Heap.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538
  1. /*
  2. * Copyright (c) 2020-2022, Andreas Kling <andreas@ladybird.org>
  3. * Copyright (c) 2023, Aliaksandr Kalenik <kalenik.aliaksandr@gmail.com>
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #include <AK/Badge.h>
  8. #include <AK/Debug.h>
  9. #include <AK/Function.h>
  10. #include <AK/HashTable.h>
  11. #include <AK/JsonArray.h>
  12. #include <AK/JsonObject.h>
  13. #include <AK/Platform.h>
  14. #include <AK/StackInfo.h>
  15. #include <AK/TemporaryChange.h>
  16. #include <LibCore/ElapsedTimer.h>
  17. #include <LibJS/Heap/CellAllocator.h>
  18. #include <LibJS/Heap/Handle.h>
  19. #include <LibJS/Heap/Heap.h>
  20. #include <LibJS/Heap/HeapBlock.h>
  21. #include <LibJS/Heap/NanBoxedValue.h>
  22. #include <setjmp.h>
  23. #ifdef HAS_ADDRESS_SANITIZER
  24. # include <sanitizer/asan_interface.h>
  25. #endif
  26. namespace JS {
  27. Heap::Heap(VM& vm, Function<void(HashMap<Cell*, JS::HeapRoot>&)> gather_embedder_roots)
  28. : HeapBase(vm)
  29. , m_gather_embedder_roots(move(gather_embedder_roots))
  30. {
  31. static_assert(HeapBlock::min_possible_cell_size <= 32, "Heap Cell tracking uses too much data!");
  32. m_size_based_cell_allocators.append(make<CellAllocator>(64));
  33. m_size_based_cell_allocators.append(make<CellAllocator>(96));
  34. m_size_based_cell_allocators.append(make<CellAllocator>(128));
  35. m_size_based_cell_allocators.append(make<CellAllocator>(256));
  36. m_size_based_cell_allocators.append(make<CellAllocator>(512));
  37. m_size_based_cell_allocators.append(make<CellAllocator>(1024));
  38. m_size_based_cell_allocators.append(make<CellAllocator>(3072));
  39. }
  40. Heap::~Heap()
  41. {
  42. collect_garbage(CollectionType::CollectEverything);
  43. }
  44. void Heap::will_allocate(size_t size)
  45. {
  46. if (should_collect_on_every_allocation()) {
  47. m_allocated_bytes_since_last_gc = 0;
  48. collect_garbage();
  49. } else if (m_allocated_bytes_since_last_gc + size > m_gc_bytes_threshold) {
  50. m_allocated_bytes_since_last_gc = 0;
  51. collect_garbage();
  52. }
  53. m_allocated_bytes_since_last_gc += size;
  54. }
  55. static void add_possible_value(HashMap<FlatPtr, HeapRoot>& possible_pointers, FlatPtr data, HeapRoot origin, FlatPtr min_block_address, FlatPtr max_block_address)
  56. {
  57. if constexpr (sizeof(FlatPtr*) == sizeof(NanBoxedValue)) {
  58. // Because NanBoxedValue stores pointers in non-canonical form we have to check if the top bytes
  59. // match any pointer-backed tag, in that case we have to extract the pointer to its
  60. // canonical form and add that as a possible pointer.
  61. FlatPtr possible_pointer;
  62. if ((data & SHIFTED_IS_CELL_PATTERN) == SHIFTED_IS_CELL_PATTERN)
  63. possible_pointer = NanBoxedValue::extract_pointer_bits(data);
  64. else
  65. possible_pointer = data;
  66. if (possible_pointer < min_block_address || possible_pointer > max_block_address)
  67. return;
  68. possible_pointers.set(possible_pointer, move(origin));
  69. } else {
  70. static_assert((sizeof(NanBoxedValue) % sizeof(FlatPtr*)) == 0);
  71. if (data < min_block_address || data > max_block_address)
  72. return;
  73. // In the 32-bit case we will look at the top and bottom part of NanBoxedValue separately we just
  74. // add both the upper and lower bytes as possible pointers.
  75. possible_pointers.set(data, move(origin));
  76. }
  77. }
  78. void Heap::find_min_and_max_block_addresses(FlatPtr& min_address, FlatPtr& max_address)
  79. {
  80. min_address = explode_byte(0xff);
  81. max_address = 0;
  82. for (auto& allocator : m_all_cell_allocators) {
  83. min_address = min(min_address, allocator.min_block_address());
  84. max_address = max(max_address, allocator.max_block_address() + HeapBlockBase::block_size);
  85. }
  86. }
  87. template<typename Callback>
  88. static void for_each_cell_among_possible_pointers(HashTable<HeapBlock*> const& all_live_heap_blocks, HashMap<FlatPtr, HeapRoot>& possible_pointers, Callback callback)
  89. {
  90. for (auto possible_pointer : possible_pointers.keys()) {
  91. if (!possible_pointer)
  92. continue;
  93. auto* possible_heap_block = HeapBlock::from_cell(reinterpret_cast<Cell const*>(possible_pointer));
  94. if (!all_live_heap_blocks.contains(possible_heap_block))
  95. continue;
  96. if (auto* cell = possible_heap_block->cell_from_possible_pointer(possible_pointer)) {
  97. callback(cell, possible_pointer);
  98. }
  99. }
  100. }
  101. class GraphConstructorVisitor final : public Cell::Visitor {
  102. public:
  103. explicit GraphConstructorVisitor(Heap& heap, HashMap<Cell*, HeapRoot> const& roots)
  104. : m_heap(heap)
  105. {
  106. m_heap.find_min_and_max_block_addresses(m_min_block_address, m_max_block_address);
  107. m_heap.for_each_block([&](auto& block) {
  108. m_all_live_heap_blocks.set(&block);
  109. return IterationDecision::Continue;
  110. });
  111. for (auto& [root, root_origin] : roots) {
  112. auto& graph_node = m_graph.ensure(bit_cast<FlatPtr>(root));
  113. graph_node.class_name = root->class_name();
  114. graph_node.root_origin = root_origin;
  115. m_work_queue.append(*root);
  116. }
  117. }
  118. virtual void visit_impl(Cell& cell) override
  119. {
  120. if (m_node_being_visited)
  121. m_node_being_visited->edges.set(reinterpret_cast<FlatPtr>(&cell));
  122. if (m_graph.get(reinterpret_cast<FlatPtr>(&cell)).has_value())
  123. return;
  124. m_work_queue.append(cell);
  125. }
  126. virtual void visit_possible_values(ReadonlyBytes bytes) override
  127. {
  128. HashMap<FlatPtr, HeapRoot> possible_pointers;
  129. auto* raw_pointer_sized_values = reinterpret_cast<FlatPtr const*>(bytes.data());
  130. for (size_t i = 0; i < (bytes.size() / sizeof(FlatPtr)); ++i)
  131. add_possible_value(possible_pointers, raw_pointer_sized_values[i], HeapRoot { .type = HeapRoot::Type::HeapFunctionCapturedPointer }, m_min_block_address, m_max_block_address);
  132. for_each_cell_among_possible_pointers(m_all_live_heap_blocks, possible_pointers, [&](Cell* cell, FlatPtr) {
  133. if (m_node_being_visited)
  134. m_node_being_visited->edges.set(reinterpret_cast<FlatPtr>(cell));
  135. if (m_graph.get(reinterpret_cast<FlatPtr>(&cell)).has_value())
  136. return;
  137. m_work_queue.append(*cell);
  138. });
  139. }
  140. void visit_all_cells()
  141. {
  142. while (!m_work_queue.is_empty()) {
  143. auto cell = m_work_queue.take_last();
  144. m_node_being_visited = &m_graph.ensure(bit_cast<FlatPtr>(cell.ptr()));
  145. m_node_being_visited->class_name = cell->class_name();
  146. cell->visit_edges(*this);
  147. m_node_being_visited = nullptr;
  148. }
  149. }
  150. AK::JsonObject dump()
  151. {
  152. auto graph = AK::JsonObject();
  153. for (auto& it : m_graph) {
  154. AK::JsonArray edges;
  155. for (auto const& value : it.value.edges) {
  156. edges.must_append(ByteString::formatted("{}", value));
  157. }
  158. auto node = AK::JsonObject();
  159. if (it.value.root_origin.has_value()) {
  160. auto type = it.value.root_origin->type;
  161. auto location = it.value.root_origin->location;
  162. switch (type) {
  163. case HeapRoot::Type::Handle:
  164. node.set("root"sv, ByteString::formatted("Handle {} {}:{}", location->function_name(), location->filename(), location->line_number()));
  165. break;
  166. case HeapRoot::Type::MarkedVector:
  167. node.set("root"sv, "MarkedVector");
  168. break;
  169. case HeapRoot::Type::RegisterPointer:
  170. node.set("root"sv, "RegisterPointer");
  171. break;
  172. case HeapRoot::Type::StackPointer:
  173. node.set("root"sv, "StackPointer");
  174. break;
  175. case HeapRoot::Type::VM:
  176. node.set("root"sv, "VM");
  177. break;
  178. default:
  179. VERIFY_NOT_REACHED();
  180. }
  181. }
  182. node.set("class_name"sv, it.value.class_name);
  183. node.set("edges"sv, edges);
  184. graph.set(ByteString::number(it.key), node);
  185. }
  186. return graph;
  187. }
  188. private:
  189. struct GraphNode {
  190. Optional<HeapRoot> root_origin;
  191. StringView class_name;
  192. HashTable<FlatPtr> edges {};
  193. };
  194. GraphNode* m_node_being_visited { nullptr };
  195. Vector<NonnullGCPtr<Cell>> m_work_queue;
  196. HashMap<FlatPtr, GraphNode> m_graph;
  197. Heap& m_heap;
  198. HashTable<HeapBlock*> m_all_live_heap_blocks;
  199. FlatPtr m_min_block_address;
  200. FlatPtr m_max_block_address;
  201. };
  202. AK::JsonObject Heap::dump_graph()
  203. {
  204. HashMap<Cell*, HeapRoot> roots;
  205. gather_roots(roots);
  206. GraphConstructorVisitor visitor(*this, roots);
  207. visitor.visit_all_cells();
  208. return visitor.dump();
  209. }
  210. void Heap::collect_garbage(CollectionType collection_type, bool print_report)
  211. {
  212. VERIFY(!m_collecting_garbage);
  213. TemporaryChange change(m_collecting_garbage, true);
  214. Core::ElapsedTimer collection_measurement_timer;
  215. if (print_report)
  216. collection_measurement_timer.start();
  217. if (collection_type == CollectionType::CollectGarbage) {
  218. if (m_gc_deferrals) {
  219. m_should_gc_when_deferral_ends = true;
  220. return;
  221. }
  222. HashMap<Cell*, HeapRoot> roots;
  223. gather_roots(roots);
  224. mark_live_cells(roots);
  225. }
  226. finalize_unmarked_cells();
  227. sweep_dead_cells(print_report, collection_measurement_timer);
  228. }
  229. void Heap::gather_roots(HashMap<Cell*, HeapRoot>& roots)
  230. {
  231. m_gather_embedder_roots(roots);
  232. gather_conservative_roots(roots);
  233. for (auto& handle : m_handles)
  234. roots.set(handle.cell(), HeapRoot { .type = HeapRoot::Type::Handle, .location = &handle.source_location() });
  235. for (auto& vector : m_marked_vectors)
  236. vector.gather_roots(roots);
  237. if constexpr (HEAP_DEBUG) {
  238. dbgln("gather_roots:");
  239. for (auto* root : roots.keys())
  240. dbgln(" + {}", root);
  241. }
  242. }
  243. #ifdef HAS_ADDRESS_SANITIZER
  244. NO_SANITIZE_ADDRESS void Heap::gather_asan_fake_stack_roots(HashMap<FlatPtr, HeapRoot>& possible_pointers, FlatPtr addr, FlatPtr min_block_address, FlatPtr max_block_address)
  245. {
  246. void* begin = nullptr;
  247. void* end = nullptr;
  248. void* real_stack = __asan_addr_is_in_fake_stack(__asan_get_current_fake_stack(), reinterpret_cast<void*>(addr), &begin, &end);
  249. if (real_stack != nullptr) {
  250. for (auto* real_stack_addr = reinterpret_cast<void const* const*>(begin); real_stack_addr < end; ++real_stack_addr) {
  251. void const* real_address = *real_stack_addr;
  252. if (real_address == nullptr)
  253. continue;
  254. add_possible_value(possible_pointers, reinterpret_cast<FlatPtr>(real_address), HeapRoot { .type = HeapRoot::Type::StackPointer }, min_block_address, max_block_address);
  255. }
  256. }
  257. }
  258. #else
  259. void Heap::gather_asan_fake_stack_roots(HashMap<FlatPtr, HeapRoot>&, FlatPtr, FlatPtr, FlatPtr)
  260. {
  261. }
  262. #endif
  263. NO_SANITIZE_ADDRESS void Heap::gather_conservative_roots(HashMap<Cell*, HeapRoot>& roots)
  264. {
  265. FlatPtr dummy;
  266. dbgln_if(HEAP_DEBUG, "gather_conservative_roots:");
  267. jmp_buf buf;
  268. setjmp(buf);
  269. HashMap<FlatPtr, HeapRoot> possible_pointers;
  270. auto* raw_jmp_buf = reinterpret_cast<FlatPtr const*>(buf);
  271. FlatPtr min_block_address, max_block_address;
  272. find_min_and_max_block_addresses(min_block_address, max_block_address);
  273. for (size_t i = 0; i < ((size_t)sizeof(buf)) / sizeof(FlatPtr); ++i)
  274. add_possible_value(possible_pointers, raw_jmp_buf[i], HeapRoot { .type = HeapRoot::Type::RegisterPointer }, min_block_address, max_block_address);
  275. auto stack_reference = bit_cast<FlatPtr>(&dummy);
  276. for (FlatPtr stack_address = stack_reference; stack_address < m_stack_info.top(); stack_address += sizeof(FlatPtr)) {
  277. auto data = *reinterpret_cast<FlatPtr*>(stack_address);
  278. add_possible_value(possible_pointers, data, HeapRoot { .type = HeapRoot::Type::StackPointer }, min_block_address, max_block_address);
  279. gather_asan_fake_stack_roots(possible_pointers, data, min_block_address, max_block_address);
  280. }
  281. for (auto& vector : m_conservative_vectors) {
  282. for (auto possible_value : vector.possible_values()) {
  283. add_possible_value(possible_pointers, possible_value, HeapRoot { .type = HeapRoot::Type::ConservativeVector }, min_block_address, max_block_address);
  284. }
  285. }
  286. HashTable<HeapBlock*> all_live_heap_blocks;
  287. for_each_block([&](auto& block) {
  288. all_live_heap_blocks.set(&block);
  289. return IterationDecision::Continue;
  290. });
  291. for_each_cell_among_possible_pointers(all_live_heap_blocks, possible_pointers, [&](Cell* cell, FlatPtr possible_pointer) {
  292. if (cell->state() == Cell::State::Live) {
  293. dbgln_if(HEAP_DEBUG, " ?-> {}", (void const*)cell);
  294. roots.set(cell, *possible_pointers.get(possible_pointer));
  295. } else {
  296. dbgln_if(HEAP_DEBUG, " #-> {}", (void const*)cell);
  297. }
  298. });
  299. }
  300. class MarkingVisitor final : public Cell::Visitor {
  301. public:
  302. explicit MarkingVisitor(Heap& heap, HashMap<Cell*, HeapRoot> const& roots)
  303. : m_heap(heap)
  304. {
  305. m_heap.find_min_and_max_block_addresses(m_min_block_address, m_max_block_address);
  306. m_heap.for_each_block([&](auto& block) {
  307. m_all_live_heap_blocks.set(&block);
  308. return IterationDecision::Continue;
  309. });
  310. for (auto* root : roots.keys()) {
  311. visit(root);
  312. }
  313. }
  314. virtual void visit_impl(Cell& cell) override
  315. {
  316. if (cell.is_marked())
  317. return;
  318. dbgln_if(HEAP_DEBUG, " ! {}", &cell);
  319. cell.set_marked(true);
  320. m_work_queue.append(cell);
  321. }
  322. virtual void visit_possible_values(ReadonlyBytes bytes) override
  323. {
  324. HashMap<FlatPtr, HeapRoot> possible_pointers;
  325. auto* raw_pointer_sized_values = reinterpret_cast<FlatPtr const*>(bytes.data());
  326. for (size_t i = 0; i < (bytes.size() / sizeof(FlatPtr)); ++i)
  327. add_possible_value(possible_pointers, raw_pointer_sized_values[i], HeapRoot { .type = HeapRoot::Type::HeapFunctionCapturedPointer }, m_min_block_address, m_max_block_address);
  328. for_each_cell_among_possible_pointers(m_all_live_heap_blocks, possible_pointers, [&](Cell* cell, FlatPtr) {
  329. if (cell->is_marked())
  330. return;
  331. if (cell->state() != Cell::State::Live)
  332. return;
  333. cell->set_marked(true);
  334. m_work_queue.append(*cell);
  335. });
  336. }
  337. void mark_all_live_cells()
  338. {
  339. while (!m_work_queue.is_empty()) {
  340. m_work_queue.take_last()->visit_edges(*this);
  341. }
  342. }
  343. private:
  344. Heap& m_heap;
  345. Vector<NonnullGCPtr<Cell>> m_work_queue;
  346. HashTable<HeapBlock*> m_all_live_heap_blocks;
  347. FlatPtr m_min_block_address;
  348. FlatPtr m_max_block_address;
  349. };
  350. void Heap::mark_live_cells(HashMap<Cell*, HeapRoot> const& roots)
  351. {
  352. dbgln_if(HEAP_DEBUG, "mark_live_cells:");
  353. MarkingVisitor visitor(*this, roots);
  354. visitor.mark_all_live_cells();
  355. for (auto& inverse_root : m_uprooted_cells)
  356. inverse_root->set_marked(false);
  357. m_uprooted_cells.clear();
  358. }
  359. bool Heap::cell_must_survive_garbage_collection(Cell const& cell)
  360. {
  361. if (!cell.overrides_must_survive_garbage_collection({}))
  362. return false;
  363. return cell.must_survive_garbage_collection();
  364. }
  365. void Heap::finalize_unmarked_cells()
  366. {
  367. for_each_block([&](auto& block) {
  368. block.template for_each_cell_in_state<Cell::State::Live>([](Cell* cell) {
  369. if (!cell->is_marked() && !cell_must_survive_garbage_collection(*cell))
  370. cell->finalize();
  371. });
  372. return IterationDecision::Continue;
  373. });
  374. }
  375. void Heap::sweep_dead_cells(bool print_report, Core::ElapsedTimer const& measurement_timer)
  376. {
  377. dbgln_if(HEAP_DEBUG, "sweep_dead_cells:");
  378. Vector<HeapBlock*, 32> empty_blocks;
  379. Vector<HeapBlock*, 32> full_blocks_that_became_usable;
  380. size_t collected_cells = 0;
  381. size_t live_cells = 0;
  382. size_t collected_cell_bytes = 0;
  383. size_t live_cell_bytes = 0;
  384. for_each_block([&](auto& block) {
  385. bool block_has_live_cells = false;
  386. bool block_was_full = block.is_full();
  387. block.template for_each_cell_in_state<Cell::State::Live>([&](Cell* cell) {
  388. if (!cell->is_marked() && !cell_must_survive_garbage_collection(*cell)) {
  389. dbgln_if(HEAP_DEBUG, " ~ {}", cell);
  390. block.deallocate(cell);
  391. ++collected_cells;
  392. collected_cell_bytes += block.cell_size();
  393. } else {
  394. cell->set_marked(false);
  395. block_has_live_cells = true;
  396. ++live_cells;
  397. live_cell_bytes += block.cell_size();
  398. }
  399. });
  400. if (!block_has_live_cells)
  401. empty_blocks.append(&block);
  402. else if (block_was_full != block.is_full())
  403. full_blocks_that_became_usable.append(&block);
  404. return IterationDecision::Continue;
  405. });
  406. for (auto& weak_container : m_weak_containers)
  407. weak_container.remove_dead_cells({});
  408. for (auto* block : empty_blocks) {
  409. dbgln_if(HEAP_DEBUG, " - HeapBlock empty @ {}: cell_size={}", block, block->cell_size());
  410. block->cell_allocator().block_did_become_empty({}, *block);
  411. }
  412. for (auto* block : full_blocks_that_became_usable) {
  413. dbgln_if(HEAP_DEBUG, " - HeapBlock usable again @ {}: cell_size={}", block, block->cell_size());
  414. block->cell_allocator().block_did_become_usable({}, *block);
  415. }
  416. if constexpr (HEAP_DEBUG) {
  417. for_each_block([&](auto& block) {
  418. dbgln(" > Live HeapBlock @ {}: cell_size={}", &block, block.cell_size());
  419. return IterationDecision::Continue;
  420. });
  421. }
  422. m_gc_bytes_threshold = live_cell_bytes > GC_MIN_BYTES_THRESHOLD ? live_cell_bytes : GC_MIN_BYTES_THRESHOLD;
  423. if (print_report) {
  424. AK::Duration const time_spent = measurement_timer.elapsed_time();
  425. size_t live_block_count = 0;
  426. for_each_block([&](auto&) {
  427. ++live_block_count;
  428. return IterationDecision::Continue;
  429. });
  430. dbgln("Garbage collection report");
  431. dbgln("=============================================");
  432. dbgln(" Time spent: {} ms", time_spent.to_milliseconds());
  433. dbgln(" Live cells: {} ({} bytes)", live_cells, live_cell_bytes);
  434. dbgln("Collected cells: {} ({} bytes)", collected_cells, collected_cell_bytes);
  435. dbgln(" Live blocks: {} ({} bytes)", live_block_count, live_block_count * HeapBlock::block_size);
  436. dbgln(" Freed blocks: {} ({} bytes)", empty_blocks.size(), empty_blocks.size() * HeapBlock::block_size);
  437. dbgln("=============================================");
  438. }
  439. }
  440. void Heap::defer_gc()
  441. {
  442. ++m_gc_deferrals;
  443. }
  444. void Heap::undefer_gc()
  445. {
  446. VERIFY(m_gc_deferrals > 0);
  447. --m_gc_deferrals;
  448. if (!m_gc_deferrals) {
  449. if (m_should_gc_when_deferral_ends)
  450. collect_garbage();
  451. m_should_gc_when_deferral_ends = false;
  452. }
  453. }
  454. void Heap::uproot_cell(Cell* cell)
  455. {
  456. m_uprooted_cells.append(cell);
  457. }
  458. }