Op.cpp 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270
  1. /*
  2. * Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2021-2022, Linus Groh <linusg@serenityos.org>
  4. * Copyright (c) 2021, Gunnar Beutner <gbeutner@serenityos.org>
  5. *
  6. * SPDX-License-Identifier: BSD-2-Clause
  7. */
  8. #include <AK/HashTable.h>
  9. #include <LibJS/Bytecode/Interpreter.h>
  10. #include <LibJS/Bytecode/Op.h>
  11. #include <LibJS/Runtime/AbstractOperations.h>
  12. #include <LibJS/Runtime/Array.h>
  13. #include <LibJS/Runtime/BigInt.h>
  14. #include <LibJS/Runtime/DeclarativeEnvironment.h>
  15. #include <LibJS/Runtime/ECMAScriptFunctionObject.h>
  16. #include <LibJS/Runtime/Environment.h>
  17. #include <LibJS/Runtime/FunctionEnvironment.h>
  18. #include <LibJS/Runtime/GlobalEnvironment.h>
  19. #include <LibJS/Runtime/GlobalObject.h>
  20. #include <LibJS/Runtime/Iterator.h>
  21. #include <LibJS/Runtime/IteratorOperations.h>
  22. #include <LibJS/Runtime/NativeFunction.h>
  23. #include <LibJS/Runtime/ObjectEnvironment.h>
  24. #include <LibJS/Runtime/RegExpObject.h>
  25. #include <LibJS/Runtime/Value.h>
  26. namespace JS::Bytecode {
  27. String Instruction::to_string(Bytecode::Executable const& executable) const
  28. {
  29. #define __BYTECODE_OP(op) \
  30. case Instruction::Type::op: \
  31. return static_cast<Bytecode::Op::op const&>(*this).to_string_impl(executable);
  32. switch (type()) {
  33. ENUMERATE_BYTECODE_OPS(__BYTECODE_OP)
  34. default:
  35. VERIFY_NOT_REACHED();
  36. }
  37. #undef __BYTECODE_OP
  38. }
  39. }
  40. namespace JS::Bytecode::Op {
  41. static ThrowCompletionOr<void> put_by_property_key(Object* object, Value value, PropertyKey name, Bytecode::Interpreter& interpreter, PropertyKind kind)
  42. {
  43. auto& vm = interpreter.vm();
  44. if (kind == PropertyKind::Getter || kind == PropertyKind::Setter) {
  45. // The generator should only pass us functions for getters and setters.
  46. VERIFY(value.is_function());
  47. }
  48. switch (kind) {
  49. case PropertyKind::Getter: {
  50. auto& function = value.as_function();
  51. if (function.name().is_empty() && is<ECMAScriptFunctionObject>(function))
  52. static_cast<ECMAScriptFunctionObject*>(&function)->set_name(String::formatted("get {}", name));
  53. object->define_direct_accessor(name, &function, nullptr, Attribute::Configurable | Attribute::Enumerable);
  54. break;
  55. }
  56. case PropertyKind::Setter: {
  57. auto& function = value.as_function();
  58. if (function.name().is_empty() && is<ECMAScriptFunctionObject>(function))
  59. static_cast<ECMAScriptFunctionObject*>(&function)->set_name(String::formatted("set {}", name));
  60. object->define_direct_accessor(name, nullptr, &function, Attribute::Configurable | Attribute::Enumerable);
  61. break;
  62. }
  63. case PropertyKind::KeyValue: {
  64. bool succeeded = TRY(object->internal_set(name, interpreter.accumulator(), object));
  65. if (!succeeded && vm.in_strict_mode())
  66. return vm.throw_completion<TypeError>(ErrorType::ReferenceNullishSetProperty, name, interpreter.accumulator().to_string_without_side_effects());
  67. break;
  68. }
  69. case PropertyKind::Spread:
  70. TRY(object->copy_data_properties(vm, value, {}));
  71. break;
  72. case PropertyKind::ProtoSetter:
  73. if (value.is_object() || value.is_null())
  74. MUST(object->internal_set_prototype_of(value.is_object() ? &value.as_object() : nullptr));
  75. break;
  76. }
  77. return {};
  78. }
  79. ThrowCompletionOr<void> Load::execute_impl(Bytecode::Interpreter& interpreter) const
  80. {
  81. interpreter.accumulator() = interpreter.reg(m_src);
  82. return {};
  83. }
  84. ThrowCompletionOr<void> LoadImmediate::execute_impl(Bytecode::Interpreter& interpreter) const
  85. {
  86. interpreter.accumulator() = m_value;
  87. return {};
  88. }
  89. ThrowCompletionOr<void> Store::execute_impl(Bytecode::Interpreter& interpreter) const
  90. {
  91. interpreter.reg(m_dst) = interpreter.accumulator();
  92. return {};
  93. }
  94. static ThrowCompletionOr<Value> abstract_inequals(VM& vm, Value src1, Value src2)
  95. {
  96. return Value(!TRY(is_loosely_equal(vm, src1, src2)));
  97. }
  98. static ThrowCompletionOr<Value> abstract_equals(VM& vm, Value src1, Value src2)
  99. {
  100. return Value(TRY(is_loosely_equal(vm, src1, src2)));
  101. }
  102. static ThrowCompletionOr<Value> typed_inequals(VM&, Value src1, Value src2)
  103. {
  104. return Value(!is_strictly_equal(src1, src2));
  105. }
  106. static ThrowCompletionOr<Value> typed_equals(VM&, Value src1, Value src2)
  107. {
  108. return Value(is_strictly_equal(src1, src2));
  109. }
  110. #define JS_DEFINE_COMMON_BINARY_OP(OpTitleCase, op_snake_case) \
  111. ThrowCompletionOr<void> OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \
  112. { \
  113. auto& vm = interpreter.vm(); \
  114. auto lhs = interpreter.reg(m_lhs_reg); \
  115. auto rhs = interpreter.accumulator(); \
  116. interpreter.accumulator() = TRY(op_snake_case(vm, lhs, rhs)); \
  117. return {}; \
  118. } \
  119. String OpTitleCase::to_string_impl(Bytecode::Executable const&) const \
  120. { \
  121. return String::formatted(#OpTitleCase " {}", m_lhs_reg); \
  122. }
  123. JS_ENUMERATE_COMMON_BINARY_OPS(JS_DEFINE_COMMON_BINARY_OP)
  124. static ThrowCompletionOr<Value> not_(VM&, Value value)
  125. {
  126. return Value(!value.to_boolean());
  127. }
  128. static ThrowCompletionOr<Value> typeof_(VM& vm, Value value)
  129. {
  130. return Value(js_string(vm, value.typeof()));
  131. }
  132. #define JS_DEFINE_COMMON_UNARY_OP(OpTitleCase, op_snake_case) \
  133. ThrowCompletionOr<void> OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \
  134. { \
  135. auto& vm = interpreter.vm(); \
  136. interpreter.accumulator() = TRY(op_snake_case(vm, interpreter.accumulator())); \
  137. return {}; \
  138. } \
  139. String OpTitleCase::to_string_impl(Bytecode::Executable const&) const \
  140. { \
  141. return #OpTitleCase; \
  142. }
  143. JS_ENUMERATE_COMMON_UNARY_OPS(JS_DEFINE_COMMON_UNARY_OP)
  144. ThrowCompletionOr<void> NewBigInt::execute_impl(Bytecode::Interpreter& interpreter) const
  145. {
  146. interpreter.accumulator() = js_bigint(interpreter.vm().heap(), m_bigint);
  147. return {};
  148. }
  149. ThrowCompletionOr<void> NewArray::execute_impl(Bytecode::Interpreter& interpreter) const
  150. {
  151. auto* array = MUST(Array::create(interpreter.realm(), 0));
  152. for (size_t i = 0; i < m_element_count; i++) {
  153. auto& value = interpreter.reg(Register(m_elements[0].index() + i));
  154. array->indexed_properties().put(i, value, default_attributes);
  155. }
  156. interpreter.accumulator() = array;
  157. return {};
  158. }
  159. ThrowCompletionOr<void> Append::execute_impl(Bytecode::Interpreter& interpreter) const
  160. {
  161. // Note: This OpCode is used to construct array literals containing at least one spread element,
  162. // Iterating over such a spread element to unpack it has to be visible by
  163. // the user courtesy of
  164. // https://tc39.es/ecma262/#sec-runtime-semantics-arrayaccumulation
  165. // SpreadElement : ... AssignmentExpression
  166. // 1. Let spreadRef be ? Evaluation of AssignmentExpression.
  167. // 2. Let spreadObj be ? GetValue(spreadRef).
  168. // 3. Let iteratorRecord be ? GetIterator(spreadObj).
  169. // 4. Repeat,
  170. // a. Let next be ? IteratorStep(iteratorRecord).
  171. // b. If next is false, return nextIndex.
  172. // c. Let nextValue be ? IteratorValue(next).
  173. // d. Perform ! CreateDataPropertyOrThrow(array, ! ToString(𝔽(nextIndex)), nextValue).
  174. // e. Set nextIndex to nextIndex + 1.
  175. auto& vm = interpreter.vm();
  176. // Note: We know from codegen, that lhs is a plain array with only indexed properties
  177. auto& lhs = interpreter.reg(m_lhs).as_array();
  178. auto lhs_size = lhs.indexed_properties().array_like_size();
  179. auto rhs = interpreter.accumulator();
  180. if (m_is_spread) {
  181. // ...rhs
  182. size_t i = lhs_size;
  183. TRY(get_iterator_values(vm, rhs, [&i, &lhs](Value iterator_value) -> Optional<Completion> {
  184. lhs.indexed_properties().put(i, iterator_value, default_attributes);
  185. ++i;
  186. return {};
  187. }));
  188. } else {
  189. lhs.indexed_properties().put(lhs_size, rhs, default_attributes);
  190. }
  191. return {};
  192. }
  193. // FIXME: Since the accumulator is a Value, we store an object there and have to convert back and forth between that an Iterator records. Not great.
  194. // Make sure to put this into the accumulator before the iterator object disappears from the stack to prevent the members from being GC'd.
  195. static Object* iterator_to_object(VM& vm, Iterator iterator)
  196. {
  197. auto& realm = *vm.current_realm();
  198. auto* object = Object::create(realm, nullptr);
  199. object->define_direct_property(vm.names.iterator, iterator.iterator, 0);
  200. object->define_direct_property(vm.names.next, iterator.next_method, 0);
  201. object->define_direct_property(vm.names.done, Value(iterator.done), 0);
  202. return object;
  203. }
  204. static Iterator object_to_iterator(VM& vm, Object& object)
  205. {
  206. return Iterator {
  207. .iterator = &MUST(object.get(vm.names.iterator)).as_object(),
  208. .next_method = MUST(object.get(vm.names.next)),
  209. .done = MUST(object.get(vm.names.done)).as_bool()
  210. };
  211. }
  212. ThrowCompletionOr<void> IteratorToArray::execute_impl(Bytecode::Interpreter& interpreter) const
  213. {
  214. auto& vm = interpreter.vm();
  215. auto iterator_object = TRY(interpreter.accumulator().to_object(vm));
  216. auto iterator = object_to_iterator(vm, *iterator_object);
  217. auto* array = MUST(Array::create(interpreter.realm(), 0));
  218. size_t index = 0;
  219. while (true) {
  220. auto* iterator_result = TRY(iterator_next(vm, iterator));
  221. auto complete = TRY(iterator_complete(vm, *iterator_result));
  222. if (complete) {
  223. interpreter.accumulator() = array;
  224. return {};
  225. }
  226. auto value = TRY(iterator_value(vm, *iterator_result));
  227. MUST(array->create_data_property_or_throw(index, value));
  228. index++;
  229. }
  230. return {};
  231. }
  232. ThrowCompletionOr<void> NewString::execute_impl(Bytecode::Interpreter& interpreter) const
  233. {
  234. interpreter.accumulator() = js_string(interpreter.vm(), interpreter.current_executable().get_string(m_string));
  235. return {};
  236. }
  237. ThrowCompletionOr<void> NewObject::execute_impl(Bytecode::Interpreter& interpreter) const
  238. {
  239. auto& vm = interpreter.vm();
  240. auto& realm = *vm.current_realm();
  241. interpreter.accumulator() = Object::create(realm, realm.intrinsics().object_prototype());
  242. return {};
  243. }
  244. ThrowCompletionOr<void> NewRegExp::execute_impl(Bytecode::Interpreter& interpreter) const
  245. {
  246. auto& vm = interpreter.vm();
  247. auto source = interpreter.current_executable().get_string(m_source_index);
  248. auto flags = interpreter.current_executable().get_string(m_flags_index);
  249. interpreter.accumulator() = TRY(regexp_create(vm, js_string(vm, source), js_string(vm, flags)));
  250. return {};
  251. }
  252. ThrowCompletionOr<void> CopyObjectExcludingProperties::execute_impl(Bytecode::Interpreter& interpreter) const
  253. {
  254. auto& vm = interpreter.vm();
  255. auto& realm = *vm.current_realm();
  256. auto* from_object = TRY(interpreter.reg(m_from_object).to_object(vm));
  257. auto* to_object = Object::create(realm, realm.intrinsics().object_prototype());
  258. HashTable<Value, ValueTraits> excluded_names;
  259. for (size_t i = 0; i < m_excluded_names_count; ++i)
  260. excluded_names.set(interpreter.reg(m_excluded_names[i]));
  261. auto own_keys = TRY(from_object->internal_own_property_keys());
  262. for (auto& key : own_keys) {
  263. if (!excluded_names.contains(key)) {
  264. auto property_key = TRY(key.to_property_key(vm));
  265. auto property_value = TRY(from_object->get(property_key));
  266. to_object->define_direct_property(property_key, property_value, JS::default_attributes);
  267. }
  268. }
  269. interpreter.accumulator() = to_object;
  270. return {};
  271. }
  272. ThrowCompletionOr<void> ConcatString::execute_impl(Bytecode::Interpreter& interpreter) const
  273. {
  274. auto& vm = interpreter.vm();
  275. interpreter.reg(m_lhs) = TRY(add(vm, interpreter.reg(m_lhs), interpreter.accumulator()));
  276. return {};
  277. }
  278. ThrowCompletionOr<void> GetVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  279. {
  280. auto& vm = interpreter.vm();
  281. auto get_reference = [&]() -> ThrowCompletionOr<Reference> {
  282. auto const& string = interpreter.current_executable().get_identifier(m_identifier);
  283. if (m_cached_environment_coordinate.has_value()) {
  284. auto* environment = vm.running_execution_context().lexical_environment;
  285. for (size_t i = 0; i < m_cached_environment_coordinate->hops; ++i)
  286. environment = environment->outer_environment();
  287. VERIFY(environment);
  288. VERIFY(environment->is_declarative_environment());
  289. if (!environment->is_permanently_screwed_by_eval()) {
  290. return Reference { *environment, string, vm.in_strict_mode(), m_cached_environment_coordinate };
  291. }
  292. m_cached_environment_coordinate = {};
  293. }
  294. auto reference = TRY(vm.resolve_binding(string));
  295. if (reference.environment_coordinate().has_value())
  296. m_cached_environment_coordinate = reference.environment_coordinate();
  297. return reference;
  298. };
  299. auto reference = TRY(get_reference());
  300. interpreter.accumulator() = TRY(reference.get_value(vm));
  301. return {};
  302. }
  303. ThrowCompletionOr<void> DeleteVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  304. {
  305. auto& vm = interpreter.vm();
  306. auto const& string = interpreter.current_executable().get_identifier(m_identifier);
  307. auto reference = TRY(vm.resolve_binding(string));
  308. interpreter.accumulator() = Value(TRY(reference.delete_(vm)));
  309. return {};
  310. }
  311. ThrowCompletionOr<void> CreateEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
  312. {
  313. auto make_and_swap_envs = [&](auto*& old_environment) {
  314. Environment* environment = new_declarative_environment(*old_environment);
  315. swap(old_environment, environment);
  316. return environment;
  317. };
  318. if (m_mode == EnvironmentMode::Lexical)
  319. interpreter.saved_lexical_environment_stack().append(make_and_swap_envs(interpreter.vm().running_execution_context().lexical_environment));
  320. else if (m_mode == EnvironmentMode::Var)
  321. interpreter.saved_variable_environment_stack().append(make_and_swap_envs(interpreter.vm().running_execution_context().variable_environment));
  322. return {};
  323. }
  324. ThrowCompletionOr<void> EnterObjectEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
  325. {
  326. auto& vm = interpreter.vm();
  327. auto& old_environment = vm.running_execution_context().lexical_environment;
  328. interpreter.saved_lexical_environment_stack().append(old_environment);
  329. auto object = TRY(interpreter.accumulator().to_object(vm));
  330. vm.running_execution_context().lexical_environment = new_object_environment(*object, true, old_environment);
  331. return {};
  332. }
  333. ThrowCompletionOr<void> CreateVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  334. {
  335. auto& vm = interpreter.vm();
  336. auto const& name = interpreter.current_executable().get_identifier(m_identifier);
  337. if (m_mode == EnvironmentMode::Lexical) {
  338. VERIFY(!m_is_global);
  339. // Note: This is papering over an issue where "FunctionDeclarationInstantiation" creates these bindings for us.
  340. // Instead of crashing in there, we'll just raise an exception here.
  341. if (TRY(vm.lexical_environment()->has_binding(name)))
  342. return vm.throw_completion<InternalError>(String::formatted("Lexical environment already has binding '{}'", name));
  343. if (m_is_immutable)
  344. vm.lexical_environment()->create_immutable_binding(vm, name, vm.in_strict_mode());
  345. else
  346. vm.lexical_environment()->create_mutable_binding(vm, name, vm.in_strict_mode());
  347. } else {
  348. if (!m_is_global) {
  349. if (m_is_immutable)
  350. vm.variable_environment()->create_immutable_binding(vm, name, vm.in_strict_mode());
  351. else
  352. vm.variable_environment()->create_mutable_binding(vm, name, vm.in_strict_mode());
  353. } else {
  354. // NOTE: CreateVariable with m_is_global set to true is expected to only be used in GlobalDeclarationInstantiation currently, which only uses "false" for "can_be_deleted".
  355. // The only area that sets "can_be_deleted" to true is EvalDeclarationInstantiation, which is currently fully implemented in C++ and not in Bytecode.
  356. verify_cast<GlobalEnvironment>(vm.variable_environment())->create_global_var_binding(name, false);
  357. }
  358. }
  359. return {};
  360. }
  361. ThrowCompletionOr<void> SetVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  362. {
  363. auto& vm = interpreter.vm();
  364. auto const& name = interpreter.current_executable().get_identifier(m_identifier);
  365. auto environment = m_mode == EnvironmentMode::Lexical ? vm.running_execution_context().lexical_environment : vm.running_execution_context().variable_environment;
  366. auto reference = TRY(vm.resolve_binding(name, environment));
  367. switch (m_initialization_mode) {
  368. case InitializationMode::Initialize:
  369. TRY(reference.initialize_referenced_binding(vm, interpreter.accumulator()));
  370. break;
  371. case InitializationMode::Set:
  372. TRY(reference.put_value(vm, interpreter.accumulator()));
  373. break;
  374. case InitializationMode::InitializeOrSet:
  375. VERIFY(reference.is_environment_reference());
  376. VERIFY(reference.base_environment().is_declarative_environment());
  377. TRY(static_cast<DeclarativeEnvironment&>(reference.base_environment()).initialize_or_set_mutable_binding(vm, name, interpreter.accumulator()));
  378. break;
  379. }
  380. return {};
  381. }
  382. ThrowCompletionOr<void> GetById::execute_impl(Bytecode::Interpreter& interpreter) const
  383. {
  384. auto& vm = interpreter.vm();
  385. auto* object = TRY(interpreter.accumulator().to_object(vm));
  386. interpreter.accumulator() = TRY(object->get(interpreter.current_executable().get_identifier(m_property)));
  387. return {};
  388. }
  389. ThrowCompletionOr<void> PutById::execute_impl(Bytecode::Interpreter& interpreter) const
  390. {
  391. auto& vm = interpreter.vm();
  392. auto* object = TRY(interpreter.reg(m_base).to_object(vm));
  393. PropertyKey name = interpreter.current_executable().get_identifier(m_property);
  394. auto value = interpreter.accumulator();
  395. return put_by_property_key(object, value, name, interpreter, m_kind);
  396. }
  397. ThrowCompletionOr<void> DeleteById::execute_impl(Bytecode::Interpreter& interpreter) const
  398. {
  399. auto& vm = interpreter.vm();
  400. auto* object = TRY(interpreter.accumulator().to_object(vm));
  401. auto const& identifier = interpreter.current_executable().get_identifier(m_property);
  402. bool strict = vm.in_strict_mode();
  403. auto reference = Reference { object, identifier, {}, strict };
  404. interpreter.accumulator() = Value(TRY(reference.delete_(vm)));
  405. return {};
  406. };
  407. ThrowCompletionOr<void> Jump::execute_impl(Bytecode::Interpreter& interpreter) const
  408. {
  409. interpreter.jump(*m_true_target);
  410. return {};
  411. }
  412. ThrowCompletionOr<void> ResolveThisBinding::execute_impl(Bytecode::Interpreter& interpreter) const
  413. {
  414. auto& vm = interpreter.vm();
  415. interpreter.accumulator() = TRY(vm.resolve_this_binding());
  416. return {};
  417. }
  418. ThrowCompletionOr<void> GetNewTarget::execute_impl(Bytecode::Interpreter& interpreter) const
  419. {
  420. interpreter.accumulator() = interpreter.vm().get_new_target();
  421. return {};
  422. }
  423. void Jump::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  424. {
  425. if (m_true_target.has_value() && &m_true_target->block() == &from)
  426. m_true_target = Label { to };
  427. if (m_false_target.has_value() && &m_false_target->block() == &from)
  428. m_false_target = Label { to };
  429. }
  430. ThrowCompletionOr<void> JumpConditional::execute_impl(Bytecode::Interpreter& interpreter) const
  431. {
  432. VERIFY(m_true_target.has_value());
  433. VERIFY(m_false_target.has_value());
  434. auto result = interpreter.accumulator();
  435. if (result.to_boolean())
  436. interpreter.jump(m_true_target.value());
  437. else
  438. interpreter.jump(m_false_target.value());
  439. return {};
  440. }
  441. ThrowCompletionOr<void> JumpNullish::execute_impl(Bytecode::Interpreter& interpreter) const
  442. {
  443. VERIFY(m_true_target.has_value());
  444. VERIFY(m_false_target.has_value());
  445. auto result = interpreter.accumulator();
  446. if (result.is_nullish())
  447. interpreter.jump(m_true_target.value());
  448. else
  449. interpreter.jump(m_false_target.value());
  450. return {};
  451. }
  452. ThrowCompletionOr<void> JumpUndefined::execute_impl(Bytecode::Interpreter& interpreter) const
  453. {
  454. VERIFY(m_true_target.has_value());
  455. VERIFY(m_false_target.has_value());
  456. auto result = interpreter.accumulator();
  457. if (result.is_undefined())
  458. interpreter.jump(m_true_target.value());
  459. else
  460. interpreter.jump(m_false_target.value());
  461. return {};
  462. }
  463. // 13.3.8.1 https://tc39.es/ecma262/#sec-runtime-semantics-argumentlistevaluation
  464. static MarkedVector<Value> argument_list_evaluation(Bytecode::Interpreter& interpreter)
  465. {
  466. // Note: Any spreading and actual evaluation is handled in preceding opcodes
  467. // Note: The spec uses the concept of a list, while we create a temporary array
  468. // in the preceding opcodes, so we have to convert in a manner that is not
  469. // visible to the user
  470. auto& vm = interpreter.vm();
  471. MarkedVector<Value> argument_values { vm.heap() };
  472. auto arguments = interpreter.accumulator();
  473. auto& argument_array = arguments.as_array();
  474. auto array_length = argument_array.indexed_properties().array_like_size();
  475. argument_values.ensure_capacity(array_length);
  476. for (size_t i = 0; i < array_length; ++i) {
  477. if (auto maybe_value = argument_array.indexed_properties().get(i); maybe_value.has_value())
  478. argument_values.append(maybe_value.release_value().value);
  479. else
  480. argument_values.append(js_undefined());
  481. }
  482. return argument_values;
  483. }
  484. ThrowCompletionOr<void> Call::execute_impl(Bytecode::Interpreter& interpreter) const
  485. {
  486. auto& vm = interpreter.vm();
  487. auto callee = interpreter.reg(m_callee);
  488. if (m_type == CallType::Call && !callee.is_function())
  489. return vm.throw_completion<TypeError>(ErrorType::IsNotA, callee.to_string_without_side_effects(), "function"sv);
  490. if (m_type == CallType::Construct && !callee.is_constructor())
  491. return vm.throw_completion<TypeError>(ErrorType::IsNotA, callee.to_string_without_side_effects(), "constructor"sv);
  492. auto& function = callee.as_function();
  493. auto this_value = interpreter.reg(m_this_value);
  494. auto argument_values = argument_list_evaluation(interpreter);
  495. Value return_value;
  496. if (m_type == CallType::Call)
  497. return_value = TRY(call(vm, function, this_value, move(argument_values)));
  498. else
  499. return_value = TRY(construct(vm, function, move(argument_values)));
  500. interpreter.accumulator() = return_value;
  501. return {};
  502. }
  503. // 13.3.7.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
  504. ThrowCompletionOr<void> SuperCall::execute_impl(Bytecode::Interpreter& interpreter) const
  505. {
  506. auto& vm = interpreter.vm();
  507. // 1. Let newTarget be GetNewTarget().
  508. auto new_target = vm.get_new_target();
  509. // 2. Assert: Type(newTarget) is Object.
  510. VERIFY(new_target.is_object());
  511. // 3. Let func be GetSuperConstructor().
  512. auto* func = get_super_constructor(vm);
  513. // 4. Let argList be ? ArgumentListEvaluation of Arguments.
  514. MarkedVector<Value> arg_list { vm.heap() };
  515. if (m_is_synthetic) {
  516. auto const& value = interpreter.accumulator();
  517. VERIFY(value.is_object() && is<Array>(value.as_object()));
  518. auto const& array_value = static_cast<Array const&>(value.as_object());
  519. auto length = MUST(length_of_array_like(vm, array_value));
  520. for (size_t i = 0; i < length; ++i)
  521. arg_list.append(array_value.get_without_side_effects(PropertyKey { i }));
  522. } else {
  523. arg_list = argument_list_evaluation(interpreter);
  524. }
  525. // 5. If IsConstructor(func) is false, throw a TypeError exception.
  526. if (!Value(func).is_constructor())
  527. return vm.throw_completion<TypeError>(ErrorType::NotAConstructor, "Super constructor");
  528. // 6. Let result be ? Construct(func, argList, newTarget).
  529. auto* result = TRY(construct(vm, static_cast<FunctionObject&>(*func), move(arg_list), &new_target.as_function()));
  530. // 7. Let thisER be GetThisEnvironment().
  531. auto& this_environment = verify_cast<FunctionEnvironment>(get_this_environment(vm));
  532. // 8. Perform ? thisER.BindThisValue(result).
  533. TRY(this_environment.bind_this_value(vm, result));
  534. // 9. Let F be thisER.[[FunctionObject]].
  535. auto& f = this_environment.function_object();
  536. // 10. Assert: F is an ECMAScript function object.
  537. // NOTE: This is implied by the strong C++ type.
  538. // 11. Perform ? InitializeInstanceElements(result, F).
  539. TRY(vm.initialize_instance_elements(*result, f));
  540. // 12. Return result.
  541. interpreter.accumulator() = result;
  542. return {};
  543. }
  544. ThrowCompletionOr<void> NewFunction::execute_impl(Bytecode::Interpreter& interpreter) const
  545. {
  546. auto& vm = interpreter.vm();
  547. interpreter.accumulator() = ECMAScriptFunctionObject::create(interpreter.realm(), m_function_node.name(), m_function_node.source_text(), m_function_node.body(), m_function_node.parameters(), m_function_node.function_length(), vm.lexical_environment(), vm.running_execution_context().private_environment, m_function_node.kind(), m_function_node.is_strict_mode(), m_function_node.might_need_arguments_object(), m_function_node.contains_direct_call_to_eval(), m_function_node.is_arrow_function());
  548. return {};
  549. }
  550. ThrowCompletionOr<void> Return::execute_impl(Bytecode::Interpreter& interpreter) const
  551. {
  552. interpreter.do_return(interpreter.accumulator().value_or(js_undefined()));
  553. return {};
  554. }
  555. ThrowCompletionOr<void> Increment::execute_impl(Bytecode::Interpreter& interpreter) const
  556. {
  557. auto& vm = interpreter.vm();
  558. auto old_value = TRY(interpreter.accumulator().to_numeric(vm));
  559. if (old_value.is_number())
  560. interpreter.accumulator() = Value(old_value.as_double() + 1);
  561. else
  562. interpreter.accumulator() = js_bigint(vm, old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 }));
  563. return {};
  564. }
  565. ThrowCompletionOr<void> Decrement::execute_impl(Bytecode::Interpreter& interpreter) const
  566. {
  567. auto& vm = interpreter.vm();
  568. auto old_value = TRY(interpreter.accumulator().to_numeric(vm));
  569. if (old_value.is_number())
  570. interpreter.accumulator() = Value(old_value.as_double() - 1);
  571. else
  572. interpreter.accumulator() = js_bigint(vm, old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 }));
  573. return {};
  574. }
  575. ThrowCompletionOr<void> Throw::execute_impl(Bytecode::Interpreter& interpreter) const
  576. {
  577. return throw_completion(interpreter.accumulator());
  578. }
  579. ThrowCompletionOr<void> EnterUnwindContext::execute_impl(Bytecode::Interpreter& interpreter) const
  580. {
  581. interpreter.enter_unwind_context(m_handler_target, m_finalizer_target);
  582. interpreter.jump(m_entry_point);
  583. return {};
  584. }
  585. void EnterUnwindContext::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  586. {
  587. if (&m_entry_point.block() == &from)
  588. m_entry_point = Label { to };
  589. if (m_handler_target.has_value() && &m_handler_target->block() == &from)
  590. m_handler_target = Label { to };
  591. if (m_finalizer_target.has_value() && &m_finalizer_target->block() == &from)
  592. m_finalizer_target = Label { to };
  593. }
  594. ThrowCompletionOr<void> FinishUnwind::execute_impl(Bytecode::Interpreter& interpreter) const
  595. {
  596. interpreter.leave_unwind_context();
  597. interpreter.jump(m_next_target);
  598. return {};
  599. }
  600. void FinishUnwind::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  601. {
  602. if (&m_next_target.block() == &from)
  603. m_next_target = Label { to };
  604. }
  605. ThrowCompletionOr<void> LeaveEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
  606. {
  607. if (m_mode == EnvironmentMode::Lexical)
  608. interpreter.vm().running_execution_context().lexical_environment = interpreter.saved_lexical_environment_stack().take_last();
  609. if (m_mode == EnvironmentMode::Var)
  610. interpreter.vm().running_execution_context().variable_environment = interpreter.saved_variable_environment_stack().take_last();
  611. return {};
  612. }
  613. ThrowCompletionOr<void> LeaveUnwindContext::execute_impl(Bytecode::Interpreter& interpreter) const
  614. {
  615. interpreter.leave_unwind_context();
  616. return {};
  617. }
  618. ThrowCompletionOr<void> ContinuePendingUnwind::execute_impl(Bytecode::Interpreter& interpreter) const
  619. {
  620. return interpreter.continue_pending_unwind(m_resume_target);
  621. }
  622. void ContinuePendingUnwind::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  623. {
  624. if (&m_resume_target.block() == &from)
  625. m_resume_target = Label { to };
  626. }
  627. ThrowCompletionOr<void> PushDeclarativeEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
  628. {
  629. auto* environment = interpreter.vm().heap().allocate_without_realm<DeclarativeEnvironment>(interpreter.vm().lexical_environment());
  630. interpreter.vm().running_execution_context().lexical_environment = environment;
  631. interpreter.vm().running_execution_context().variable_environment = environment;
  632. return {};
  633. }
  634. ThrowCompletionOr<void> Yield::execute_impl(Bytecode::Interpreter& interpreter) const
  635. {
  636. auto yielded_value = interpreter.accumulator().value_or(js_undefined());
  637. auto object = Object::create(interpreter.realm(), nullptr);
  638. object->define_direct_property("result", yielded_value, JS::default_attributes);
  639. if (m_continuation_label.has_value())
  640. object->define_direct_property("continuation", Value(static_cast<double>(reinterpret_cast<u64>(&m_continuation_label->block()))), JS::default_attributes);
  641. else
  642. object->define_direct_property("continuation", Value(0), JS::default_attributes);
  643. interpreter.do_return(object);
  644. return {};
  645. }
  646. void Yield::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  647. {
  648. if (m_continuation_label.has_value() && &m_continuation_label->block() == &from)
  649. m_continuation_label = Label { to };
  650. }
  651. ThrowCompletionOr<void> GetByValue::execute_impl(Bytecode::Interpreter& interpreter) const
  652. {
  653. auto& vm = interpreter.vm();
  654. auto* object = TRY(interpreter.reg(m_base).to_object(vm));
  655. auto property_key = TRY(interpreter.accumulator().to_property_key(vm));
  656. interpreter.accumulator() = TRY(object->get(property_key));
  657. return {};
  658. }
  659. ThrowCompletionOr<void> PutByValue::execute_impl(Bytecode::Interpreter& interpreter) const
  660. {
  661. auto& vm = interpreter.vm();
  662. auto* object = TRY(interpreter.reg(m_base).to_object(vm));
  663. auto property_key = TRY(interpreter.reg(m_property).to_property_key(vm));
  664. return put_by_property_key(object, interpreter.accumulator(), property_key, interpreter, m_kind);
  665. }
  666. ThrowCompletionOr<void> DeleteByValue::execute_impl(Bytecode::Interpreter& interpreter) const
  667. {
  668. auto& vm = interpreter.vm();
  669. auto* object = TRY(interpreter.reg(m_base).to_object(vm));
  670. auto property_key = TRY(interpreter.accumulator().to_property_key(vm));
  671. bool strict = vm.in_strict_mode();
  672. auto reference = Reference { object, property_key, {}, strict };
  673. interpreter.accumulator() = Value(TRY(reference.delete_(vm)));
  674. return {};
  675. }
  676. ThrowCompletionOr<void> GetIterator::execute_impl(Bytecode::Interpreter& interpreter) const
  677. {
  678. auto& vm = interpreter.vm();
  679. auto iterator = TRY(get_iterator(vm, interpreter.accumulator()));
  680. interpreter.accumulator() = iterator_to_object(vm, iterator);
  681. return {};
  682. }
  683. // 14.7.5.9 EnumerateObjectProperties ( O ), https://tc39.es/ecma262/#sec-enumerate-object-properties
  684. ThrowCompletionOr<void> GetObjectPropertyIterator::execute_impl(Bytecode::Interpreter& interpreter) const
  685. {
  686. // While the spec does provide an algorithm, it allows us to implement it ourselves so long as we meet the following invariants:
  687. // 1- Returned property keys do not include keys that are Symbols
  688. // 2- Properties of the target object may be deleted during enumeration. A property that is deleted before it is processed by the iterator's next method is ignored
  689. // 3- If new properties are added to the target object during enumeration, the newly added properties are not guaranteed to be processed in the active enumeration
  690. // 4- A property name will be returned by the iterator's next method at most once in any enumeration.
  691. // 5- Enumerating the properties of the target object includes enumerating properties of its prototype, and the prototype of the prototype, and so on, recursively;
  692. // but a property of a prototype is not processed if it has the same name as a property that has already been processed by the iterator's next method.
  693. // 6- The values of [[Enumerable]] attributes are not considered when determining if a property of a prototype object has already been processed.
  694. // 7- The enumerable property names of prototype objects must be obtained by invoking EnumerateObjectProperties passing the prototype object as the argument.
  695. // 8- EnumerateObjectProperties must obtain the own property keys of the target object by calling its [[OwnPropertyKeys]] internal method.
  696. // 9- Property attributes of the target object must be obtained by calling its [[GetOwnProperty]] internal method
  697. // Invariant 3 effectively allows the implementation to ignore newly added keys, and we do so (similar to other implementations).
  698. // Invariants 1 and 6 through 9 are implemented in `enumerable_own_property_names`, which implements the EnumerableOwnPropertyNames AO.
  699. auto& vm = interpreter.vm();
  700. auto* object = TRY(interpreter.accumulator().to_object(vm));
  701. // Note: While the spec doesn't explicitly require these to be ordered, it says that the values should be retrieved via OwnPropertyKeys,
  702. // so we just keep the order consistent anyway.
  703. OrderedHashTable<PropertyKey> properties;
  704. HashTable<Object*> seen_objects;
  705. // Collect all keys immediately (invariant no. 5)
  706. for (auto* object_to_check = object; object_to_check && !seen_objects.contains(object_to_check); object_to_check = TRY(object_to_check->internal_get_prototype_of())) {
  707. seen_objects.set(object_to_check);
  708. for (auto& key : TRY(object_to_check->enumerable_own_property_names(Object::PropertyKind::Key))) {
  709. properties.set(TRY(PropertyKey::from_value(vm, key)));
  710. }
  711. }
  712. Iterator iterator {
  713. .iterator = object,
  714. .next_method = NativeFunction::create(
  715. interpreter.realm(),
  716. [seen_items = HashTable<PropertyKey>(), items = move(properties)](VM& vm) mutable -> ThrowCompletionOr<Value> {
  717. auto& realm = *vm.current_realm();
  718. auto iterated_object_value = vm.this_value();
  719. if (!iterated_object_value.is_object())
  720. return vm.throw_completion<InternalError>("Invalid state for GetObjectPropertyIterator.next");
  721. auto& iterated_object = iterated_object_value.as_object();
  722. auto* result_object = Object::create(realm, nullptr);
  723. while (true) {
  724. if (items.is_empty()) {
  725. result_object->define_direct_property(vm.names.done, JS::Value(true), default_attributes);
  726. return result_object;
  727. }
  728. auto it = items.begin();
  729. auto key = *it;
  730. items.remove(it);
  731. // If the key was already seen, skip over it (invariant no. 4)
  732. auto result = seen_items.set(key);
  733. if (result != AK::HashSetResult::InsertedNewEntry)
  734. continue;
  735. // If the property is deleted, don't include it (invariant no. 2)
  736. if (!TRY(iterated_object.has_property(key)))
  737. continue;
  738. result_object->define_direct_property(vm.names.done, JS::Value(false), default_attributes);
  739. if (key.is_number())
  740. result_object->define_direct_property(vm.names.value, JS::Value(key.as_number()), default_attributes);
  741. else if (key.is_string())
  742. result_object->define_direct_property(vm.names.value, js_string(vm, key.as_string()), default_attributes);
  743. else
  744. VERIFY_NOT_REACHED(); // We should not have non-string/number keys.
  745. return result_object;
  746. }
  747. },
  748. 1,
  749. vm.names.next),
  750. .done = false,
  751. };
  752. interpreter.accumulator() = iterator_to_object(vm, move(iterator));
  753. return {};
  754. }
  755. ThrowCompletionOr<void> IteratorNext::execute_impl(Bytecode::Interpreter& interpreter) const
  756. {
  757. auto& vm = interpreter.vm();
  758. auto* iterator_object = TRY(interpreter.accumulator().to_object(vm));
  759. auto iterator = object_to_iterator(vm, *iterator_object);
  760. interpreter.accumulator() = TRY(iterator_next(vm, iterator));
  761. return {};
  762. }
  763. ThrowCompletionOr<void> IteratorResultDone::execute_impl(Bytecode::Interpreter& interpreter) const
  764. {
  765. auto& vm = interpreter.vm();
  766. auto* iterator_result = TRY(interpreter.accumulator().to_object(vm));
  767. auto complete = TRY(iterator_complete(vm, *iterator_result));
  768. interpreter.accumulator() = Value(complete);
  769. return {};
  770. }
  771. ThrowCompletionOr<void> IteratorResultValue::execute_impl(Bytecode::Interpreter& interpreter) const
  772. {
  773. auto& vm = interpreter.vm();
  774. auto* iterator_result = TRY(interpreter.accumulator().to_object(vm));
  775. interpreter.accumulator() = TRY(iterator_value(vm, *iterator_result));
  776. return {};
  777. }
  778. ThrowCompletionOr<void> NewClass::execute_impl(Bytecode::Interpreter& interpreter) const
  779. {
  780. auto name = m_class_expression.name();
  781. auto scope = interpreter.ast_interpreter_scope();
  782. auto& ast_interpreter = scope.interpreter();
  783. auto class_object = TRY(m_class_expression.class_definition_evaluation(ast_interpreter, name, name.is_null() ? ""sv : name));
  784. interpreter.accumulator() = class_object;
  785. return {};
  786. }
  787. // 13.5.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-typeof-operator-runtime-semantics-evaluation
  788. ThrowCompletionOr<void> TypeofVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  789. {
  790. auto& vm = interpreter.vm();
  791. // 1. Let val be the result of evaluating UnaryExpression.
  792. auto const& string = interpreter.current_executable().get_identifier(m_identifier);
  793. auto reference = TRY(vm.resolve_binding(string));
  794. // 2. If val is a Reference Record, then
  795. // a. If IsUnresolvableReference(val) is true, return "undefined".
  796. if (reference.is_unresolvable()) {
  797. interpreter.accumulator() = js_string(vm, "undefined"sv);
  798. return {};
  799. }
  800. // 3. Set val to ? GetValue(val).
  801. auto value = TRY(reference.get_value(vm));
  802. // 4. NOTE: This step is replaced in section B.3.6.3.
  803. // 5. Return a String according to Table 41.
  804. interpreter.accumulator() = js_string(vm, value.typeof());
  805. return {};
  806. }
  807. String Load::to_string_impl(Bytecode::Executable const&) const
  808. {
  809. return String::formatted("Load {}", m_src);
  810. }
  811. String LoadImmediate::to_string_impl(Bytecode::Executable const&) const
  812. {
  813. return String::formatted("LoadImmediate {}", m_value);
  814. }
  815. String Store::to_string_impl(Bytecode::Executable const&) const
  816. {
  817. return String::formatted("Store {}", m_dst);
  818. }
  819. String NewBigInt::to_string_impl(Bytecode::Executable const&) const
  820. {
  821. return String::formatted("NewBigInt \"{}\"", m_bigint.to_base(10));
  822. }
  823. String NewArray::to_string_impl(Bytecode::Executable const&) const
  824. {
  825. StringBuilder builder;
  826. builder.append("NewArray"sv);
  827. if (m_element_count != 0) {
  828. builder.appendff(" [{}-{}]", m_elements[0], m_elements[1]);
  829. }
  830. return builder.to_string();
  831. }
  832. String Append::to_string_impl(Bytecode::Executable const&) const
  833. {
  834. if (m_is_spread)
  835. return String::formatted("Append lhs: **{}", m_lhs);
  836. return String::formatted("Append lhs: {}", m_lhs);
  837. }
  838. String IteratorToArray::to_string_impl(Bytecode::Executable const&) const
  839. {
  840. return "IteratorToArray";
  841. }
  842. String NewString::to_string_impl(Bytecode::Executable const& executable) const
  843. {
  844. return String::formatted("NewString {} (\"{}\")", m_string, executable.string_table->get(m_string));
  845. }
  846. String NewObject::to_string_impl(Bytecode::Executable const&) const
  847. {
  848. return "NewObject";
  849. }
  850. String NewRegExp::to_string_impl(Bytecode::Executable const& executable) const
  851. {
  852. return String::formatted("NewRegExp source:{} (\"{}\") flags:{} (\"{}\")", m_source_index, executable.get_string(m_source_index), m_flags_index, executable.get_string(m_flags_index));
  853. }
  854. String CopyObjectExcludingProperties::to_string_impl(Bytecode::Executable const&) const
  855. {
  856. StringBuilder builder;
  857. builder.appendff("CopyObjectExcludingProperties from:{}", m_from_object);
  858. if (m_excluded_names_count != 0) {
  859. builder.append(" excluding:["sv);
  860. builder.join(", "sv, Span<Register const>(m_excluded_names, m_excluded_names_count));
  861. builder.append(']');
  862. }
  863. return builder.to_string();
  864. }
  865. String ConcatString::to_string_impl(Bytecode::Executable const&) const
  866. {
  867. return String::formatted("ConcatString {}", m_lhs);
  868. }
  869. String GetVariable::to_string_impl(Bytecode::Executable const& executable) const
  870. {
  871. return String::formatted("GetVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier));
  872. }
  873. String DeleteVariable::to_string_impl(Bytecode::Executable const& executable) const
  874. {
  875. return String::formatted("DeleteVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier));
  876. }
  877. String CreateEnvironment::to_string_impl(Bytecode::Executable const&) const
  878. {
  879. auto mode_string = m_mode == EnvironmentMode::Lexical
  880. ? "Lexical"
  881. : "Variable";
  882. return String::formatted("CreateEnvironment mode:{}", mode_string);
  883. }
  884. String CreateVariable::to_string_impl(Bytecode::Executable const& executable) const
  885. {
  886. auto mode_string = m_mode == EnvironmentMode::Lexical ? "Lexical" : "Variable";
  887. return String::formatted("CreateVariable env:{} immutable:{} global:{} {} ({})", mode_string, m_is_immutable, m_is_global, m_identifier, executable.identifier_table->get(m_identifier));
  888. }
  889. String EnterObjectEnvironment::to_string_impl(Executable const&) const
  890. {
  891. return String::formatted("EnterObjectEnvironment");
  892. }
  893. String SetVariable::to_string_impl(Bytecode::Executable const& executable) const
  894. {
  895. auto initialization_mode_name = m_initialization_mode == InitializationMode ::Initialize ? "Initialize"
  896. : m_initialization_mode == InitializationMode::Set ? "Set"
  897. : "InitializeOrSet";
  898. auto mode_string = m_mode == EnvironmentMode::Lexical ? "Lexical" : "Variable";
  899. return String::formatted("SetVariable env:{} init:{} {} ({})", mode_string, initialization_mode_name, m_identifier, executable.identifier_table->get(m_identifier));
  900. }
  901. String PutById::to_string_impl(Bytecode::Executable const& executable) const
  902. {
  903. auto kind = m_kind == PropertyKind::Getter
  904. ? "getter"
  905. : m_kind == PropertyKind::Setter
  906. ? "setter"
  907. : "property";
  908. return String::formatted("PutById kind:{} base:{}, property:{} ({})", kind, m_base, m_property, executable.identifier_table->get(m_property));
  909. }
  910. String GetById::to_string_impl(Bytecode::Executable const& executable) const
  911. {
  912. return String::formatted("GetById {} ({})", m_property, executable.identifier_table->get(m_property));
  913. }
  914. String DeleteById::to_string_impl(Bytecode::Executable const& executable) const
  915. {
  916. return String::formatted("DeleteById {} ({})", m_property, executable.identifier_table->get(m_property));
  917. }
  918. String Jump::to_string_impl(Bytecode::Executable const&) const
  919. {
  920. if (m_true_target.has_value())
  921. return String::formatted("Jump {}", *m_true_target);
  922. return String::formatted("Jump <empty>");
  923. }
  924. String JumpConditional::to_string_impl(Bytecode::Executable const&) const
  925. {
  926. auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
  927. auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
  928. return String::formatted("JumpConditional true:{} false:{}", true_string, false_string);
  929. }
  930. String JumpNullish::to_string_impl(Bytecode::Executable const&) const
  931. {
  932. auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
  933. auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
  934. return String::formatted("JumpNullish null:{} nonnull:{}", true_string, false_string);
  935. }
  936. String JumpUndefined::to_string_impl(Bytecode::Executable const&) const
  937. {
  938. auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
  939. auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
  940. return String::formatted("JumpUndefined undefined:{} not undefined:{}", true_string, false_string);
  941. }
  942. String Call::to_string_impl(Bytecode::Executable const&) const
  943. {
  944. return String::formatted("Call callee:{}, this:{}, arguments:[...acc]", m_callee, m_this_value);
  945. }
  946. String SuperCall::to_string_impl(Bytecode::Executable const&) const
  947. {
  948. return "SuperCall arguments:[...acc]"sv;
  949. }
  950. String NewFunction::to_string_impl(Bytecode::Executable const&) const
  951. {
  952. return "NewFunction";
  953. }
  954. String NewClass::to_string_impl(Bytecode::Executable const&) const
  955. {
  956. return "NewClass";
  957. }
  958. String Return::to_string_impl(Bytecode::Executable const&) const
  959. {
  960. return "Return";
  961. }
  962. String Increment::to_string_impl(Bytecode::Executable const&) const
  963. {
  964. return "Increment";
  965. }
  966. String Decrement::to_string_impl(Bytecode::Executable const&) const
  967. {
  968. return "Decrement";
  969. }
  970. String Throw::to_string_impl(Bytecode::Executable const&) const
  971. {
  972. return "Throw";
  973. }
  974. String EnterUnwindContext::to_string_impl(Bytecode::Executable const&) const
  975. {
  976. auto handler_string = m_handler_target.has_value() ? String::formatted("{}", *m_handler_target) : "<empty>";
  977. auto finalizer_string = m_finalizer_target.has_value() ? String::formatted("{}", *m_finalizer_target) : "<empty>";
  978. return String::formatted("EnterUnwindContext handler:{} finalizer:{} entry:{}", handler_string, finalizer_string, m_entry_point);
  979. }
  980. String FinishUnwind::to_string_impl(Bytecode::Executable const&) const
  981. {
  982. return String::formatted("FinishUnwind next:{}", m_next_target);
  983. }
  984. String LeaveEnvironment::to_string_impl(Bytecode::Executable const&) const
  985. {
  986. auto mode_string = m_mode == EnvironmentMode::Lexical
  987. ? "Lexical"
  988. : "Variable";
  989. return String::formatted("LeaveEnvironment env:{}", mode_string);
  990. }
  991. String LeaveUnwindContext::to_string_impl(Bytecode::Executable const&) const
  992. {
  993. return "LeaveUnwindContext";
  994. }
  995. String ContinuePendingUnwind::to_string_impl(Bytecode::Executable const&) const
  996. {
  997. return String::formatted("ContinuePendingUnwind resume:{}", m_resume_target);
  998. }
  999. String PushDeclarativeEnvironment::to_string_impl(Bytecode::Executable const& executable) const
  1000. {
  1001. StringBuilder builder;
  1002. builder.append("PushDeclarativeEnvironment"sv);
  1003. if (!m_variables.is_empty()) {
  1004. builder.append(" {"sv);
  1005. Vector<String> names;
  1006. for (auto& it : m_variables)
  1007. names.append(executable.get_string(it.key));
  1008. builder.append('}');
  1009. builder.join(", "sv, names);
  1010. }
  1011. return builder.to_string();
  1012. }
  1013. String Yield::to_string_impl(Bytecode::Executable const&) const
  1014. {
  1015. if (m_continuation_label.has_value())
  1016. return String::formatted("Yield continuation:@{}", m_continuation_label->block().name());
  1017. return String::formatted("Yield return");
  1018. }
  1019. String GetByValue::to_string_impl(Bytecode::Executable const&) const
  1020. {
  1021. return String::formatted("GetByValue base:{}", m_base);
  1022. }
  1023. String PutByValue::to_string_impl(Bytecode::Executable const&) const
  1024. {
  1025. auto kind = m_kind == PropertyKind::Getter
  1026. ? "getter"
  1027. : m_kind == PropertyKind::Setter
  1028. ? "setter"
  1029. : "property";
  1030. return String::formatted("PutByValue kind:{} base:{}, property:{}", kind, m_base, m_property);
  1031. }
  1032. String DeleteByValue::to_string_impl(Bytecode::Executable const&) const
  1033. {
  1034. return String::formatted("DeleteByValue base:{}", m_base);
  1035. }
  1036. String GetIterator::to_string_impl(Executable const&) const
  1037. {
  1038. return "GetIterator";
  1039. }
  1040. String GetObjectPropertyIterator::to_string_impl(Bytecode::Executable const&) const
  1041. {
  1042. return "GetObjectPropertyIterator";
  1043. }
  1044. String IteratorNext::to_string_impl(Executable const&) const
  1045. {
  1046. return "IteratorNext";
  1047. }
  1048. String IteratorResultDone::to_string_impl(Executable const&) const
  1049. {
  1050. return "IteratorResultDone";
  1051. }
  1052. String IteratorResultValue::to_string_impl(Executable const&) const
  1053. {
  1054. return "IteratorResultValue";
  1055. }
  1056. String ResolveThisBinding::to_string_impl(Bytecode::Executable const&) const
  1057. {
  1058. return "ResolveThisBinding"sv;
  1059. }
  1060. String GetNewTarget::to_string_impl(Bytecode::Executable const&) const
  1061. {
  1062. return "GetNewTarget"sv;
  1063. }
  1064. String TypeofVariable::to_string_impl(Bytecode::Executable const& executable) const
  1065. {
  1066. return String::formatted("TypeofVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier));
  1067. }
  1068. }