DeprecatedPath.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Math.h>
  7. #include <AK/StringBuilder.h>
  8. #include <AK/TypeCasts.h>
  9. #include <LibGfx/BoundingBox.h>
  10. #include <LibGfx/DeprecatedPainter.h>
  11. #include <LibGfx/DeprecatedPath.h>
  12. #include <LibGfx/Font/ScaledFont.h>
  13. #include <LibGfx/TextLayout.h>
  14. namespace Gfx {
  15. void DeprecatedPath::approximate_elliptical_arc_with_cubic_beziers(FloatPoint center, FloatSize radii, float x_axis_rotation, float theta, float theta_delta)
  16. {
  17. float sin_x_rotation;
  18. float cos_x_rotation;
  19. AK::sincos(x_axis_rotation, sin_x_rotation, cos_x_rotation);
  20. auto arc_point_and_derivative = [&](float t, FloatPoint& point, FloatPoint& derivative) {
  21. float sin_angle;
  22. float cos_angle;
  23. AK::sincos(t, sin_angle, cos_angle);
  24. point = FloatPoint {
  25. center.x()
  26. + radii.width() * cos_x_rotation * cos_angle
  27. - radii.height() * sin_x_rotation * sin_angle,
  28. center.y()
  29. + radii.width() * sin_x_rotation * cos_angle
  30. + radii.height() * cos_x_rotation * sin_angle,
  31. };
  32. derivative = FloatPoint {
  33. -radii.width() * cos_x_rotation * sin_angle
  34. - radii.height() * sin_x_rotation * cos_angle,
  35. -radii.width() * sin_x_rotation * sin_angle
  36. + radii.height() * cos_x_rotation * cos_angle,
  37. };
  38. };
  39. auto approximate_arc_between = [&](float start_angle, float end_angle) {
  40. auto t = AK::tan((end_angle - start_angle) / 2);
  41. auto alpha = AK::sin(end_angle - start_angle) * ((AK::sqrt(4 + 3 * t * t) - 1) / 3);
  42. FloatPoint p1, d1;
  43. FloatPoint p2, d2;
  44. arc_point_and_derivative(start_angle, p1, d1);
  45. arc_point_and_derivative(end_angle, p2, d2);
  46. auto q1 = p1 + d1.scaled(alpha, alpha);
  47. auto q2 = p2 - d2.scaled(alpha, alpha);
  48. cubic_bezier_curve_to(q1, q2, p2);
  49. };
  50. // FIXME: Come up with a more mathematically sound step size (using some error calculation).
  51. auto step = theta_delta;
  52. int step_count = 1;
  53. while (fabs(step) > AK::Pi<float> / 4) {
  54. step /= 2;
  55. step_count *= 2;
  56. }
  57. float prev = theta;
  58. float t = prev + step;
  59. for (int i = 0; i < step_count; i++, prev = t, t += step)
  60. approximate_arc_between(prev, t);
  61. }
  62. void DeprecatedPath::elliptical_arc_to(FloatPoint point, FloatSize radii, float x_axis_rotation, bool large_arc, bool sweep)
  63. {
  64. auto next_point = point;
  65. double rx = radii.width();
  66. double ry = radii.height();
  67. double x_axis_rotation_s;
  68. double x_axis_rotation_c;
  69. AK::sincos(static_cast<double>(x_axis_rotation), x_axis_rotation_s, x_axis_rotation_c);
  70. FloatPoint last_point = this->last_point();
  71. // Step 1 of out-of-range radii correction
  72. if (rx == 0.0 || ry == 0.0) {
  73. append_segment<DeprecatedPathSegment::LineTo>(next_point);
  74. return;
  75. }
  76. // Step 2 of out-of-range radii correction
  77. if (rx < 0)
  78. rx *= -1.0;
  79. if (ry < 0)
  80. ry *= -1.0;
  81. // POSSIBLY HACK: Handle the case where both points are the same.
  82. auto same_endpoints = next_point == last_point;
  83. if (same_endpoints) {
  84. if (!large_arc) {
  85. // Nothing is going to be drawn anyway.
  86. return;
  87. }
  88. // Move the endpoint by a small amount to avoid division by zero.
  89. next_point.translate_by(0.01f, 0.01f);
  90. }
  91. // Find (cx, cy), theta_1, theta_delta
  92. // Step 1: Compute (x1', y1')
  93. auto x_avg = static_cast<double>(last_point.x() - next_point.x()) / 2.0;
  94. auto y_avg = static_cast<double>(last_point.y() - next_point.y()) / 2.0;
  95. auto x1p = x_axis_rotation_c * x_avg + x_axis_rotation_s * y_avg;
  96. auto y1p = -x_axis_rotation_s * x_avg + x_axis_rotation_c * y_avg;
  97. // Step 2: Compute (cx', cy')
  98. double x1p_sq = x1p * x1p;
  99. double y1p_sq = y1p * y1p;
  100. double rx_sq = rx * rx;
  101. double ry_sq = ry * ry;
  102. // Step 3 of out-of-range radii correction
  103. double lambda = x1p_sq / rx_sq + y1p_sq / ry_sq;
  104. double multiplier;
  105. if (lambda > 1.0) {
  106. auto lambda_sqrt = AK::sqrt(lambda);
  107. rx *= lambda_sqrt;
  108. ry *= lambda_sqrt;
  109. multiplier = 0.0;
  110. } else {
  111. double numerator = rx_sq * ry_sq - rx_sq * y1p_sq - ry_sq * x1p_sq;
  112. double denominator = rx_sq * y1p_sq + ry_sq * x1p_sq;
  113. multiplier = AK::sqrt(AK::max(0., numerator) / denominator);
  114. }
  115. if (large_arc == sweep)
  116. multiplier *= -1.0;
  117. double cxp = multiplier * rx * y1p / ry;
  118. double cyp = multiplier * -ry * x1p / rx;
  119. // Step 3: Compute (cx, cy) from (cx', cy')
  120. x_avg = (last_point.x() + next_point.x()) / 2.0f;
  121. y_avg = (last_point.y() + next_point.y()) / 2.0f;
  122. double cx = x_axis_rotation_c * cxp - x_axis_rotation_s * cyp + x_avg;
  123. double cy = x_axis_rotation_s * cxp + x_axis_rotation_c * cyp + y_avg;
  124. double theta_1 = AK::atan2((y1p - cyp) / ry, (x1p - cxp) / rx);
  125. double theta_2 = AK::atan2((-y1p - cyp) / ry, (-x1p - cxp) / rx);
  126. auto theta_delta = theta_2 - theta_1;
  127. if (!sweep && theta_delta > 0.0) {
  128. theta_delta -= 2 * AK::Pi<double>;
  129. } else if (sweep && theta_delta < 0) {
  130. theta_delta += 2 * AK::Pi<double>;
  131. }
  132. approximate_elliptical_arc_with_cubic_beziers(
  133. { cx, cy },
  134. { rx, ry },
  135. x_axis_rotation,
  136. theta_1,
  137. theta_delta);
  138. }
  139. void DeprecatedPath::close()
  140. {
  141. // If there's no `moveto` starting this subpath assume the start is (0, 0).
  142. FloatPoint first_point_in_subpath = { 0, 0 };
  143. for (auto it = end(); it-- != begin();) {
  144. auto segment = *it;
  145. if (segment.command() == DeprecatedPathSegment::MoveTo) {
  146. first_point_in_subpath = segment.point();
  147. break;
  148. }
  149. }
  150. if (first_point_in_subpath != last_point())
  151. line_to(first_point_in_subpath);
  152. }
  153. void DeprecatedPath::close_all_subpaths()
  154. {
  155. auto it = begin();
  156. // Note: Get the end outside the loop as closing subpaths will move the end.
  157. auto end = this->end();
  158. while (it < end) {
  159. // If there's no `moveto` starting this subpath assume the start is (0, 0).
  160. FloatPoint first_point_in_subpath = { 0, 0 };
  161. auto segment = *it;
  162. if (segment.command() == DeprecatedPathSegment::MoveTo) {
  163. first_point_in_subpath = segment.point();
  164. ++it;
  165. }
  166. // Find the end of the current subpath.
  167. FloatPoint cursor = first_point_in_subpath;
  168. while (it < end) {
  169. auto segment = *it;
  170. if (segment.command() == DeprecatedPathSegment::MoveTo)
  171. break;
  172. cursor = segment.point();
  173. ++it;
  174. }
  175. // Close the subpath.
  176. if (first_point_in_subpath != cursor) {
  177. move_to(cursor);
  178. line_to(first_point_in_subpath);
  179. }
  180. }
  181. }
  182. ByteString DeprecatedPath::to_byte_string() const
  183. {
  184. // Dumps this path as an SVG compatible string.
  185. StringBuilder builder;
  186. if (is_empty() || m_commands.first() != DeprecatedPathSegment::MoveTo)
  187. builder.append("M 0,0"sv);
  188. for (auto segment : *this) {
  189. if (!builder.is_empty())
  190. builder.append(' ');
  191. switch (segment.command()) {
  192. case DeprecatedPathSegment::MoveTo:
  193. builder.append('M');
  194. break;
  195. case DeprecatedPathSegment::LineTo:
  196. builder.append('L');
  197. break;
  198. case DeprecatedPathSegment::QuadraticBezierCurveTo:
  199. builder.append('Q');
  200. break;
  201. case DeprecatedPathSegment::CubicBezierCurveTo:
  202. builder.append('C');
  203. break;
  204. }
  205. for (auto point : segment.points())
  206. builder.appendff(" {},{}", point.x(), point.y());
  207. }
  208. return builder.to_byte_string();
  209. }
  210. void DeprecatedPath::segmentize_path()
  211. {
  212. Vector<FloatLine> segments;
  213. FloatBoundingBox bounding_box;
  214. auto add_line = [&](auto const& p0, auto const& p1) {
  215. segments.append({ p0, p1 });
  216. bounding_box.add_point(p1);
  217. };
  218. FloatPoint cursor { 0, 0 };
  219. for (auto segment : *this) {
  220. switch (segment.command()) {
  221. case DeprecatedPathSegment::MoveTo:
  222. bounding_box.add_point(segment.point());
  223. break;
  224. case DeprecatedPathSegment::LineTo: {
  225. add_line(cursor, segment.point());
  226. break;
  227. }
  228. case DeprecatedPathSegment::QuadraticBezierCurveTo: {
  229. DeprecatedPainter::for_each_line_segment_on_bezier_curve(segment.through(), cursor, segment.point(), [&](FloatPoint p0, FloatPoint p1) {
  230. add_line(p0, p1);
  231. });
  232. break;
  233. }
  234. case DeprecatedPathSegment::CubicBezierCurveTo: {
  235. DeprecatedPainter::for_each_line_segment_on_cubic_bezier_curve(segment.through_0(), segment.through_1(), cursor, segment.point(), [&](FloatPoint p0, FloatPoint p1) {
  236. add_line(p0, p1);
  237. });
  238. break;
  239. }
  240. }
  241. cursor = segment.point();
  242. }
  243. m_split_lines = SplitLines { move(segments), bounding_box };
  244. }
  245. DeprecatedPath DeprecatedPath::copy_transformed(Gfx::AffineTransform const& transform) const
  246. {
  247. DeprecatedPath result;
  248. result.m_commands = m_commands;
  249. result.m_points.ensure_capacity(m_points.size());
  250. for (auto point : m_points)
  251. result.m_points.unchecked_append(transform.map(point));
  252. return result;
  253. }
  254. template<typename T>
  255. struct RoundTrip {
  256. RoundTrip(ReadonlySpan<T> span)
  257. : m_span(span)
  258. {
  259. }
  260. size_t size() const
  261. {
  262. return m_span.size() * 2 - 1;
  263. }
  264. T const& operator[](size_t index) const
  265. {
  266. // Follow the path:
  267. if (index < m_span.size())
  268. return m_span[index];
  269. // Then in reverse:
  270. if (index < size())
  271. return m_span[size() - index - 1];
  272. // Then wrap around again:
  273. return m_span[index - size() + 1];
  274. }
  275. private:
  276. ReadonlySpan<T> m_span;
  277. };
  278. DeprecatedPath DeprecatedPath::stroke_to_fill(float thickness) const
  279. {
  280. // Note: This convolves a polygon with the path using the algorithm described
  281. // in https://keithp.com/~keithp/talks/cairo2003.pdf (3.1 Stroking Splines via Convolution)
  282. VERIFY(thickness > 0);
  283. auto lines = split_lines();
  284. if (lines.is_empty())
  285. return DeprecatedPath {};
  286. // Paths can be disconnected, which a pain to deal with, so split it up.
  287. Vector<Vector<FloatPoint>> segments;
  288. segments.append({ lines.first().a() });
  289. for (auto& line : lines) {
  290. if (line.a() == segments.last().last()) {
  291. segments.last().append(line.b());
  292. } else {
  293. segments.append({ line.a(), line.b() });
  294. }
  295. }
  296. constexpr auto flatness = 0.15f;
  297. auto pen_vertex_count = 4;
  298. if (thickness > flatness) {
  299. pen_vertex_count = max(
  300. static_cast<int>(ceilf(AK::Pi<float>
  301. / acosf(1 - (2 * flatness) / thickness))),
  302. pen_vertex_count);
  303. }
  304. if (pen_vertex_count % 2 == 1)
  305. pen_vertex_count += 1;
  306. Vector<FloatPoint, 128> pen_vertices;
  307. pen_vertices.ensure_capacity(pen_vertex_count);
  308. // Generate vertices for the pen (going counterclockwise). The pen does not necessarily need
  309. // to be a circle (or an approximation of one), but other shapes are untested.
  310. float theta = 0;
  311. float theta_delta = (AK::Pi<float> * 2) / pen_vertex_count;
  312. for (int i = 0; i < pen_vertex_count; i++) {
  313. float sin_theta;
  314. float cos_theta;
  315. AK::sincos(theta, sin_theta, cos_theta);
  316. pen_vertices.unchecked_append({ cos_theta * thickness / 2, sin_theta * thickness / 2 });
  317. theta -= theta_delta;
  318. }
  319. auto wrapping_index = [](auto& vertices, auto index) {
  320. return vertices[(index + vertices.size()) % vertices.size()];
  321. };
  322. auto angle_between = [](auto p1, auto p2) {
  323. auto delta = p2 - p1;
  324. return atan2f(delta.y(), delta.x());
  325. };
  326. struct ActiveRange {
  327. float start;
  328. float end;
  329. bool in_range(float angle) const
  330. {
  331. // Note: Since active ranges go counterclockwise start > end unless we wrap around at 180 degrees
  332. return ((angle <= start && angle >= end)
  333. || (start < end && angle <= start)
  334. || (start < end && angle >= end));
  335. }
  336. };
  337. Vector<ActiveRange, 128> active_ranges;
  338. active_ranges.ensure_capacity(pen_vertices.size());
  339. for (auto i = 0; i < pen_vertex_count; i++) {
  340. active_ranges.unchecked_append({ angle_between(wrapping_index(pen_vertices, i - 1), pen_vertices[i]),
  341. angle_between(pen_vertices[i], wrapping_index(pen_vertices, i + 1)) });
  342. }
  343. auto clockwise = [](float current_angle, float target_angle) {
  344. if (target_angle < 0)
  345. target_angle += AK::Pi<float> * 2;
  346. if (current_angle < 0)
  347. current_angle += AK::Pi<float> * 2;
  348. if (target_angle < current_angle)
  349. target_angle += AK::Pi<float> * 2;
  350. return (target_angle - current_angle) <= AK::Pi<float>;
  351. };
  352. DeprecatedPath convolution;
  353. for (auto& segment : segments) {
  354. RoundTrip<FloatPoint> shape { segment };
  355. bool first = true;
  356. auto add_vertex = [&](auto v) {
  357. if (first) {
  358. convolution.move_to(v);
  359. first = false;
  360. } else {
  361. convolution.line_to(v);
  362. }
  363. };
  364. auto shape_idx = 0u;
  365. auto slope = [&] {
  366. return angle_between(shape[shape_idx], shape[shape_idx + 1]);
  367. };
  368. auto start_slope = slope();
  369. // Note: At least one range must be active.
  370. auto active = *active_ranges.find_first_index_if([&](auto& range) {
  371. return range.in_range(start_slope);
  372. });
  373. while (shape_idx < shape.size()) {
  374. add_vertex(shape[shape_idx] + pen_vertices[active]);
  375. auto slope_now = slope();
  376. auto range = active_ranges[active];
  377. if (range.in_range(slope_now)) {
  378. shape_idx++;
  379. } else {
  380. if (clockwise(slope_now, range.end)) {
  381. if (active == static_cast<size_t>(pen_vertex_count - 1))
  382. active = 0;
  383. else
  384. active++;
  385. } else {
  386. if (active == 0)
  387. active = pen_vertex_count - 1;
  388. else
  389. active--;
  390. }
  391. }
  392. }
  393. }
  394. return convolution;
  395. }
  396. }