MemoryManager.cpp 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Assertions.h>
  7. #include <AK/Memory.h>
  8. #include <AK/StringView.h>
  9. #include <Kernel/CMOS.h>
  10. #include <Kernel/FileSystem/Inode.h>
  11. #include <Kernel/Heap/kmalloc.h>
  12. #include <Kernel/Multiboot.h>
  13. #include <Kernel/Panic.h>
  14. #include <Kernel/Process.h>
  15. #include <Kernel/Sections.h>
  16. #include <Kernel/StdLib.h>
  17. #include <Kernel/VM/AnonymousVMObject.h>
  18. #include <Kernel/VM/ContiguousVMObject.h>
  19. #include <Kernel/VM/MemoryManager.h>
  20. #include <Kernel/VM/PageDirectory.h>
  21. #include <Kernel/VM/PhysicalRegion.h>
  22. #include <Kernel/VM/SharedInodeVMObject.h>
  23. extern u8* start_of_kernel_image;
  24. extern u8* end_of_kernel_image;
  25. extern FlatPtr start_of_kernel_text;
  26. extern FlatPtr start_of_kernel_data;
  27. extern FlatPtr end_of_kernel_bss;
  28. extern FlatPtr start_of_ro_after_init;
  29. extern FlatPtr end_of_ro_after_init;
  30. extern FlatPtr start_of_unmap_after_init;
  31. extern FlatPtr end_of_unmap_after_init;
  32. extern multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
  33. extern size_t multiboot_copy_boot_modules_count;
  34. // Treat the super pages as logically separate from .bss
  35. __attribute__((section(".super_pages"))) static u8 super_pages[1 * MiB];
  36. namespace Kernel {
  37. // NOTE: We can NOT use AK::Singleton for this class, because
  38. // MemoryManager::initialize is called *before* global constructors are
  39. // run. If we do, then AK::Singleton would get re-initialized, causing
  40. // the memory manager to be initialized twice!
  41. static MemoryManager* s_the;
  42. RecursiveSpinLock s_mm_lock;
  43. MemoryManager& MM
  44. {
  45. return *s_the;
  46. }
  47. bool MemoryManager::is_initialized()
  48. {
  49. return s_the != nullptr;
  50. }
  51. UNMAP_AFTER_INIT MemoryManager::MemoryManager()
  52. {
  53. ScopedSpinLock lock(s_mm_lock);
  54. m_kernel_page_directory = PageDirectory::create_kernel_page_directory();
  55. parse_memory_map();
  56. write_cr3(kernel_page_directory().cr3());
  57. protect_kernel_image();
  58. // We're temporarily "committing" to two pages that we need to allocate below
  59. if (!commit_user_physical_pages(2))
  60. VERIFY_NOT_REACHED();
  61. m_shared_zero_page = allocate_committed_user_physical_page();
  62. // We're wasting a page here, we just need a special tag (physical
  63. // address) so that we know when we need to lazily allocate a page
  64. // that we should be drawing this page from the committed pool rather
  65. // than potentially failing if no pages are available anymore.
  66. // By using a tag we don't have to query the VMObject for every page
  67. // whether it was committed or not
  68. m_lazy_committed_page = allocate_committed_user_physical_page();
  69. }
  70. UNMAP_AFTER_INIT MemoryManager::~MemoryManager()
  71. {
  72. }
  73. UNMAP_AFTER_INIT void MemoryManager::protect_kernel_image()
  74. {
  75. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  76. // Disable writing to the kernel text and rodata segments.
  77. for (auto i = (FlatPtr)&start_of_kernel_text; i < (FlatPtr)&start_of_kernel_data; i += PAGE_SIZE) {
  78. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  79. pte.set_writable(false);
  80. }
  81. if (Processor::current().has_feature(CPUFeature::NX)) {
  82. // Disable execution of the kernel data, bss and heap segments.
  83. for (auto i = (FlatPtr)&start_of_kernel_data; i < (FlatPtr)&end_of_kernel_image; i += PAGE_SIZE) {
  84. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  85. pte.set_execute_disabled(true);
  86. }
  87. }
  88. }
  89. UNMAP_AFTER_INIT void MemoryManager::protect_readonly_after_init_memory()
  90. {
  91. ScopedSpinLock mm_lock(s_mm_lock);
  92. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  93. // Disable writing to the .ro_after_init section
  94. for (auto i = (FlatPtr)&start_of_ro_after_init; i < (FlatPtr)&end_of_ro_after_init; i += PAGE_SIZE) {
  95. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  96. pte.set_writable(false);
  97. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  98. }
  99. }
  100. void MemoryManager::unmap_memory_after_init()
  101. {
  102. ScopedSpinLock mm_lock(s_mm_lock);
  103. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  104. auto start = page_round_down((FlatPtr)&start_of_unmap_after_init);
  105. auto end = page_round_up((FlatPtr)&end_of_unmap_after_init);
  106. // Unmap the entire .unmap_after_init section
  107. for (auto i = start; i < end; i += PAGE_SIZE) {
  108. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  109. pte.clear();
  110. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  111. }
  112. dmesgln("Unmapped {} KiB of kernel text after init! :^)", (end - start) / KiB);
  113. //Processor::halt();
  114. }
  115. UNMAP_AFTER_INIT void MemoryManager::register_reserved_ranges()
  116. {
  117. VERIFY(!m_physical_memory_ranges.is_empty());
  118. ContiguousReservedMemoryRange range;
  119. for (auto& current_range : m_physical_memory_ranges) {
  120. if (current_range.type != PhysicalMemoryRangeType::Reserved) {
  121. if (range.start.is_null())
  122. continue;
  123. m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, current_range.start.get() - range.start.get() });
  124. range.start.set((FlatPtr) nullptr);
  125. continue;
  126. }
  127. if (!range.start.is_null()) {
  128. continue;
  129. }
  130. range.start = current_range.start;
  131. }
  132. if (m_physical_memory_ranges.last().type != PhysicalMemoryRangeType::Reserved)
  133. return;
  134. if (range.start.is_null())
  135. return;
  136. m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, m_physical_memory_ranges.last().start.get() + m_physical_memory_ranges.last().length - range.start.get() });
  137. }
  138. bool MemoryManager::is_allowed_to_mmap_to_userspace(PhysicalAddress start_address, const Range& range) const
  139. {
  140. VERIFY(!m_reserved_memory_ranges.is_empty());
  141. for (auto& current_range : m_reserved_memory_ranges) {
  142. if (!(current_range.start <= start_address))
  143. continue;
  144. if (!(current_range.start.offset(current_range.length) > start_address))
  145. continue;
  146. if (current_range.length < range.size())
  147. return false;
  148. return true;
  149. }
  150. return false;
  151. }
  152. UNMAP_AFTER_INIT void MemoryManager::parse_memory_map()
  153. {
  154. RefPtr<PhysicalRegion> physical_region;
  155. // Register used memory regions that we know of.
  156. m_used_memory_ranges.ensure_capacity(4);
  157. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::LowMemory, PhysicalAddress(0x00000000), PhysicalAddress(1 * MiB) });
  158. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Kernel, PhysicalAddress(virtual_to_low_physical(FlatPtr(&start_of_kernel_image))), PhysicalAddress(page_round_up(virtual_to_low_physical(FlatPtr(&end_of_kernel_image)))) });
  159. if (multiboot_info_ptr->flags & 0x4) {
  160. auto* bootmods_start = multiboot_copy_boot_modules_array;
  161. auto* bootmods_end = bootmods_start + multiboot_copy_boot_modules_count;
  162. for (auto* bootmod = bootmods_start; bootmod < bootmods_end; bootmod++) {
  163. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::BootModule, PhysicalAddress(bootmod->start), PhysicalAddress(bootmod->end) });
  164. }
  165. }
  166. auto* mmap_begin = reinterpret_cast<multiboot_memory_map_t*>(low_physical_to_virtual(multiboot_info_ptr->mmap_addr));
  167. auto* mmap_end = reinterpret_cast<multiboot_memory_map_t*>(low_physical_to_virtual(multiboot_info_ptr->mmap_addr) + multiboot_info_ptr->mmap_length);
  168. for (auto& used_range : m_used_memory_ranges) {
  169. dmesgln("MM: {} range @ {} - {}", UserMemoryRangeTypeNames[static_cast<int>(used_range.type)], used_range.start, used_range.end);
  170. }
  171. for (auto* mmap = mmap_begin; mmap < mmap_end; mmap++) {
  172. dmesgln("MM: Multiboot mmap: address={:p}, length={}, type={}", mmap->addr, mmap->len, mmap->type);
  173. auto start_address = PhysicalAddress(mmap->addr);
  174. auto length = mmap->len;
  175. switch (mmap->type) {
  176. case (MULTIBOOT_MEMORY_AVAILABLE):
  177. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Usable, start_address, length });
  178. break;
  179. case (MULTIBOOT_MEMORY_RESERVED):
  180. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Reserved, start_address, length });
  181. break;
  182. case (MULTIBOOT_MEMORY_ACPI_RECLAIMABLE):
  183. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_Reclaimable, start_address, length });
  184. break;
  185. case (MULTIBOOT_MEMORY_NVS):
  186. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_NVS, start_address, length });
  187. break;
  188. case (MULTIBOOT_MEMORY_BADRAM):
  189. dmesgln("MM: Warning, detected bad memory range!");
  190. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::BadMemory, start_address, length });
  191. break;
  192. default:
  193. dbgln("MM: Unknown range!");
  194. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Unknown, start_address, length });
  195. break;
  196. }
  197. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  198. continue;
  199. // Fix up unaligned memory regions.
  200. auto diff = (FlatPtr)mmap->addr % PAGE_SIZE;
  201. if (diff != 0) {
  202. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting {:p} by {} bytes", mmap->addr, diff);
  203. diff = PAGE_SIZE - diff;
  204. mmap->addr += diff;
  205. mmap->len -= diff;
  206. }
  207. if ((mmap->len % PAGE_SIZE) != 0) {
  208. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting length {} by {} bytes", mmap->len, mmap->len % PAGE_SIZE);
  209. mmap->len -= mmap->len % PAGE_SIZE;
  210. }
  211. if (mmap->len < PAGE_SIZE) {
  212. dmesgln("MM: Memory physical_region from bootloader is too small; we want >= {} bytes, but got {} bytes", PAGE_SIZE, mmap->len);
  213. continue;
  214. }
  215. for (PhysicalSize page_base = mmap->addr; page_base <= (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  216. auto addr = PhysicalAddress(page_base);
  217. // Skip used memory ranges.
  218. bool should_skip = false;
  219. for (auto& used_range : m_used_memory_ranges) {
  220. if (addr.get() >= used_range.start.get() && addr.get() <= used_range.end.get()) {
  221. should_skip = true;
  222. break;
  223. }
  224. }
  225. if (should_skip)
  226. continue;
  227. // Assign page to user physical physical_region.
  228. if (physical_region.is_null() || physical_region->upper().offset(PAGE_SIZE) != addr) {
  229. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  230. physical_region = m_user_physical_regions.last();
  231. } else {
  232. physical_region->expand(physical_region->lower(), addr);
  233. }
  234. }
  235. }
  236. // Append statically-allocated super physical physical_region.
  237. m_super_physical_regions.append(PhysicalRegion::create(
  238. PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages))),
  239. PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages + sizeof(super_pages))))));
  240. for (auto& region : m_super_physical_regions) {
  241. m_system_memory_info.super_physical_pages += region.finalize_capacity();
  242. dmesgln("MM: Super physical region: {} - {}", region.lower(), region.upper());
  243. }
  244. for (auto& region : m_user_physical_regions) {
  245. m_system_memory_info.user_physical_pages += region.finalize_capacity();
  246. dmesgln("MM: User physical region: {} - {}", region.lower(), region.upper());
  247. }
  248. VERIFY(m_system_memory_info.super_physical_pages > 0);
  249. VERIFY(m_system_memory_info.user_physical_pages > 0);
  250. // We start out with no committed pages
  251. m_system_memory_info.user_physical_pages_uncommitted = m_system_memory_info.user_physical_pages;
  252. register_reserved_ranges();
  253. for (auto& range : m_reserved_memory_ranges) {
  254. dmesgln("MM: Contiguous reserved range from {}, length is {}", range.start, range.length);
  255. }
  256. }
  257. PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr)
  258. {
  259. VERIFY_INTERRUPTS_DISABLED();
  260. VERIFY(s_mm_lock.own_lock());
  261. VERIFY(page_directory.get_lock().own_lock());
  262. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  263. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  264. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  265. auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
  266. const PageDirectoryEntry& pde = pd[page_directory_index];
  267. if (!pde.is_present())
  268. return nullptr;
  269. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  270. }
  271. PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  272. {
  273. VERIFY_INTERRUPTS_DISABLED();
  274. VERIFY(s_mm_lock.own_lock());
  275. VERIFY(page_directory.get_lock().own_lock());
  276. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  277. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  278. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  279. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  280. PageDirectoryEntry& pde = pd[page_directory_index];
  281. if (!pde.is_present()) {
  282. bool did_purge = false;
  283. auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes, &did_purge);
  284. if (!page_table) {
  285. dbgln("MM: Unable to allocate page table to map {}", vaddr);
  286. return nullptr;
  287. }
  288. if (did_purge) {
  289. // If any memory had to be purged, ensure_pte may have been called as part
  290. // of the purging process. So we need to re-map the pd in this case to ensure
  291. // we're writing to the correct underlying physical page
  292. pd = quickmap_pd(page_directory, page_directory_table_index);
  293. VERIFY(&pde == &pd[page_directory_index]); // Sanity check
  294. VERIFY(!pde.is_present()); // Should have not changed
  295. }
  296. pde.set_page_table_base(page_table->paddr().get());
  297. pde.set_user_allowed(true);
  298. pde.set_present(true);
  299. pde.set_writable(true);
  300. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  301. // Use page_directory_table_index and page_directory_index as key
  302. // This allows us to release the page table entry when no longer needed
  303. auto result = page_directory.m_page_tables.set(vaddr.get() & ~0x1fffff, move(page_table));
  304. VERIFY(result == AK::HashSetResult::InsertedNewEntry);
  305. }
  306. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  307. }
  308. void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, bool is_last_release)
  309. {
  310. VERIFY_INTERRUPTS_DISABLED();
  311. VERIFY(s_mm_lock.own_lock());
  312. VERIFY(page_directory.get_lock().own_lock());
  313. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  314. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  315. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  316. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  317. PageDirectoryEntry& pde = pd[page_directory_index];
  318. if (pde.is_present()) {
  319. auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()));
  320. auto& pte = page_table[page_table_index];
  321. pte.clear();
  322. if (is_last_release || page_table_index == 0x1ff) {
  323. // If this is the last PTE in a region or the last PTE in a page table then
  324. // check if we can also release the page table
  325. bool all_clear = true;
  326. for (u32 i = 0; i <= 0x1ff; i++) {
  327. if (!page_table[i].is_null()) {
  328. all_clear = false;
  329. break;
  330. }
  331. }
  332. if (all_clear) {
  333. pde.clear();
  334. auto result = page_directory.m_page_tables.remove(vaddr.get() & ~0x1fffff);
  335. VERIFY(result);
  336. }
  337. }
  338. }
  339. }
  340. UNMAP_AFTER_INIT void MemoryManager::initialize(u32 cpu)
  341. {
  342. auto mm_data = new MemoryManagerData;
  343. Processor::current().set_mm_data(*mm_data);
  344. if (cpu == 0) {
  345. s_the = new MemoryManager;
  346. kmalloc_enable_expand();
  347. }
  348. }
  349. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  350. {
  351. ScopedSpinLock lock(s_mm_lock);
  352. for (auto& region : MM.m_kernel_regions) {
  353. if (region.contains(vaddr))
  354. return &region;
  355. }
  356. return nullptr;
  357. }
  358. Region* MemoryManager::find_user_region_from_vaddr(Space& space, VirtualAddress vaddr)
  359. {
  360. ScopedSpinLock lock(space.get_lock());
  361. return space.find_region_containing({ vaddr, 1 });
  362. }
  363. Region* MemoryManager::find_region_from_vaddr(Space& space, VirtualAddress vaddr)
  364. {
  365. ScopedSpinLock lock(s_mm_lock);
  366. if (auto* region = find_user_region_from_vaddr(space, vaddr))
  367. return region;
  368. return kernel_region_from_vaddr(vaddr);
  369. }
  370. Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr)
  371. {
  372. ScopedSpinLock lock(s_mm_lock);
  373. if (auto* region = kernel_region_from_vaddr(vaddr))
  374. return region;
  375. auto page_directory = PageDirectory::find_by_cr3(read_cr3());
  376. if (!page_directory)
  377. return nullptr;
  378. VERIFY(page_directory->space());
  379. return find_user_region_from_vaddr(*page_directory->space(), vaddr);
  380. }
  381. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  382. {
  383. VERIFY_INTERRUPTS_DISABLED();
  384. ScopedSpinLock lock(s_mm_lock);
  385. if (Processor::current().in_irq()) {
  386. dbgln("CPU[{}] BUG! Page fault while handling IRQ! code={}, vaddr={}, irq level: {}",
  387. Processor::id(), fault.code(), fault.vaddr(), Processor::current().in_irq());
  388. dump_kernel_regions();
  389. return PageFaultResponse::ShouldCrash;
  390. }
  391. dbgln_if(PAGE_FAULT_DEBUG, "MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::id(), fault.code(), fault.vaddr());
  392. auto* region = find_region_from_vaddr(fault.vaddr());
  393. if (!region) {
  394. return PageFaultResponse::ShouldCrash;
  395. }
  396. return region->handle_fault(fault, lock);
  397. }
  398. OwnPtr<Region> MemoryManager::allocate_contiguous_kernel_region(size_t size, StringView name, Region::Access access, size_t physical_alignment, Region::Cacheable cacheable)
  399. {
  400. VERIFY(!(size % PAGE_SIZE));
  401. ScopedSpinLock lock(s_mm_lock);
  402. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  403. if (!range.has_value())
  404. return {};
  405. auto vmobject = ContiguousVMObject::create_with_size(size, physical_alignment);
  406. if (!vmobject) {
  407. kernel_page_directory().range_allocator().deallocate(range.value());
  408. return {};
  409. }
  410. return allocate_kernel_region_with_vmobject(range.value(), *vmobject, name, access, cacheable);
  411. }
  412. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, StringView name, Region::Access access, AllocationStrategy strategy, Region::Cacheable cacheable)
  413. {
  414. VERIFY(!(size % PAGE_SIZE));
  415. auto vm_object = AnonymousVMObject::create_with_size(size, strategy);
  416. if (!vm_object)
  417. return {};
  418. ScopedSpinLock lock(s_mm_lock);
  419. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  420. if (!range.has_value())
  421. return {};
  422. return allocate_kernel_region_with_vmobject(range.value(), vm_object.release_nonnull(), name, access, cacheable);
  423. }
  424. OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  425. {
  426. auto vm_object = AnonymousVMObject::create_for_physical_range(paddr, size);
  427. if (!vm_object)
  428. return {};
  429. VERIFY(!(size % PAGE_SIZE));
  430. ScopedSpinLock lock(s_mm_lock);
  431. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  432. if (!range.has_value())
  433. return {};
  434. return allocate_kernel_region_with_vmobject(range.value(), *vm_object, name, access, cacheable);
  435. }
  436. OwnPtr<Region> MemoryManager::allocate_kernel_region_identity(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  437. {
  438. auto vm_object = AnonymousVMObject::create_for_physical_range(paddr, size);
  439. if (!vm_object)
  440. return {};
  441. VERIFY(!(size % PAGE_SIZE));
  442. ScopedSpinLock lock(s_mm_lock);
  443. auto range = kernel_page_directory().identity_range_allocator().allocate_specific(VirtualAddress(paddr.get()), size);
  444. if (!range.has_value())
  445. return {};
  446. return allocate_kernel_region_with_vmobject(range.value(), *vm_object, name, access, cacheable);
  447. }
  448. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(const Range& range, VMObject& vmobject, StringView name, Region::Access access, Region::Cacheable cacheable)
  449. {
  450. ScopedSpinLock lock(s_mm_lock);
  451. auto region = Region::create_kernel_only(range, vmobject, 0, KString::try_create(name), access, cacheable);
  452. if (region)
  453. region->map(kernel_page_directory());
  454. return region;
  455. }
  456. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  457. {
  458. VERIFY(!(size % PAGE_SIZE));
  459. ScopedSpinLock lock(s_mm_lock);
  460. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  461. if (!range.has_value())
  462. return {};
  463. return allocate_kernel_region_with_vmobject(range.value(), vmobject, name, access, cacheable);
  464. }
  465. bool MemoryManager::commit_user_physical_pages(size_t page_count)
  466. {
  467. VERIFY(page_count > 0);
  468. ScopedSpinLock lock(s_mm_lock);
  469. if (m_system_memory_info.user_physical_pages_uncommitted < page_count)
  470. return false;
  471. m_system_memory_info.user_physical_pages_uncommitted -= page_count;
  472. m_system_memory_info.user_physical_pages_committed += page_count;
  473. return true;
  474. }
  475. void MemoryManager::uncommit_user_physical_pages(size_t page_count)
  476. {
  477. VERIFY(page_count > 0);
  478. ScopedSpinLock lock(s_mm_lock);
  479. VERIFY(m_system_memory_info.user_physical_pages_committed >= page_count);
  480. m_system_memory_info.user_physical_pages_uncommitted += page_count;
  481. m_system_memory_info.user_physical_pages_committed -= page_count;
  482. }
  483. void MemoryManager::deallocate_user_physical_page(const PhysicalPage& page)
  484. {
  485. ScopedSpinLock lock(s_mm_lock);
  486. for (auto& region : m_user_physical_regions) {
  487. if (!region.contains(page))
  488. continue;
  489. region.return_page(page);
  490. --m_system_memory_info.user_physical_pages_used;
  491. // Always return pages to the uncommitted pool. Pages that were
  492. // committed and allocated are only freed upon request. Once
  493. // returned there is no guarantee being able to get them back.
  494. ++m_system_memory_info.user_physical_pages_uncommitted;
  495. return;
  496. }
  497. dmesgln("MM: deallocate_user_physical_page couldn't figure out region for user page @ {}", page.paddr());
  498. VERIFY_NOT_REACHED();
  499. }
  500. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page(bool committed)
  501. {
  502. VERIFY(s_mm_lock.is_locked());
  503. RefPtr<PhysicalPage> page;
  504. if (committed) {
  505. // Draw from the committed pages pool. We should always have these pages available
  506. VERIFY(m_system_memory_info.user_physical_pages_committed > 0);
  507. m_system_memory_info.user_physical_pages_committed--;
  508. } else {
  509. // We need to make sure we don't touch pages that we have committed to
  510. if (m_system_memory_info.user_physical_pages_uncommitted == 0)
  511. return {};
  512. m_system_memory_info.user_physical_pages_uncommitted--;
  513. }
  514. for (auto& region : m_user_physical_regions) {
  515. page = region.take_free_page(false);
  516. if (!page.is_null()) {
  517. ++m_system_memory_info.user_physical_pages_used;
  518. break;
  519. }
  520. }
  521. VERIFY(!committed || !page.is_null());
  522. return page;
  523. }
  524. NonnullRefPtr<PhysicalPage> MemoryManager::allocate_committed_user_physical_page(ShouldZeroFill should_zero_fill)
  525. {
  526. ScopedSpinLock lock(s_mm_lock);
  527. auto page = find_free_user_physical_page(true);
  528. if (should_zero_fill == ShouldZeroFill::Yes) {
  529. auto* ptr = quickmap_page(*page);
  530. memset(ptr, 0, PAGE_SIZE);
  531. unquickmap_page();
  532. }
  533. return page.release_nonnull();
  534. }
  535. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge)
  536. {
  537. ScopedSpinLock lock(s_mm_lock);
  538. auto page = find_free_user_physical_page(false);
  539. bool purged_pages = false;
  540. if (!page) {
  541. // We didn't have a single free physical page. Let's try to free something up!
  542. // First, we look for a purgeable VMObject in the volatile state.
  543. for_each_vmobject([&](auto& vmobject) {
  544. if (!vmobject.is_anonymous())
  545. return IterationDecision::Continue;
  546. int purged_page_count = static_cast<AnonymousVMObject&>(vmobject).purge_with_interrupts_disabled({});
  547. if (purged_page_count) {
  548. dbgln("MM: Purge saved the day! Purged {} pages from AnonymousVMObject", purged_page_count);
  549. page = find_free_user_physical_page(false);
  550. purged_pages = true;
  551. VERIFY(page);
  552. return IterationDecision::Break;
  553. }
  554. return IterationDecision::Continue;
  555. });
  556. if (!page) {
  557. dmesgln("MM: no user physical pages available");
  558. return {};
  559. }
  560. }
  561. if (should_zero_fill == ShouldZeroFill::Yes) {
  562. auto* ptr = quickmap_page(*page);
  563. memset(ptr, 0, PAGE_SIZE);
  564. unquickmap_page();
  565. }
  566. if (did_purge)
  567. *did_purge = purged_pages;
  568. return page;
  569. }
  570. void MemoryManager::deallocate_supervisor_physical_page(const PhysicalPage& page)
  571. {
  572. ScopedSpinLock lock(s_mm_lock);
  573. for (auto& region : m_super_physical_regions) {
  574. if (!region.contains(page)) {
  575. dbgln("MM: deallocate_supervisor_physical_page: {} not in {} - {}", page.paddr(), region.lower(), region.upper());
  576. continue;
  577. }
  578. region.return_page(page);
  579. --m_system_memory_info.super_physical_pages_used;
  580. return;
  581. }
  582. dbgln("MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ {}", page.paddr());
  583. VERIFY_NOT_REACHED();
  584. }
  585. NonnullRefPtrVector<PhysicalPage> MemoryManager::allocate_contiguous_supervisor_physical_pages(size_t size, size_t physical_alignment)
  586. {
  587. VERIFY(!(size % PAGE_SIZE));
  588. ScopedSpinLock lock(s_mm_lock);
  589. size_t count = ceil_div(size, static_cast<size_t>(PAGE_SIZE));
  590. NonnullRefPtrVector<PhysicalPage> physical_pages;
  591. for (auto& region : m_super_physical_regions) {
  592. physical_pages = region.take_contiguous_free_pages(count, true, physical_alignment);
  593. if (!physical_pages.is_empty())
  594. continue;
  595. }
  596. if (physical_pages.is_empty()) {
  597. if (m_super_physical_regions.is_empty()) {
  598. dmesgln("MM: no super physical regions available (?)");
  599. }
  600. dmesgln("MM: no super physical pages available");
  601. VERIFY_NOT_REACHED();
  602. return {};
  603. }
  604. auto cleanup_region = MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write);
  605. fast_u32_fill((u32*)cleanup_region->vaddr().as_ptr(), 0, (PAGE_SIZE * count) / sizeof(u32));
  606. m_system_memory_info.super_physical_pages_used += count;
  607. return physical_pages;
  608. }
  609. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  610. {
  611. ScopedSpinLock lock(s_mm_lock);
  612. RefPtr<PhysicalPage> page;
  613. for (auto& region : m_super_physical_regions) {
  614. page = region.take_free_page(true);
  615. if (!page.is_null())
  616. break;
  617. }
  618. if (!page) {
  619. if (m_super_physical_regions.is_empty()) {
  620. dmesgln("MM: no super physical regions available (?)");
  621. }
  622. dmesgln("MM: no super physical pages available");
  623. VERIFY_NOT_REACHED();
  624. return {};
  625. }
  626. fast_u32_fill((u32*)page->paddr().offset(KERNEL_BASE).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  627. ++m_system_memory_info.super_physical_pages_used;
  628. return page;
  629. }
  630. void MemoryManager::enter_process_paging_scope(Process& process)
  631. {
  632. enter_space(process.space());
  633. }
  634. void MemoryManager::enter_space(Space& space)
  635. {
  636. auto current_thread = Thread::current();
  637. VERIFY(current_thread != nullptr);
  638. ScopedSpinLock lock(s_mm_lock);
  639. current_thread->regs().cr3 = space.page_directory().cr3();
  640. write_cr3(space.page_directory().cr3());
  641. }
  642. void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
  643. {
  644. Processor::flush_tlb_local(vaddr, page_count);
  645. }
  646. void MemoryManager::flush_tlb(const PageDirectory* page_directory, VirtualAddress vaddr, size_t page_count)
  647. {
  648. Processor::flush_tlb(page_directory, vaddr, page_count);
  649. }
  650. extern "C" PageTableEntry boot_pd3_pt1023[1024];
  651. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  652. {
  653. VERIFY(s_mm_lock.own_lock());
  654. auto& mm_data = get_data();
  655. auto& pte = boot_pd3_pt1023[4];
  656. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  657. if (pte.physical_page_base() != pd_paddr.get()) {
  658. pte.set_physical_page_base(pd_paddr.get());
  659. pte.set_present(true);
  660. pte.set_writable(true);
  661. pte.set_user_allowed(false);
  662. // Because we must continue to hold the MM lock while we use this
  663. // mapping, it is sufficient to only flush on the current CPU. Other
  664. // CPUs trying to use this API must wait on the MM lock anyway
  665. flush_tlb_local(VirtualAddress(0xffe04000));
  666. } else {
  667. // Even though we don't allow this to be called concurrently, it's
  668. // possible that this PD was mapped on a different CPU and we don't
  669. // broadcast the flush. If so, we still need to flush the TLB.
  670. if (mm_data.m_last_quickmap_pd != pd_paddr)
  671. flush_tlb_local(VirtualAddress(0xffe04000));
  672. }
  673. mm_data.m_last_quickmap_pd = pd_paddr;
  674. return (PageDirectoryEntry*)0xffe04000;
  675. }
  676. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  677. {
  678. VERIFY(s_mm_lock.own_lock());
  679. auto& mm_data = get_data();
  680. auto& pte = boot_pd3_pt1023[0];
  681. if (pte.physical_page_base() != pt_paddr.get()) {
  682. pte.set_physical_page_base(pt_paddr.get());
  683. pte.set_present(true);
  684. pte.set_writable(true);
  685. pte.set_user_allowed(false);
  686. // Because we must continue to hold the MM lock while we use this
  687. // mapping, it is sufficient to only flush on the current CPU. Other
  688. // CPUs trying to use this API must wait on the MM lock anyway
  689. flush_tlb_local(VirtualAddress(0xffe00000));
  690. } else {
  691. // Even though we don't allow this to be called concurrently, it's
  692. // possible that this PT was mapped on a different CPU and we don't
  693. // broadcast the flush. If so, we still need to flush the TLB.
  694. if (mm_data.m_last_quickmap_pt != pt_paddr)
  695. flush_tlb_local(VirtualAddress(0xffe00000));
  696. }
  697. mm_data.m_last_quickmap_pt = pt_paddr;
  698. return (PageTableEntry*)0xffe00000;
  699. }
  700. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  701. {
  702. VERIFY_INTERRUPTS_DISABLED();
  703. auto& mm_data = get_data();
  704. mm_data.m_quickmap_prev_flags = mm_data.m_quickmap_in_use.lock();
  705. ScopedSpinLock lock(s_mm_lock);
  706. u32 pte_idx = 8 + Processor::id();
  707. VirtualAddress vaddr(0xffe00000 + pte_idx * PAGE_SIZE);
  708. auto& pte = boot_pd3_pt1023[pte_idx];
  709. if (pte.physical_page_base() != physical_page.paddr().get()) {
  710. pte.set_physical_page_base(physical_page.paddr().get());
  711. pte.set_present(true);
  712. pte.set_writable(true);
  713. pte.set_user_allowed(false);
  714. flush_tlb_local(vaddr);
  715. }
  716. return vaddr.as_ptr();
  717. }
  718. void MemoryManager::unquickmap_page()
  719. {
  720. VERIFY_INTERRUPTS_DISABLED();
  721. ScopedSpinLock lock(s_mm_lock);
  722. auto& mm_data = get_data();
  723. VERIFY(mm_data.m_quickmap_in_use.is_locked());
  724. u32 pte_idx = 8 + Processor::id();
  725. VirtualAddress vaddr(0xffe00000 + pte_idx * PAGE_SIZE);
  726. auto& pte = boot_pd3_pt1023[pte_idx];
  727. pte.clear();
  728. flush_tlb_local(vaddr);
  729. mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_prev_flags);
  730. }
  731. bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
  732. {
  733. if (!is_user_address(vaddr))
  734. return false;
  735. ScopedSpinLock lock(s_mm_lock);
  736. auto* region = find_user_region_from_vaddr(const_cast<Process&>(process).space(), vaddr);
  737. return region && region->is_user() && region->is_stack();
  738. }
  739. void MemoryManager::register_vmobject(VMObject& vmobject)
  740. {
  741. ScopedSpinLock lock(s_mm_lock);
  742. m_vmobjects.append(vmobject);
  743. }
  744. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  745. {
  746. ScopedSpinLock lock(s_mm_lock);
  747. m_vmobjects.remove(vmobject);
  748. }
  749. void MemoryManager::register_region(Region& region)
  750. {
  751. ScopedSpinLock lock(s_mm_lock);
  752. if (region.is_kernel())
  753. m_kernel_regions.append(region);
  754. else
  755. m_user_regions.append(region);
  756. }
  757. void MemoryManager::unregister_region(Region& region)
  758. {
  759. ScopedSpinLock lock(s_mm_lock);
  760. if (region.is_kernel())
  761. m_kernel_regions.remove(region);
  762. else
  763. m_user_regions.remove(region);
  764. }
  765. void MemoryManager::dump_kernel_regions()
  766. {
  767. dbgln("Kernel regions:");
  768. dbgln("BEGIN END SIZE ACCESS NAME");
  769. ScopedSpinLock lock(s_mm_lock);
  770. for (auto& region : m_kernel_regions) {
  771. dbgln("{:08x} -- {:08x} {:08x} {:c}{:c}{:c}{:c}{:c}{:c} {}",
  772. region.vaddr().get(),
  773. region.vaddr().offset(region.size() - 1).get(),
  774. region.size(),
  775. region.is_readable() ? 'R' : ' ',
  776. region.is_writable() ? 'W' : ' ',
  777. region.is_executable() ? 'X' : ' ',
  778. region.is_shared() ? 'S' : ' ',
  779. region.is_stack() ? 'T' : ' ',
  780. region.is_syscall_region() ? 'C' : ' ',
  781. region.name());
  782. }
  783. }
  784. void MemoryManager::set_page_writable_direct(VirtualAddress vaddr, bool writable)
  785. {
  786. ScopedSpinLock lock(s_mm_lock);
  787. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  788. auto* pte = ensure_pte(kernel_page_directory(), vaddr);
  789. VERIFY(pte);
  790. if (pte->is_writable() == writable)
  791. return;
  792. pte->set_writable(writable);
  793. flush_tlb(&kernel_page_directory(), vaddr);
  794. }
  795. }