed);
  615. page_directory.flush(page_vaddr);
  616. #ifdef MM_DEBUG
  617. dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", &page_directory, region.name().characters(), page_vaddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
  618. #endif
  619. }
  620. }
  621. bool MemoryManager::unmap_region(Region& region)
  622. {
  623. ASSERT(region.page_directory());
  624. InterruptDisabler disabler;
  625. for (size_t i = 0; i < region.page_count(); ++i) {
  626. auto vaddr = region.vaddr().offset(i * PAGE_SIZE);
  627. auto pte = ensure_pte(*region.page_directory(), vaddr);
  628. pte.set_physical_page_base(0);
  629. pte.set_present(false);
  630. pte.set_writable(false);
  631. pte.set_user_allowed(false);
  632. region.page_directory()->flush(vaddr);
  633. #ifdef MM_DEBUG
  634. auto& physical_page = region.vmo().physical_pages()[region.first_page_index() + i];
  635. dbgprintf("MM: >> Unmapped L%x => P%x <<\n", vaddr, physical_page ? physical_page->paddr().get() : 0);
  636. #endif
  637. }
  638. region.release_page_directory();
  639. return true;
  640. }
  641. bool MemoryManager::map_region(Process& process, Region& region)
  642. {
  643. map_region_at_address(process.page_directory(), region, region.vaddr(), true);
  644. return true;
  645. }
  646. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr) const
  647. {
  648. auto* region = region_from_vaddr(process, vaddr);
  649. return region && region->is_readable();
  650. }
  651. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr) const
  652. {
  653. auto* region = region_from_vaddr(process, vaddr);
  654. return region && region->is_writable();
  655. }
  656. void MemoryManager::register_vmo(VMObject& vmo)
  657. {
  658. InterruptDisabler disabler;
  659. m_vmos.set(&vmo);
  660. }
  661. void MemoryManager::unregister_vmo(VMObject& vmo)
  662. {
  663. InterruptDisabler disabler;
  664. m_vmos.remove(&vmo);
  665. }
  666. void MemoryManager::register_region(Region& region)
  667. {
  668. InterruptDisabler disabler;
  669. if (region.vaddr().get() >= 0xc0000000)
  670. m_kernel_regions.set(&region);
  671. else
  672. m_user_regions.set(&region);
  673. }
  674. void MemoryManager::unregister_region(Region& region)
  675. {
  676. InterruptDisabler disabler;
  677. if (region.vaddr().get() >= 0xc0000000)
  678. m_kernel_regions.remove(&region);
  679. else
  680. m_user_regions.remove(&region);
  681. }
  682. ProcessPagingScope::ProcessPagingScope(Process& process)
  683. {
  684. ASSERT(current);
  685. MM.enter_process_paging_scope(process);
  686. }
  687. ProcessPagingScope::~ProcessPagingScope()
  688. {
  689. MM.enter_process_paging_scope(current->process());
  690. }